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a b s t r a c t 

During pandemic events, strategies such as social distancing can be fundamental to reduce simultaneous 

infections and mitigate the disease spreading, which is very relevant to the risk of a healthcare system 

collapse. Although these strategies can be recommended, or even imposed, their actual implementation 

may depend on the population perception of the risks associated with a potential infection. The current 

COVID-19 crisis, for instance, is showing that some individuals are much more prone than others to re- 

main isolated. To better understand these dynamics, we propose an epidemiological SIR model that uses 

evolutionary game theory for combining in a single process social strategies, individual risk perception, 

and viral spreading. In particular, we consider a disease spreading through a population, whose agents 

can choose between self-isolation and a lifestyle careless of any epidemic risk. The strategy adoption is 

individual and depends on the perceived disease risk compared to the quarantine cost. The game payoff

governs the strategy adoption, while the epidemic process governs the agent’s health state. At the same 

time, the infection rate depends on the agent’s strategy while the perceived disease risk depends on the 

fraction of infected agents. Our results show recurrent infection waves, which are usually seen in previous 

historic epidemic scenarios with voluntary quarantine. In particular, such waves re-occur as the popula- 

tion reduces disease awareness. Notably, the risk perception is found to be fundamental for controlling 

the magnitude of the infection peak, while the final infection size is mainly dictated by the infection 

rates. Low awareness leads to a single and strong infection peak, while a greater disease risk leads to 

shorter, although more frequent, peaks. The proposed model spontaneously captures relevant aspects of 

a pandemic event, highlighting the fundamental role of social strategies. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

During a pandemic, quarantine and other distancing rules can 

onstitute the only option to curb the viral spreading, in particu- 

ar in absence of vaccines or medicines to control the symptoms 

esulting from an infection [1–4] . Usually, these social rules are 

efined by epidemiologists and other experts, however their ac- 

ual implementation can be quite challenging. For instance, the 

urrent COVID-19 crisis [5–7] is showing how some people are 

ore easily prone to self-isolate under voluntary quarantine than 

thers, even despite evidences on the potential risks. By doing so, 

ndividuals that avoid any form of restriction become an element 

f risk for themselves and for their community. In these scenar- 

os, understanding how to stimulate and sustain prosocial behav- 
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ors has a paramount relevance. In this work, we aim to study 

he relationship between human behavior, represented by individ- 

al quarantining strategies, and the epidemic spreading of a dis- 

ase. We emphasize that this model is not an empirical descrip- 

ion of the current COVID-19 evolution. Instead, this is a gen- 

ral theoretical framework that merges evolutionary game theory 

EGT) [8] and epidemiology in a single compartmental model. 

uch framework allows rational strategy changes between agents 

nd can be used to better understand the central aspects regard- 

ng a generic epidemic event. Note that this model focus on volun- 

ary self-imposed quarantines only. Such strategy is different from 

olicy-driven quarantines, where the government can apply con- 

act tracing and other methods to enforce the isolation of specific 

ndividuals that were shown to be infected, or potentially infec- 

ious [9–11] . 

Usually, the approach for studying a pandemic or epidemic pro- 

ess is based on compartmental models [4,12,13] , which are a ubiq- 

itous tool in epidemiology and modern health management sys- 

https://doi.org/10.1016/j.chaos.2020.110616
http://www.ScienceDirect.com
http://www.elsevier.com/locate/chaos
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chaos.2020.110616&domain=pdf
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ems. The SIR model is one of the most known epidemiological 

odels [4,12,14] . It describes the spreading of a disease, which 

onfers immunity against re-infection, in agents that evolve from 

he susceptible compartment, S, to the infectious, I, and eventually 

o the recovered (or removed) compartment R . Although simple, it 

as been widely used to obtain relevant aspects of epidemic pro- 

esses that present the S → I → R structure. Since its introduction 

n the seminal paper by Kermack and McKendrick [15] , the model 

as been extensively studied and expanded to consider different 

ypotheses and conditions. For example, some epidemics may re- 

uire more compartments, such as the exposed and/or asymp- 

omatic agents (known as SEIR and SEAIR models respectively) 

