33 research outputs found

    FEATURE SELECTION AND CLASSIFICATION OF INTRUSION DETECTION SYSTEM USING ROUGH SET

    Get PDF
    With the expansion of computer network there is a challenge to compete with the intruders who can easily break into the system. So it becomes a necessity to device systems or algorithms that can not only detect intrusion but can also improve the detection rate. In this paper we propose an intrusion detection system that uses rough set theory for feature selection, which is extraction of relevant attributes from the entire set of attributes describing a data packet and used the same theory to classify the packet if it is normal or an attack. After the simplification of the discernibility matrix we were to select or reduce the features. We have used Rosetta tool to obtain the reducts and classification rules. NSL KDD dataset is used as training set and is provided to Rosetta to obtain the classification rules

    Eco-Friendly Management of Root Knot Nematode (Meloidogyne spp.) in Okra (Abelmoschus Esculentus) Using Different Soil Amendments

    Get PDF
    Field experiment was conducted from March to July 2022 to identify the eco-friendly management of root-knot nematodes (Meloidogyne spp.) in okra (Abelmoschus esculentus) by using different soil amendments. The experiment was designed as a randomized complete block design with three replications and seven treatments viz., mustard oil cake at 1.41 kg/2m2 plot, poultry manure at 5.6 kg/2m2 plot, goat manure at 3.25 kg/2m2 plot, vermicompost at 4.30 kg/2m2 plot, nitrogen-phosphorus-potassium (NPK) at 125:110:110 g/2m2, Cartap hydrochloride 4% granule (GR) at 10 g/2m2 plot and control. Disease parameters such as root gall index and number of galls per plant, fresh shoot weight, and fresh root weight were recorded at 72, 105, and 120 days after sowing. Fruit yield was recorded after the final pod harvest. Cartap hydrochloride 4G, poultry manure, and mustard oil cake significantly reduced the root gall index as compared to the control. However, goat manure, vermicompost nitrogen, phosphorus, and potassium (NPK) did not give satisfactory results in reducing root gall index. The maximum yield of okra was recorded in the NPK treated plots although the root gall index was not much reduced. The research results indicated that the most effective treatment for reducing root-knot nematode disease and improving vegetative growth and yield of okra was poultry manure. Therefore, poultry manure along with mustard oil cake could be used as an alternative to highly hazardous and persistent chemical nematicides for the management of root-knot nematodes in okra

    Protocol of the Low Birth Weight South Asia Trial (LBWSAT), a cluster-randomised controlled trial testing impact on birth weight and infant nutrition of Participatory Learning and Action through women's groups, with and without unconditional transfers of fortified food or cash during pregnancy in Nepal.

    Get PDF
    BACKGROUND: Low birth weight (LBW, < 2500 g) affects one third of newborn infants in rural south Asia and compromises child survival, infant growth, educational performance and economic prospects. We aimed to assess the impact on birth weight and weight-for-age Z-score in children aged 0-16 months of a nutrition Participatory Learning and Action behaviour change strategy (PLA) for pregnant women through women's groups, with or without unconditional transfers of food or cash to pregnant women in two districts of southern Nepal. METHODS: The study is a cluster randomised controlled trial (non-blinded). PLA comprises women's groups that discuss, and form strategies about, nutrition in pregnancy, low birth weight and hygiene. Women receive up to 7 monthly transfers per pregnancy: cash is NPR 750 (~US$7) and food is 10 kg of fortified sweetened wheat-soya Super Cereal per month. The unit of randomisation is a rural village development committee (VDC) cluster (population 4000-9200, mean 6150) in southern Dhanusha or Mahottari districts. 80 VDCs are randomised to four arms using a participatory 'tombola' method. Twenty clusters each receive: PLA; PLA plus food; PLA plus cash; and standard care (control). Participants are (mostly Maithili-speaking) pregnant women identified from 8 weeks' gestation onwards, and their infants (target sample size 8880 birth weights). After pregnancy verification, mothers may be followed up in early and late pregnancy, within 72 h, after 42 days and within 22 months of birth. Outcomes pertain to the individual level. Primary outcomes include birth weight within 72 h of birth and infant weight-for-age Z-score measured cross-sectionally on children born of the study. Secondary outcomes include prevalence of LBW, eating behaviour and weight during pregnancy, maternal and newborn illness, preterm delivery, miscarriage, stillbirth or neonatal mortality, infant Z-scores for length-for-age and weight-for-length, head circumference, and postnatal maternal BMI and mid-upper arm circumference. Exposure to women's groups, food or cash transfers, home visits, and group interventions are measured. DISCUSSION: Determining the relative importance to birth weight and early childhood nutrition of adding food or cash transfers to PLA women's groups will inform design of nutrition interventions in pregnancy. TRIAL REGISTRATION: ISRCTN75964374 , 12 Jul 2013

    Impact on birth weight and child growth of Participatory Learning and Action women's groups with and without transfers of food or cash during pregnancy: Findings of the low birth weight South Asia cluster-randomised controlled trial (LBWSAT) in Nepal.

