28 research outputs found

    Cooling-induced SUMOylation of EXOSC10 down-regulates ribosome biogenesis.

    Get PDF
    The RNA exosome is essential for 3? processing of functional RNA species and degradation of aberrant RNAs in eukaryotic cells. Recent reports have defined the substrates of the exosome catalytic domains and solved the multimeric structure of the exosome complex. However, regulation of exosome activity remains poorly characterized, especially in response to physiological stress. Following the observation that cooling of mammalian cells results in a reduction in 40S:60S ribosomal subunit ratio, we uncover regulation of the nuclear exosome as a result of reduced temperature. Using human cells and an in vivo model system allowing whole-body cooling, we observe reduced EXOSC10 (hRrp6, Pm/Scl-100) expression in the cold. In parallel, both models of cooling increase global SUMOylation, leading to the identification of specific conjugation of SUMO1 to EXOSC10, a process that is increased by cooling. Furthermore, we define the major SUMOylation sites in EXOSC10 by mutagenesis and show that overexpression of SUMO1 alone is sufficient to suppress EXOSC10 abundance. Reducing EXOSC10 expression by RNAi in human cells correlates with the 3? preribosomal RNA processing defects seen in the cold as well as reducing the 40S:60S ratio, a previously uncharacterized consequence of EXOSC10 suppression. Together, this work illustrates that EXOSC10 can be modified by SUMOylation and identifies a physiological stress where this regulation is prevalent both in vitro and in vivo

    RTN3 Is a Novel Cold-Induced Protein and Mediates Neuroprotective Effects of RBM3.

    Get PDF
    Cooling and hypothermia are profoundly neuroprotective, mediated, at least in part, by the cold shock protein, RBM3. However, the neuroprotective effector proteins induced by RBM3 and the mechanisms by which mRNAs encoding cold shock proteins escape cooling-induced translational repression are unknown. Here, we show that cooling induces reprogramming of the translatome, including the upregulation of a new cold shock protein, RTN3, a reticulon protein implicated in synapse formation. We report that this has two mechanistic components. Thus, RTN3 both evades cooling-induced translational elongation repression and is also bound by RBM3, which drives the increased expression of RTN3. In mice, knockdown of RTN3 expression eliminated cooling-induced neuroprotection. However, lentivirally mediated RTN3 overexpression prevented synaptic loss and cognitive deficits in a mouse model of neurodegeneration, downstream and independently of RBM3. We conclude that RTN3 expression is a mediator of RBM3-induced neuroprotection, controlled by novel mechanisms of escape from translational inhibition on cooling

    An upstream open reading frame within an IRES controls expression of a specific VEGF-A isoform

    Get PDF
    Vascular endothelial growth factor A (VEGF-A) is a potent secreted mitogen critical for physiological and pathological angiogenesis. Regulation of VEGF-A occurs at multiple levels, including transcription, mRNA stabilization, splicing, translation and differential cellular localization of various isoforms. Recent advances in our understanding of the posttranscriptional regulation of VEGF-A are comprised of the identification of stabilizing mRNA-binding proteins and the discovery of two internal ribosomal entry sites (IRES) as well as two alternative initiation codons in the 5′UTR of the VEGF-A mRNA. We have previously reported that VEGF-A translation initiation at both the AUG and CUG codons is dependent on the exon content of the coding region. In this report, we show that the expression of different VEGF-A isoforms is regulated by a small upstream open reading frame (uORF) located within an internal ribosome entry site, which is translated through a cap-independent mechanism. This uORF acts as a cis-regulatory element that regulates negatively the expression of the VEGF 121 isoform. Our data provide a framework for understanding how VEGF-A mRNAs are translated, and how the production of the VEGF 121 isoform is secured under non-hypoxic environmental conditions