4,16–18] . Spread on complex networks was also proven useful to 

nderstand the heterogeneity of agent contacts [19–23] . The study 

f control and mitigation strategies such as vaccination [24] , mod- 

ling of vector-borne diseases [25,26] , and effects of birth-and- 

eath dynamics [2,12] are other examples of the wide range of 

pplications for compartmental models in epidemiology. Even ru- 

ors and corruption spreading have found a natural framework in 

he SIR model [27–33] . Nevertheless, most of those models re- 

ate only to the disease evolution, i.e. agents usually have no con- 

cious actions regarding the disease. On the other hand, many con- 

rol measures for infectious diseases depend on individual decision 

aking. In this context, the recent field of behavioral epidemiology 

s attracting the attention of researchers from diverse areas, ap- 

lying psychology, social engineering, and game theory approaches 

o epidemiology (see [2,14,34] for a review). Instead of consider- 

ng agents having static roles, behavioral epidemiology includes 

ynamic behavior changes. This is a fertile ground for the recent 

rea of social dynamics, or sociophysics [35–37] , which utilizes 

ools from statistical physics together with evolutionary game the- 

ry (and others) to better understand the complex behavior of hu- 

ans [7,38–44] . For example, in a novel approach, Bauch [45–

7] integrated a SIR model into an EGT framework to analyze vac- 

ination decision dynamics. By doing so, agents change their vacci- 

ation strategy dynamically, depending on their perception of the 

enefits and costs of a vaccine. This was later generalized into the 

o-called ‘vaccination games’ framework (see [24] for a compre- 

ensive review). Such approach led to many interesting observa- 

ions and predictions in vaccination protocols [14,47–60] . 

Recent works also investigated other mitigation strategies such 

s awareness campaigns [61] , wealth differences [62,63] , eco- 

omic incentives [64] , social distancing [65,66] , information 

preading [67,68] , multi-layer contact networks [69] , dynamic 

ontacts [70] and others [71–75] . A general overview of these 

nvestigations shows the presence of a cycle, where effective miti- 

ation measures lead to a low risk perception, which in turn weak- 

ns said mitigation strategies, bringing the disease back [2] . The 

ost recent anti-vaccination movement is just one of a long his- 

ory of such cycles [76–78] . Unfortunately, vaccination is not al- 

ays an option, and social isolation can be the only practice to 

revent further disease spread [1,2,79,80] . Such was the case in 

he famous episodes of the Spanish flu [81,82] , SARS epidemic of 

0 0220 03 [83,84] and more recently, during the COVID-19 pan- 

emic [3,6,75,85–88] . 

In the present work, we propose a “quarantine game ”, in which 

gents undergo a SIR epidemic process while, at the same time, 

hey can choose between two actions, i.e. to self-quarantine and 

oluntarily stay at home (Q), or continue acting normally (N). Fol- 

owing the game theory usual nomenclature, here we use the word 

trategy as meaning the agent’s chosen action (quarantine or not). 

he strategy is constantly updated based on the individual per- 

eived cost of the quarantine versus the perceived disease risk. 

hile the scope of the model is intentionally general, it is mainly 

otivated by the recent COVID-19 global pandemic and its conse- 

uences, that have shown a wide spectrum of human responses to 
2 
he viral spreading. For instance, countries adopted many different 

estriction policies, from mild distancing rules to strict lock-down. 

owever, when not mandatory, only a small fraction of individuals 

ay decide to self-isolate, while the rest of a community avoids 

estrictions, endangering themselves and others. The fast scale of 

his phenomenon has also shown how collective perceptions of the 

isease risk has changed in a matter of weeks (based or not on 

eal scientific data) [89] . This can be seen from how individuals 

nd policymakers across the world have so far considered a vari- 

ty of options, spanning from strict lock-downs to doing nothing, 

ith the hope of reaching some kind of herd immunity [90–92] . 

he variety of social strategies adopted worldwide, and in partic- 

lar their results in terms of successes and failures, constitute a 

elevant evidence of how important is the behavioral component 

f a given strategy during pandemic events. 

Lastly, we emphasise that this is a theoretical model, and in no 

ay intends to fully grasp all the social and political complexities 

xhibited by the current pandemic scenario [93] . On the contrary, 

t aims to merge two elements of paramount relevance in these 

cenarios, i.e. game theory and epidemic spreading, on a singular 

ime scale. 

. Model 

In the proposed model, susceptible agents (S) become infected 

I) with a rate βi upon contact with another infected agent. Then, 

t a constant rate γ , infected agents get recovered (R). Besides, 

gents can self-impose a quarantine (Q) and stay at home, or keep 

cting as in a normal situation (N). In the language of game the- 

ry, the former strategy, can be interpreted as a form of cooper- 

tion, while the latter as a selfish behavior, i.e. a form of defec- 

ion. Therefore, we shall refer interchangeably to agents adopting 

uarantine as cooperators, and agents acting normally, as defectors. 

e note that in reality, the epidemiological term quarantine is only 

pplicable to someone that is not infected and chooses to stay at 

ome. If someone is infected and chooses this action, the correct 

erm would be isolation . Nevertheless, for simplicity, here we name 

his strategy as self-quarantine for both susceptible and infected 

gents, as such differentiation in the equations would lead only to 

 more complex nomenclature. The main effect of the chosen ac- 

ion is to influence the individual infection rate βi . We assume that 

uarantined agents have a lower infection rate than normal ones, 

hat is βQ < βN , since those agents reduce their interactions with 

ther members of their community. Also, note that although rare, 

ross-interactions between the two types of strategies (quarantine 

r not) can still occur in our model, e.g. S Q becomes infected by in-

eracting with an I N individual. The cross-infection rate βa is used 

n such scenarios and we expect that, in general, βQ < βa < βN . 

eep explanation of such parameter is given in the following para- 

raphs. We expand the usual SIR model into a five compartment 

odel, S Q , S N , I Q I N , and R . As recovered agents cannot be infected

gain, their chosen strategy is irrelevant. An illustrative diagram is 

hown in Fig. 1 . 