    Get PDF
    BACKGROUND: Undernutrition during pregnancy leads to low birthweight, poor growth and inter-generational undernutrition. We did a non-blinded cluster-randomised controlled trial in the plains districts of Dhanusha and Mahottari, Nepal to assess the impact on birthweight and weight-for-age z-scores among children aged 0-16 months of community-based participatory learning and action (PLA) women's groups, with and without food or cash transfers to pregnant women. METHODS: We randomly allocated 20 clusters per arm to four arms (average population/cluster = 6150). All consenting married women aged 10-49 years, who had not had tubal ligation and whose husbands had not had vasectomy, were monitored for missed menses. Between 29 Dec 2013 and 28 Feb 2015 we recruited 25,092 pregnant women to surveillance and interventions: PLA alone (n = 5626); PLA plus food (10 kg/month of fortified wheat-soya 'Super Cereal', n = 6884); PLA plus cash (NPR750≈US$7.5/month, n = 7272); control (existing government programmes, n = 5310). 539 PLA groups discussed and implemented strategies to improve low birthweight, nutrition in pregnancy and hand washing. Primary outcomes were birthweight within 72 hours of delivery and weight-for-age z-scores at endline (age 0-16 months). Only children born to permanent residents between 4 June 2014 and 20 June 2015 were eligible for intention to treat analyses (n = 10936), while in-migrating women and children born before interventions had been running for 16 weeks were excluded. Trial status: completed. RESULTS: In PLA plus food/cash arms, 94-97% of pregnant women attended groups and received a mean of four transfers over their pregnancies. In the PLA only arm, 49% of pregnant women attended groups. Due to unrest, the response rate for birthweight was low at 22% (n = 2087), but response rate for endline nutritional and dietary measures exceeded 83% (n = 9242). Compared to the control arm (n = 464), mean birthweight was significantly higher in the PLA plus food arm by 78·0 g (95% CI 13·9, 142·0; n = 626) and not significantly higher in PLA only and PLA plus cash arms by 28·9 g (95% CI -37·7, 95·4; n = 488) and 50·5 g (95% CI -15·0, 116·1; n = 509) respectively. Mean weight-for-age z-scores of children aged 0-16 months (average age 9 months) sampled cross-sectionally at endpoint, were not significantly different from those in the control arm (n = 2091). Differences in weight for-age z-score were as follows: PLA only -0·026 (95% CI -0·117, 0·065; n = 2095); PLA plus cash -0·045 (95% CI -0·133, 0·044; n = 2545); PLA plus food -0·033 (95% CI -0·121, 0·056; n = 2507). Amongst many secondary outcomes tested, compared with control, more institutional deliveries (OR: 1.46 95% CI 1.03, 2.06; n = 2651) and less colostrum discarding (OR:0.71 95% CI 0.54, 0.93; n = 2548) were found in the PLA plus food arm but not in PLA alone or in PLA plus cash arms. INTERPRETATION: Food supplements in pregnancy with PLA women's groups increased birthweight more than PLA plus cash or PLA alone but differences were not sustained. Nutrition interventions throughout the thousand-day period are recommended. TRIAL REGISTRATION: ISRCTN75964374

