811 research outputs found

    Defining a role for lung function associated gene GSTCD in cell homeostasis

    Get PDF
    Genome wide association (GWA) studies have reproducibly identified signals on chromosome 4q24 associated with lung function and COPD. GSTCD (Glutathione S-transferase C-terminal domain containing) represents a candidate causal gene in this locus, however little is currently known about the function of this protein. We set out to further our understanding of the role of GSTCD in cell functions and homeostasis using multiple molecular and cellular approaches in airway relevant cells. Recombinant expression of human GSTCD in conjunction with a GST activity assay did not identify any enzymatic activity for two GSTCD isoforms questioning the assignment of this protein to this family of enzymes. Protein structure analyses identified a potential methyltransferase domain contained within GSTCD, with these enzymes linked to cell viability and apoptosis. Targeted knockdown (siRNA) of GSTCD in bronchial epithelial cells identified a role for GSTCD in cell viability as proliferation rates were not altered. To provide greater insight we completed transcriptomic analyses on cells with GSTCD expression knocked down and identified several differentially expressed genes including those implicated in airway biology; fibrosis e.g. TGFBR1 and inflammation e.g. IL6R. Pathway based transcriptomic analyses identified an over-representation of genes related to adipogenesis which may suggest additional functions for GSTCD. These findings identify potential additional functions for GSTCD in the context of airway biology beyond the hypothesised GST activity and warrant further investigation

    Chloride intracellular channel 1 (CLIC1) contributes to modulation of cyclic AMP-activated whole cell chloride currents in human bronchial epithelial cells

    Get PDF
    Chloride channels are known to play critical physiological roles in many cell types. Here we describe the expression of anion channels using RNA Seq in primary cultures of human Bronchial Epithelial Cells (hBECs). Chloride intracellular channel (CLIC) family members were the most abundant chloride channel transcripts, and CLIC1 showed the highest level of expression. In addition, we characterise the chloride currents in hBECs and determine how inhibition of CLIC1 via pharmacological and molecular approaches impacts these. We demonstrate that CLIC1 is able to modulate cyclic AMP-induced chloride currents and suggest that CLIC1 modulation could be important for chloride homeostasis in this cell type

    Network Discovery Pipeline Elucidates Conserved Time-of-Day–Specific cis-Regulatory Modules

    Get PDF
    Correct daily phasing of transcription confers an adaptive advantage to almost all organisms, including higher plants. In this study, we describe a hypothesis-driven network discovery pipeline that identifies biologically relevant patterns in genome-scale data. To demonstrate its utility, we analyzed a comprehensive matrix of time courses interrogating the nuclear transcriptome of Arabidopsis thaliana plants grown under different thermocycles, photocycles, and circadian conditions. We show that 89% of Arabidopsis transcripts cycle in at least one condition and that most genes have peak expression at a particular time of day, which shifts depending on the environment. Thermocycles alone can drive at least half of all transcripts critical for synchronizing internal processes such as cell cycle and protein synthesis. We identified at least three distinct transcription modules controlling phase-specific expression, including a new midnight specific module, PBX/TBX/SBX. We validated the network discovery pipeline, as well as the midnight specific module, by demonstrating that the PBX element was sufficient to drive diurnal and circadian condition-dependent expression. Moreover, we show that the three transcription modules are conserved across Arabidopsis, poplar, and rice. These results confirm the complex interplay between thermocycles, photocycles, and the circadian clock on the daily transcription program, and provide a comprehensive view of the conserved genomic targets for a transcriptional network key to successful adaptation

    Use of low-dose oral theophylline as an adjunct to inhaled corticosteroids in preventing exacerbations of chronic obstructive pulmonary disease: study protocol for a randomised controlled trial.

    Get PDF
    BACKGROUND: Chronic obstructive pulmonary disease (COPD) is associated with high morbidity, mortality, and health-care costs. An incomplete response to the anti-inflammatory effects of inhaled corticosteroids is present in COPD. Preclinical work indicates that 'low dose' theophylline improves steroid responsiveness. The Theophylline With Inhaled Corticosteroids (TWICS) trial investigates whether the addition of 'low dose' theophylline to inhaled corticosteroids has clinical and cost-effective benefits in COPD. METHOD/DESIGN: TWICS is a randomised double-blind placebo-controlled trial conducted in primary and secondary care sites in the UK. The inclusion criteria are the following: an established predominant respiratory diagnosis of COPD (post-bronchodilator forced expiratory volume in first second/forced vital capacity [FEV1/FVC] of less than 0.7), age of at least 40 years, smoking history of at least 10 pack-years, current inhaled corticosteroid use, and history of at least two exacerbations requiring treatment with antibiotics or oral corticosteroids in the previous year. A computerised randomisation system will stratify 1424 participants by region and recruitment setting (primary and secondary) and then randomly assign with equal probability to intervention or control arms. Participants will receive either 'low dose' theophylline (Uniphyllin MR 200 mg tablets) or placebo for 52 weeks. Dosing is based on pharmacokinetic modelling to achieve a steady-state serum theophylline of 1-5 mg/l. A dose of theophylline MR 200 mg once daily (or placebo once daily) will be taken by participants who do not smoke or participants who smoke but have an ideal body weight (IBW) of not more than 60 kg. A dose of theophylline MR 200 mg twice daily (or placebo twice daily) will be taken by participants who smoke and have an IBW of more than 60 kg. Participants will be reviewed at recruitment and after 6 and 12 months. The primary outcome is the total number of participant-reported COPD exacerbations requiring oral corticosteroids or antibiotics during the 52-week treatment period. DISCUSSION: The demonstration that 'low dose' theophylline increases the efficacy of inhaled corticosteroids in COPD by reducing the incidence of exacerbations is relevant not only to patients and clinicians but also to health-care providers, both in the UK and globally. TRIAL REGISTRATION: Current Controlled Trials ISRCTN27066620 was registered on Sept. 19, 2013, and the first subject was randomly assigned on Feb. 6, 2014

    Phenotypic and pharmacogenetic evaluation of patients with thiazide-induced hyponatremia.