By using a compartmental approach, the evolutionary game dy- 

amics is fully integrated into the model. This differs from usual 

ehavioral epidemiology approaches where the strategy fraction 

volves according to a separate dynamic [2,24,46,55,65,66,71,72] . 

ence, our model allows cross interactions (such as S Q interacting 

ith I N ), giving rise to a rich scenario where sub-population corre- 

ations can be observed. 

Employing the game theory concept of perceived payoff ( π ), 

gents base their strategies on the perceived risk of their current 

ction. A cooperator (i.e. an agent self-imposing quarantine) ex- 

ects to suffer a perceived cost �. This represents the difficulties 

ne might face in a period of quarantine, but in turn, it strongly 

educes the probability of being infected. This leads to a constant 
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Fig. 1. Schematic representation of the proposed model. We consider five compart- 

ments where agents transition from S, I, and R states through epidemiological dy- 

namics. At the same time, agents change their own strategy ( Q or N) through an 

evolutionary game dynamics. The parameter βi is the infection rate that, depending 

on the strategy of an agent, is defined as βQ or βN (i.e. quarantine versus normal 

life stile). Also note that infected individuals of one given strategy can interact with 

susceptible individuals of the other strategy, e.g. S Q − I N , by the cross-infection rate 

βa , further explained in the text. The parameter γ represents the recovery rate and 

is independent of the specific strategy. � represents the strategy change flux for 

each epidemic state and it is governed by the evolutionary game dynamics. 
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1  

i N 
ayoff (or perceived risk) for cooperators, Q: 

Q = −�. (1) 

On the other hand, defectors, i.e. agents adopting the strategy 

, have a perceived risk based on their infection probability mul- 

iplied by the perceived disease cost parameter δ: 

N = −δβN I. (2) 

We remark that the payoffs are based exclusively on the agent’s 

ndividual perceptions. This is in accordance with the widespread 

otion of individual risk perception based on the number of (anec- 

otal) cases an agent is exposed to [68,94–96] . The game theory 

ynamics concerns what agents perceive to be their risks and re- 

ards, and not necessarily the actual risk of a given action. It is 

lso interesting to understand how the model considers infection 

ub-notifications, i.e. general population perception of the fraction 

being lower than the actual level. By using a linear payoff struc- 

ure, sub-notifications can be absorbed in a re-scaled δ′ value. E.g., 

f the informed infected fraction of the population is sub-notified 

y a fraction f, the payoff structure would be the same, while 

he re-scaled perceived risk would just be δ′ = δ(1 − f ) . Note that 

he sub-notification only affects the payoff function, while the epi- 

emiological dynamics still depends only on the actual fraction of 

nfected individuals. 

Following the usual evolutionary game dynamics, the probabil- 

ty of a given agent i to adopt the strategy of agent j is related to

heir payoffs πi and π j . We use the typical Fermi rule [8] : 

(πi , π j ) = 

1 

1 + e −(π j −πi ) /k 
. (3) 

his allows strategy revision with a small but non zero chance of 

istakes. Such irrationality is measured by the k parameter, set as 

 = 0 . 1 [8,37,97] . To obtain the total fraction of agents changing

o a given strategy at any moment, we consider the number of 

ncounters between any kind of Q and N strategies, inside each 

ealth compartment ( S or I), and multiply it by the strategy tran- 

ition probability �(πi , π j ) between strategies i and/or j. This is 

quivalent to the master equation (for each compartment) of an 

volutionary game dynamic [8,98] using the mean-field approxi- 

ation, and leads us to the strategy conversion rates, defined as 

S = S Q (S N + I N )�(πQ , πN ) − S N (S Q + I Q )�(πN , πQ ) (4) 

I = I Q (S N + I N )�(πQ , πN ) − I N (S Q + I Q )�(πN , πQ ) . (5) 

ere, �S is the rate at which S Q agents convert to S N (and con- 

ersely for �I ), and it is governed by the EGT part of the model. 