    Etude du contrôle de la traduction des isoformes du VEFG-A

    No full text
    Le VEGF A est un facteur angiogénique majeur intervenant dans l'angiogenèse physiologique et pathologique. Son expression est régulée à toutes les étapes de l'expression génique.. Le pré-ARNm est soumis à un épissage alternatif qui permet la synthèse de trois isoformes majeures de 121, 165 et 189 acides aminés. L'ARNm du VEGF A possède deux sites d'entrée interne des ribosomes (IRES) et deux codons alternatifs d'initiation de la traduction. L'initiation de la traduction au codon AUG, sous le contrôle de l'IRES A, entraîne la synthèse de VEGF A sécrété. Le codon CUG, sous le contrôle de l'IRES B, est responsable de la synthèse du L-VEGF. Cette isoforme est maturée par clivage pour générer une molécule de VEGF A sécrétée et un fragment amino-terminal intracellulaire (le N-VEGF). Nous avons voulu identifier par quel mécanisme la séquence exonique du VEGF, issue de l'épissage alternatif, contrôle l'initiation de la traduction. Nous avons mis en évidence une séquence en amont de l'AUG impliquée dans cette régulation. Cette séquence contenant une uORF, nous avons examiné l'effet de sa traduction sur l'expression du VEGF et le mécanisme de traduction de cette uORF. Nos résultats montrent que cette uORF est fonctionnelle et qu'elle est impliquée dans la régulation de l'expression des isoformes du VEGF. Cette uORF est traduite par un mécanisme indépendant de la coiffe et inhibe la synthèse de l'isoforme 121 dans des conditions environnementales non-hypoxiques. L'ensemble de cette étude permet de mieux comprendre les mécanismes de synthèse des différentes isoformes du VEGF dans des processus pathologiques.TOULOUSE3-BU Sciences (315552104) / SudocSudocFranceF

    Quantifying RNA modifications by mass spectrometry: a novel source of biomarkers in oncology

    No full text
    International audienceDespite significant progress in targeted therapies, cancer recurrence remains a major cause of mortality worldwide. Identification of accurate biomarkers, through molecular profiling in healthy and cancer patient samples, will improve diagnosis and promote personalized medicine. While genetic and epigenetic alterations of DNA are currently exploited as cancer biomarkers, their robustness is limited by tumor heterogeneity. Recently, cancer-associated changes in RNA marks have emerged as a promising source of diagnostic and prognostic biomarkers. RNA epigenetics (also known as epitranscriptomics) is an emerging field in which at least 150 chemical modifications in all types of RNA (mRNA, tRNA, lncRNA, rRNA, and microRNA) have been detected. These modifications fine-tune gene expression in both physiological and pathological processes. A growing number of studies have established links between specific modified nucleoside levels in solid/liquid biopsies, and cancer onset and progression. In this review, we highlight the potential role of epitranscriptomic markers in refining cancer diagnosis and/or prognosis. RNA modification patterns may contain important information for establishing an initial diagnosis, monitoring disease evolution, and predicting response to treatment. Furthermore, recent developments in mass spectrometry allow reliable quantification of RNA marks in solid biopsies and biological fluids. We discuss the great potential of mass spectrometry for identifying epitranscriptomic biomarker signatures in cancer diagnosis. While there are various methods to quantify modified nucleosides, most are unable to detect and quantify more than one type of RNA modification at a time. Mass spectrometry analyses, especially GC-MS/MS and LC-MS/MS, overcome this limitation and simultaneously detect modified nucleosides by multiple reaction monitoring. Indeed, several groups are currently validating mass spectrometry methods that quantify several nucleosides at one time in liquid biopsies. The challenge now is to exploit these powerful analytical tools to establish epitranscriptomic signatures that should open new perspectives in personalized medicine. This review summarizes the growing clinical field of analysis of RNA modifications and discusses pre-analytical and analytical approaches, focusing in particular on the development of new mass spectrometry tools and their clinical applications

    The StkP/PhpP Signaling Couple in Streptococcus pneumoniae: Cellular Organization and Physiological Characterization ▿ †

    No full text
    In Streptococcus pneumoniae, stkP and phpP, encoding the eukaryotic-type serine-threonine kinase and PP2C phosphatase, respectively, form an operon. PhpP has the features of a so-called “soluble” protein, whereas StkP protein is membrane associated. Here we provide the first genetic and physiological evidence that PhpP and StkP, with antagonist enzymatic activities, constitute a signaling couple. The StkP-PhpP couple signals competence upstream of the competence-specific histidine kinase ComD, receptor for the oligopeptide pheromone “competence stimulating peptide.” We show that PhpP activity is essential in a stkP+ genetic background, suggesting tight control of StkP activity by PhpP. Proteins PhpP and StkP colocalized to the cell membrane subcellular fraction and likely belong to the same complex, as revealed by coimmunoprecipitation in cellular extracts. Specific coimmunoprecipitation of the N-kinase domain of StkP and PhpP recombinant proteins by PhpP-specific antibodies demonstrates direct interaction between these proteins. Consistently, flow cytometry analysis allowed the determination of the cytoplasmic localization of PhpP and of the N-terminal kinase domain of StkP, in contrast to the periplasmic localization of the StkP C-terminal PASTA (penicillin-binding protein and serine-threonine kinase associated) domain. A signaling route involving interplay between serine, threonine, and histidine phosphorylation is thus described for the first time in this human pathogen
    corecore