    Get PDF
    Thiazide diuretics are among the most widely used treatments for hypertension, but thiazide-induced hyponatremia (TIH), a clinically significant adverse effect, is poorly understood. Here, we have studied the phenotypic and genetic characteristics of patients hospitalized with TIH. In a cohort of 109 TIH patients, those with severe TIH displayed an extended phenotype of intravascular volume expansion, increased free water reabsorption, urinary prostaglandin E2 excretion, and reduced excretion of serum chloride, magnesium, zinc, and antidiuretic hormone. GWAS in a separate cohort of 48 TIH patients and 2,922 controls from the 1958 British birth cohort identified an additional 14 regions associated with TIH. We identified a suggestive association with a variant in SLCO2A1, which encodes a prostaglandin transporter in the distal nephron. Resequencing of SLCO2A1 revealed a nonsynonymous variant, rs34550074 (p.A396T), and association with this SNP was replicated in a second cohort of TIH cases. TIH patients with the p.A396T variant demonstrated increased urinary excretion of prostaglandin E2 and metabolites. Moreover, the SLCO2A1 phospho-mimic p.A396E showed loss of transporter function in vitro. These findings indicate that the phenotype of TIH involves a more extensive metabolic derangement than previously recognized. We propose one mechanism underlying TIH development in a subgroup of patients in which SLCO2A1 regulation is altered.This work was supported by an Academy of Medical Sciences grant for clinical lecturers (to JSW and MG), British Heart Foundation grant PG/09/089 (to KMO), the National Institute for Health Research (NIHR) Royal Brompton Cardiovascular Biomedical Research Unit (to JSW and SC), the Fondation Leducq (to JSW and SC), and the British Heart Foundation (to JSW and SC). MDT holds a Medical Research Council Senior Clinical Fellowship (G0902313). This work was supported by the Medical Research Council (grant numbers G510364 and G1000861). This research used the ALICE and SPECTRE High Performance Computing Facilities at the University of Leicester

    Recovering Dietary Information from Extant and Extinct Primates Using Plant Microremains

    Get PDF
    When reconstructing the diets of primates, researchers often rely on several well established methods, such as direct observation, studies of discarded plant parts, and analysis of macrobotanical remains in fecal matter. Most of these studies can be performed only on living primate groups, however, and the diets of extinct, subfossil, and fossil groups are known only from proxy methods. Plant microremains, tiny plant structures with distinctive morphologies, can record the exact plant foods that an individual consumed. They can be recovered from recently deceased and fossil primate samples, and can also be used to supplement traditional dietary analyses in living groups. Here I briefly introduce plant microremains, provide examples of how they have been successfully used to reconstruct the diets of humans and other species, and describe methods for their application in studies of primate dietary ecology

    Sustained formation of POBN radical adducts in mouse liver by peroxisome proliferators is dependent upon PPARα, but not NADPH oxidase

    Get PDF
    Reactive oxygen species are thought to be crucial for peroxisome proliferator-induced liver carcinogenesis. Free radicals have been shown to mediate the production of mitogenic cytokines by Kupffer cells and cause DNA damage in rodent liver. Previous in vivo experiments demonstrated that acute administration of the peroxisome proliferator di-(2-ethylhexyl) phthalate (DEHP) led to an increase in production of α-(4-pyridyl-1-oxide)-N-tert-butylnitrone (POBN) radical adducts in liver, an event that was dependent on Kupffer cell NADPH oxidase, but not peroxisome proliferator activated receptor (PPAR)α. Here, we hypothesized that continuous treatment with peroxisome proliferators will cause a sustained formation in POBN radical adducts in liver. Mice were fed diets containing either 4-chloro-6-(2,3-xylidino)-2-pyrimidinylthio acetic acid (WY-14,643, 0.05% w/w), or DEHP (0.6% w/w) for up to three weeks. Liver-derived radical production was assessed in bile samples by measuring POBN-radical adducts using electron spin resonance. Our data indicate that WY-14,643 causes a sustained increase in POBN radical adducts in mouse liver and that this effect is greater than that of DEHP. To understand the molecular source of these radical species, NADPH oxidase-deficient (p47 phox-null) and PPARα-null mice were examined after treatment with WY-14,643. No increase in radicals was observed in PPARα-null mice that were treated with WY-14,643 for 3 weeks, while the response in p47 phox-nulls was similar to that of wild-type mice. These results show that PPARα, not NADPH oxidase, is critical for a sustained increase in POBN radical production caused by peroxisome proliferators in rodent liver. Therefore, peroxisome proliferator-induced POBN radical production in Kupffer cells may be limited to an acute response to these compounds in mouse liver
    corecore