Regarding the infection dynamics, we assume three different in- 

ection rates, that is, βN > βa > βQ . Here, βN is the infection rate 
3 
or defectors interacting with defectors, and similarly, βQ is the 

nfection rate for cooperators. Cooperators and defectors interact 

hrough the cross-infection rate βa . For the sake of simplicity we 

et βa = a (βN + βQ ) / 2 , an average value of βQ and βN weighted by

he external control parameter 1 > a > 0 . We set a = 0 . 1 to allow a

mall but non zero chance of cross-infection. The recovery rate is 

ssumed to be the same for all agents. Considering all the assump- 

ions above, we present the equations that describe the proposed 

odel, 

˙ 
 N = −S N (βN I N + βa I Q ) + τ�S (6) 

˙ 
 Q = −S Q (βa I N + βQ I Q ) − τ�S (7) 

˙ 
 N = S N (βN I N + βa I Q ) − γ I N + τ�I (8) 

˙ 
 Q = S Q (βa I N + βQ I Q ) − γ I Q − τ�I (9) 

˙ 
 = γ (I N + I Q ) , (10) 

here τ is the coupling parameter that controls how quickly one 

dopts a new strategy, in relation to the time-scale of the epi- 

emic. Note that the current version of the model does not include 

ital dynamics, such as birth and death processes, since the model 

ocuses on spread dynamics that take place in a matter of months. 

. Results 

We start by noting that the payoff structure proposed in 

qs. (1) and (2) , is akin to the public goods and climate change

ilemma games [99–102] where each agent payoff depends on 

he total number of agents in some other state. That is, the quar- 

ntine game is not a pairwise interaction game such as the pris- 

ner dilemma [8] . In particular, in our case, the defector payoff

epends on the total number of infected agents ( I), either cooper- 

tors or defectors, while the cooperator payoff is constant. In do- 

ng so, we obtain the collective equivalent of the snow-drift game 

also known as chicken or hawk-dove game [8] ), i.e. as long as 

ost of the population is healthy (susceptible or recovered), the 

est strategy is to defect and to continue acting normally. But as 

oon as most of the population chooses this strategy, the amount 

f infected agents grows, resulting in a change of the best strat- 

gy, that becomes to self-quarantine. It is also worth mentioning 

hat such scenario is akin to the minority-game (or El Farol Bar 

ilemma) [74,103,104] , where each single individual receives the 

ptimal payoff if she chooses the least chosen strategy on average. 

uch payoff structure can be seen as a general anti-coordination 

ame class, where the best strategy is to do the opposite of what 

our opponents are doing. Or specifically in our case, the opposite 

f what the majority of the population is doing [8] . However, note 

hat the fraction of infected agents is not equal to the fraction of 

efectors, due to the epidemiology dynamics. This is similar to the 

ilemma presented in vaccination games [45,46,53,55,94] where 

gents should vaccinate but, as long as the majority of the popula- 

ion is vaccinated, the incentive to not vaccinate grows. This anti- 

oordination element is a central driver for the observed oscillatory 

ynamics. 

The numerical integration of the equations is obtained through 

 4th order RungeKutta method. For the interested reader, a sim- 

lified Python script for solving the equations is available at [105] . 

egarding the results, unless stated otherwise, we set � = 1 , τ = 

 , γ = 1 , βQ = 1 , k = 0 . 1 , a = 0 . 1 and focus on the effects of vary-

ng the infection risk perception, δ, and defectors infection rate β . 
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Fig. 2. Typical behavior of the epidemiological population, S = (S Q + S N ) , I = (I Q + 

I N ) , R . Note that recurrent infection peaks emerge spontaneously. Here δ = 10 , βN = 

10 . 
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tion peaks are due to the frequent oscillations in the strategies, even if the total 

susceptible and removed individuals do not oscillate. Here, δ = 10 , βN = 10 . 
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when I(t) = I ′ . As expected, these are the strategy maximum and minimum values. 

Here δ = 10 , βN = 5 . 
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s initial condition, the starting setting for the population has only 

 very small fraction of infected agents, i.e. I 0 = 0 . 01 , S 0 = 1 − I 0 .,

hile strategies are equally divided between C and D . 

Fig. 2 presents the typical behavior of the population. The 

ost evident phenomenon is the recurrent infection waves, even 

hough the model has no explicit oscillatory terms. Looking at 

he evolution of the epidemiological population, i.e. S = (S Q + S N ) ,

 = (I Q + I N ) , and R, we notice that susceptible agents diminish on

lmost discrete steps. The successive drops in S also coincide with 

he peaks of infected agents. The inclusion of voluntary quaran- 

ine procedures in the SIR model spontaneously generates recur- 

ent infection periods. This phenomenon can be observed for a 

ide range of parameters and it is a characteristic behavior of the 

odel. Note that such an effect is similar to the expected scenario 

f real quarantine policies [2,3,85] , that is, re-occurring infection 

easons. Interestingly, previous pandemics as the Spanish flu (1918) 

resented such infection wave behavior [106,107] . 

The cause underlying the successive infection peaks can be un- 

erstood looking at the sub-population ( S Q , S N , I Q , I N , R ) and the

trategy distributions through time. This can be seen in Fig. 3 . Re- 

arkably, the population behavior hides a complex dynamic. In 

articular, as the fraction of infected agents initially grows, the 

ooperator’s payoff quickly becomes advantageous. This is what 

auses the first broad peak of S Q , as most agents start to undergo
4 
uarantine. In turn, the total fraction of infected agents begin to 

ecline, as the majority of the population gets quarantined, with a 

ow value of infection rate. Nevertheless, as I tends to 0, the payoff

or agents leaving quarantine (defector strategy) starts to grow and 

ventually it becomes greater than the cooperator’s payoff. This 

riggers a flux of S Q → S N , that is, people leaving quarantine. Such 

n event corresponds to the sharp increase in S N , near the begin- 

ing of the second infection wave. With more and more agents 

eaving quarantine, a second peak of infected agents inevitably oc- 

urs. Indeed, we see that the infection peaks are always preceded 

y a sharp increase in the defector density. At this point, S N be- 

ins to decrease sharply because part of them becomes infected 

nd the others (still susceptible) start becoming cooperators (the 

econd and broad peak in S Q ). This process repeats itself again and 

gain, at each time with less active agents. An interesting effect 

lso occurs in the sub-population of infected agents, i.e. the infec- 

ion peak on defectors always precedes the peak of cooperators. 

e note that the number and height of the peaks, and recurrent 

nfection cycles, are highly dependent on δ. 

Next, we analyze the mixed strategy equilibrium point to ob- 

ain the strategy inflection points. This is a similar approach as the 

ne used in [47] for vaccination games. Suppose a mixed strat- 

gy where an agent has a probability P to cooperate. This leads to 

he average expected payoff of π̄ = P πQ + (1 − P ) πN . We want to

aximize it in relation to P, therefore: 

¯ = P (δβN I − �) − δβN I. (11) 

Since all parameters are greater than zero, we obtain the max- 

mum expected payoff value when P = 1 (always cooperate) if 

βN I > �. Conversely, if δβN I < �, the maximum average payoff

ccurs for P = 0 (always defect). This implies that agents will start 

hanging strategies at an infection level of: 

 

′ = 

�

δβN 

(12) 

In a system composed of fully rational agents, the strategy 

aximum and minimum values will coincide with the points 

entioned above. Numerical analysis of the ODE integration 

hows good agreement with such prediction even if we use the 

ermi strategy probability (an approach that has inherent fluctu- 

tions/irrationality). This can be seen in Fig. 4 . We note that the 

ain effect of greater irrationality, i.e. larger values of k, is to make 

he strategy oscillations more smooth around the inflection points. 

his analysis remained accurate for all studied values of δ, �, and 
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Fig. 5. Typical behavior for diverse disease risk perception. In a) there is no disease risk perception, δ = 0 , and the disease behaves according to the usual SIR dynamics, 

with a big and singular infection peak. In b) δ = 5 and while there are two infection waves, their magnitude is considerably smaller. Finally, in c) δ = 10 , and we can see 

three shallow infection peaks. Note that as δ increases, the infection are distributed during a longer time span. In general, an increase in risk perception leads to smaller, 

and more distributed, infection peaks. Here βN = 5 . 
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Fig. 6. Real data from four different countries regarding the number of total and 

new cases ( ×10 ) since the beginning of the epidemic. While the presented model 

do not aim to be an empirical fit, it is remarkable to see how the general behavior 

of secondary infection waves is present. Data obtained from [108] . 
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N . Also, note that the peak of infections always happens between 

 maximum and minimum value of D, in a way consistent with all 

tudied values of parameters. 

To better understand the effect of the disease risk perceptions 

n the infection peak size and duration, we vary the value of δ, 
s this is the central parameter we are interested in. Fig. 5 shows 

he population dynamics when δ = { 0 ; 5 ; 10 } . For low-risk per-

eptions, agents leave quarantine earlier and in great numbers. 

his creates a big single infection peak, which is consistent with 

he current worst-case scenarios for a pandemic [2,3,85] . As we 

ncrease the risk perception, agents will tend to cooperate (stay 

n quarantine) for longer periods, leading to the distribution of 

maller infection peaks along one or more infection cycles. We 

ighlight that this is an emergent behavior that spontaneously ap- 

ears by considering the evolutionary game dynamics. In a pan- 

emic scenario, this can be one of the most important aspects of 

 quarantine policy, since the healthcare system may have a small 

apacity, and cannot take care of all infected agents at the same 

ime [13] . 

The central characteristic of the model is the spontaneous 

mergence of recurrent infection waves during an epidemic with- 

ut the possibility of re-infection (SIR). While this is not an em- 

irical model, it is insightful to look for similar general patterns in 

eal data from the current COVID-19 crisis. Fig. 6 presents the ac- 
5 
ual data (obtained from [108] ) of four different countries, regard- 

ng the reported number of new cases ( ×10 ) and the total number 

f infected individuals. Such numbers are equivalent to the frac- 

ions of I and R in our model respectively. It is possible to see a 

emarkable similarity in the general behaviour of the model with 

he presented data regarding the infection peaks, as well as the 

tair-like increase in the total number of cases. Nevertheless, we 

tress that here we are not trying to fit the real data to our model,

ust observe how the general behaviour present similarities. This 

an also be seen in data from other countries, as the ones pre- 

ented in [109] and from the major data banks like [108] . 

The effects of different disease perception values are summa- 

ized in Fig. 7 . Note that when δ = 16 there are even five different

nfection peaks, all with a very small magnitude. Another interest- 

ng effect to observe is that the first infection peak is not always 

he highest. For larger values of δ, the highest peak can happen 

fter some initial (small) infection wave. Moreover, a higher risk 

erception better distributes the cases over long periods. 

We emphasize that the infection peak magnitude can be a very 

mportant quantity when dealing with pandemics [13] . In Fig. 8 

e present the maximum simultaneous infection size ( I max ) as a 

unction of the perceived disease risk for different def ector inf ec- 

ion rates, βN . We highlight that the equations of the proposed 

odel can always be normalized in relation to βQ , defining a new 

ime scale. Because of this, without loss of generality, we chose 

o vary only βN in the presented results. We see that the disease 

wareness, δ, can greatly help diminish the maximum simultane- 
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us infected number. On the other hand, the effect of βN in I max is 

ess pronounced. 

We now analyze the infection size, measured by the final den- 

ity of removed agents, R ∗, shown in Fig. 9 . We note that the in-

rease in δ can lead, on average, to slightly smaller R ∗ values. The 

ecrease is more pronounced when βN < 2 . Differently from I max 

owever, the behavior of R ∗ is not monotonous in δ, presenting 

on-periodic oscillations. 

Next we present the parameter space βN × δ for the final den- 

ity of removed agents, R ∗ in Fig. 10 . As expected, increased dis- 

ase risk perceptions leads to a smaller final density of removed 

gents. Nevertheless, it is clear that this behavior is not trivial, and 

ifferent inf ection rates result in large oscillations. It is interesting 

o note that the valleys and peaks follow, on average, an inverse 

roportion with δ. For instance, for a fixed value of R ∗, βN ∝ 1 /δ.

ote that the value of I max is highly dependent on δ but does not 

hange considerably with βN . 

As τ is the coupling constant between the epidemic and evo- 

utionary game dynamics, it is correlated with how quickly a pop- 

lation is able to respond to new information regarding the cur- 

ent disease situation. Fig. 11 reports the effects of different τ in 

he evolution of the strategies. Notably, increasing its value causes 

trategy changes to become more frequent. This in turn entails 

ore oscillations in the whole population. Every peak in the de- 
6 
ector density also leads, eventually, to a peak in the density of 

nfected agents, I. Variations in τ do not change the final infection 

ize considerably. We also note that variations in the irrationality 

arameter, k, did not drastically affect the dynamics for reasonable 

alues ( 0 . 01 < k < 2 ). The main effect of decreasing k is to make

he strategy adoption curves sharper around the inflection points. 

n the other hand, a high irrationality parameter makes the strat- 

gy changes more smoothly in time. 

Finally, we generalize the results of the proposed model accord- 

ng to the evolutionary game theory framework. It is a known re- 

ult that the strategy equilibrium of a classical game is invariant 

n relation to the multiplication and/or sum of a constant value 

ver all payoffs [8] . Therefore, we can simplify the proposed pay- 

ff structure, leaving intact the central characteristics of the game. 

his allows us to obtain relevant information regarding the general 

ame class. We first sum � in both payoffs and then divide them 

y βN δ. Using ε = �/βN δ, we get the simplified version: 

Q = 0 . (13) 

N = ε − I. (14) 

Note that ε is the ratio between the perceived cost of quaran- 

ine and the cost of getting infected. By definition, 0 < ε < 1 as we

lways expect � < βN δ, i.e. the cost of performing a quarantining 

s smaller than that of being infected. This general payoff structure 

orrectly predicts the most essential feature of our model, i.e. the 

est strategy is to stay on quarantine if there are many infected 

gents ( I > ε), and leave quarantine in the opposite case. This is 

ery similar to the anti-coordination game class, where the best 

trategy is to do the opposite of your opponent. Here, however, the 

ain factor to consider is the number of infected agents, and not 

f quarantined ones. 

If everyone is undergoing a quarantine, one has a big incentive 

o avoid such strategy. On the other hand, if everyone is not taking 

uarantine precautions, one has a big incentive to do so. This gen- 

ral payoff structure is similar to the free-ride scenario obtained in 

accination games [55,94] and other models with mitigation poli- 

ies [51,61,65,66,71,72,110] . The inflection point where defection 

ecomes more advantageous can be clearly stated as I ′ = ε. Dif- 

erently from a classic game, however, I = I(t) , that is, the number 

f infected agents in our model is time dependent and will depend 

n the number of agents using the strategy Q or N. Note however 

hat such payoff manipulation only makes the classic game equi- 

ibrium invariant, not its evolutionary counterpart. For the popu- 

ation dynamics, the payoff multiplication has the equivalent ef- 
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Fig. 11. Strategy adoption evolution for different coupling constant values τ . In a) we present a value corresponding to half the time-scale of the epidemics, i.e. τ = 0 . 5 . 

Figure b) presents a time-scale twice as fast, τ = 2 . The peaks in the defector fraction always correlates to peaks in the total infected population I. Greater τ values leads to 

more frequent oscillations in the strategy distribution, and consequently more infection peaks with lower heights. Here we used δ = 10 , βN = 10 . 
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ect of changing the value of k in the transition probability, (3) , i.e.

 

′ = kβN δ. 

We also deem important to state how general this payoff struc- 

ure is. Given that one can re-scale and sum all payoffs by a given

onstant, the central point of an anti-coordination game is to have 

ncentives that lead players to do the opposite of the majority. This 

an be achieved by the general structure in Eqs. (13) and (14) , 

here one strategy has a constant payoff and the other decreases 

s more agents choose said strategy. This is particularly interesting 

hen looking at mitigation models [34,55,72,110] that consider the 

ooperator payoff as also depending on the number of infected in- 

ividuals. For a general case, we could propose that π ′ 
Q 

= −aI − b

nd π ′ 
N 

= −cI − d, with all constants being greater than zero, and 

 > a, as in most mitigation game models [2,55,72,110] . We can re-

cale such payoff so π ′ 
Q 

= −b + d π ′ 
N 

= −(c − a ) I. In other words,

part from the constant naming, if we call b + d = � and c − a =
βN , we get our model back. In the context of game theory, as 

ong as � < δβN , the payoff always grows as one chooses the less 

requent strategy, maintaining the anti-coordination game. 

It is also possible to show that the model is different from the 

IR model with two distinct infection rates. Using the definition 

 = S Q + S N and I = I Q + I N we see that: 

˙ 
 = −I Q (βa S N + βQ S Q ) − I N (βN S N + βa S Q ) (15) 

˙ 
 = I Q (βa S N + βQ S Q ) + I N (βN S N + βa S Q ) − γ I (16) 

˙ 
 = γ I (17) 

ince the flux ( �) terms regard only transitions between the same 

pidemiological compartment, they vanish when we look only at 

he total epidemiological level of the population. Even so, we see 

hat the model does not reduce to the SIR model with two in- 

ection rates. Indeed we cannot totally disappear with the sub- 

opulation terms. 

Furthermore, we can also consider the population at the level 

f strategy adoption dynamics. C and D represent the density of 

ooperators and defectors respectively. For the proposed model we 

ave C = (S Q + I Q ) / (S + I) , and since we only have two strategies,

 = 1 − C. The rate of change in the strategies comes only from 

he strategy flux terms �S and �I . In other words, ˙ C = −�S − �I . 

sing Equations (4) and (5) , we obtain: 

˙ 
 = (S N + I N )(S Q + I Q )�(πN , πQ ) 
7 
− (S Q + I Q )(S N + I N )�(πQ , πN ) 

Re-arranging the terms and noting that S Q + I Q = C(S + I) S N +
 N = D (S + I) , and that S + I = 1 − R, we finally obtain: 

˙ 
 = (1 − R ) 2 CD [�(πN , πQ ) − �(πQ , πN )] (18) 

The first term, (1 − R ) 2 , modulates the speed of the strategy 

hange ( ̇ C ), as it is related to the total available population allowed 

o vary the strategies. Most important, however, is the rest of the 

quation, which is precisely the usual mean-field form of the mas- 

er equation for the evolution of cooperation in a two strategy 

ame, such as the prisoner’s dilemma [8] . We can observe that 

he proposed model is self-consistent and returns the evolution- 

ry game when we only look at the strategy densities. At the same 

ime, (numerically) the model also returns the classic SIR dynam- 

cs with two infection rates when we make τ = βa = 0 , i.e. when

e turn off the strategy dynamics and cross infection terms. 

. Conclusions 

A common approach to analyze complex systems is to isolate 

ts essential elements and features, trying to filter out less rele- 

ant components. Such is the case of social behaviors and disease 

preading, two intricate processes that, mainly for the sake of sim- 

licity, are often analyzed separately. In order to describe their dy- 

amics, identifying their essential elements and interactions, it is 

undamental to define a model able to capture, as much as possi- 

le, the observed phenomena while maintaining its simplicity. Due 

o the relevance of the behavioral component, in particular epi- 

emic situations such as the COVID-19 crisis, here we proposed 

 theoretical framework devised to combine social strategies with 

pidemic spreading. To this end, we present a simplified version of 

he epidemiological SIR model merged with an evolutionary game 

hat allows agents to rationally choose between a voluntary quar- 

ntine or a normal lifestyle during the spreading of a generic dis- 

ase. Following this approach, we obtain a single compartmental 

odel that integrates into the same time scale the rational deci- 

ion making, from game theory, and the epidemiological dynamics 

f the SIR model. The latter has been chosen as a test case, how- 

ver, the proposed model can also be realized considering other 

ariations, as the SIS and SEAIR models, as well as other game 

heory frameworks. The infection and recovery rates are given by 

he epidemiological dynamics, while the strategy changes are con- 

rolled by the so-called strategy update rules, widely studied in 
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volutionary game theory. Nevertheless, the infection rates depend 

n the chosen strategy, whereas the risk perception and payoff of 

ach strategy depend on the number of infected individuals. 

We investigate the model through numerical and analytical ap- 

roaches. Remarkably, the model presents individual reactions to 

he disease infection level, which can result in secondary infec- 

ions and the re-emergence of the disease spreading after most of 

he population dismiss its risk. In particular, our results revealed 

ultiple infection peaks for higher disease risk perceptions, very 

imilar to the observed behavior of past epidemic cases with vol- 

ntary quarantine measures. The interplay between the contagion 

nd strategy dynamics exhibited a rich behavior. The main param- 

ter that we studied in the model is the perceived disease risk, δ, 
.e. a measure of how strongly the population sees the individual 

ost of being infected. We show that while this parameter has a 

mall effect on the final infection size, it is most important con- 

erning the infection peak size. Notably, the maximum magnitude 

f the infection peak is found to be inversely proportional to the 

isease perceive risk δ. 

It is worth to emphasize that for no perceived disease risk, 

gents decide to avoid quarantine and the population quickly suf- 

ers from a widespread infection, resulting in a single and huge 

eak of simultaneously infected agents. As recent events related 

o the global COVID-19 pandemic have shown, the total infection 

eak is an observable of paramount relevance. In particular, during 

hese critical scenarios, healthcare systems may risk to collapse, 

ue to the possibility that the amount of infected individuals sat- 

rates their total capacity [13] . That is one of the reasons why not

nly the total epidemic size is important, but also the maximum 

umber of simultaneous infections. In the proposed model, the in- 

lusion of the perceived disease risk makes individuals prone to 

uarantine for longer times, resulting in a smaller infection peak. 

s we increase the perceived risk, multiple smaller peaks emerge. 

his is a direct result of the interconnection between two com- 

lex processes, i.e. disease spreading by the SIR model, and ratio- 

al strategy choices by the evolutionary game dynamics. We see 

hat for high values of δ, the disease can stay active for longer 

imes and present more infection waves. Nevertheless, those peaks 

re shorter and the maximum number of simultaneous infections 

s highly dependent on δ, quickly diminishing as the disease risk 

erception increases. 

We also perform a payoff analysis to find the optimum mixed 

trategy for a given number of infected individuals. This allows us 

o analytically obtain the inflection point of the strategy adoption 

ynamics. This may be used to understand both the dependence of 

he most used strategy as a function of the infection number, and 

hen the next infection wave can emerge again. Analyzing other 

arameters we find that the coupling constant τ is responsible for 

hanging the speed of the population response to new infections, 

.e. how fast the strategy adoption occurs, but has no strong ef- 

ect on the infection peak size. In the same way, the irrationality 

arameter k can change the properties of the strategy adoption dy- 

amics without changing its inflection points or the infection peak 

ize. Lastly, we show that the model is self-consistent and returns 

he usual replicator equation when looking only at the strategy 

ractions of the population dynamics. Likewise, when we turn off

he interactions between the populations ( τ = βa = 0 ) we get back 

wo separated SIR populations, evolving independently. 

Overall, the achieved results point to the importance of the dis- 

ase perceived risk in the spreading dynamics and how such an 

ngredient can be included in more realistic modeling. The area 

f behavioral epidemiology is relatively recent, and evolutionary 

ame theory and sociophysics seem to have much to add with 

heir approaches. As examples, we cite recent works that have 

ighlighted how evolutionary game dynamics can be used together 

ith an epidemiology-based approach to model social contact be- 
8 
avior such as corruption and rumor spreading [27–29,31,111,112] . 

n this sense, we believe that this model can be used as an initial 

ramework to understand more complex phenomena regarding be- 

avioral epidemiology, especially the integration of game theory in 

ompartment models. 
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