    Burden of disease scenarios for 204 countries and territories, 2022–2050: a forecasting analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Future trends in disease burden and drivers of health are of great interest to policy makers and the public at large. This information can be used for policy and long-term health investment, planning, and prioritisation. We have expanded and improved upon previous forecasts produced as part of the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) and provide a reference forecast (the most likely future), and alternative scenarios assessing disease burden trajectories if selected sets of risk factors were eliminated from current levels by 2050. Methods: Using forecasts of major drivers of health such as the Socio-demographic Index (SDI; a composite measure of lag-distributed income per capita, mean years of education, and total fertility under 25 years of age) and the full set of risk factor exposures captured by GBD, we provide cause-specific forecasts of mortality, years of life lost (YLLs), years lived with disability (YLDs), and disability-adjusted life-years (DALYs) by age and sex from 2022 to 2050 for 204 countries and territories, 21 GBD regions, seven super-regions, and the world. All analyses were done at the cause-specific level so that only risk factors deemed causal by the GBD comparative risk assessment influenced future trajectories of mortality for each disease. Cause-specific mortality was modelled using mixed-effects models with SDI and time as the main covariates, and the combined impact of causal risk factors as an offset in the model. At the all-cause mortality level, we captured unexplained variation by modelling residuals with an autoregressive integrated moving average model with drift attenuation. These all-cause forecasts constrained the cause-specific forecasts at successively deeper levels of the GBD cause hierarchy using cascading mortality models, thus ensuring a robust estimate of cause-specific mortality. For non-fatal measures (eg, low back pain), incidence and prevalence were forecasted from mixed-effects models with SDI as the main covariate, and YLDs were computed from the resulting prevalence forecasts and average disability weights from GBD. Alternative future scenarios were constructed by replacing appropriate reference trajectories for risk factors with hypothetical trajectories of gradual elimination of risk factor exposure from current levels to 2050. The scenarios were constructed from various sets of risk factors: environmental risks (Safer Environment scenario), risks associated with communicable, maternal, neonatal, and nutritional diseases (CMNNs; Improved Childhood Nutrition and Vaccination scenario), risks associated with major non-communicable diseases (NCDs; Improved Behavioural and Metabolic Risks scenario), and the combined effects of these three scenarios. Using the Shared Socioeconomic Pathways climate scenarios SSP2-4.5 as reference and SSP1-1.9 as an optimistic alternative in the Safer Environment scenario, we accounted for climate change impact on health by using the most recent Intergovernmental Panel on Climate Change temperature forecasts and published trajectories of ambient air pollution for the same two scenarios. Life expectancy and healthy life expectancy were computed using standard methods. The forecasting framework includes computing the age-sex-specific future population for each location and separately for each scenario. 95% uncertainty intervals (UIs) for each individual future estimate were derived from the 2·5th and 97·5th percentiles of distributions generated from propagating 500 draws through the multistage computational pipeline. Findings: In the reference scenario forecast, global and super-regional life expectancy increased from 2022 to 2050, but improvement was at a slower pace than in the three decades preceding the COVID-19 pandemic (beginning in 2020). Gains in future life expectancy were forecasted to be greatest in super-regions with comparatively low life expectancies (such as sub-Saharan Africa) compared with super-regions with higher life expectancies (such as the high-income super-region), leading to a trend towards convergence in life expectancy across locations between now and 2050. At the super-region level, forecasted healthy life expectancy patterns were similar to those of life expectancies. Forecasts for the reference scenario found that health will improve in the coming decades, with all-cause age-standardised DALY rates decreasing in every GBD super-region. The total DALY burden measured in counts, however, will increase in every super-region, largely a function of population ageing and growth. We also forecasted that both DALY counts and age-standardised DALY rates will continue to shift from CMNNs to NCDs, with the most pronounced shifts occurring in sub-Saharan Africa (60·1% [95% UI 56·8–63·1] of DALYs were from CMNNs in 2022 compared with 35·8% [31·0–45·0] in 2050) and south Asia (31·7% [29·2–34·1] to 15·5% [13·7–17·5]). This shift is reflected in the leading global causes of DALYs, with the top four causes in 2050 being ischaemic heart disease, stroke, diabetes, and chronic obstructive pulmonary disease, compared with 2022, with ischaemic heart disease, neonatal disorders, stroke, and lower respiratory infections at the top. The global proportion of DALYs due to YLDs likewise increased from 33·8% (27·4–40·3) to 41·1% (33·9–48·1) from 2022 to 2050, demonstrating an important shift in overall disease burden towards morbidity and away from premature death. The largest shift of this kind was forecasted for sub-Saharan Africa, from 20·1% (15·6–25·3) of DALYs due to YLDs in 2022 to 35·6% (26·5–43·0) in 2050. In the assessment of alternative future scenarios, the combined effects of the scenarios (Safer Environment, Improved Childhood Nutrition and Vaccination, and Improved Behavioural and Metabolic Risks scenarios) demonstrated an important decrease in the global burden of DALYs in 2050 of 15·4% (13·5–17·5) compared with the reference scenario, with decreases across super-regions ranging from 10·4% (9·7–11·3) in the high-income super-region to 23·9% (20·7–27·3) in north Africa and the Middle East. The Safer Environment scenario had its largest decrease in sub-Saharan Africa (5·2% [3·5–6·8]), the Improved Behavioural and Metabolic Risks scenario in north Africa and the Middle East (23·2% [20·2–26·5]), and the Improved Nutrition and Vaccination scenario in sub-Saharan Africa (2·0% [–0·6 to 3·6]). Interpretation: Globally, life expectancy and age-standardised disease burden were forecasted to improve between 2022 and 2050, with the majority of the burden continuing to shift from CMNNs to NCDs. That said, continued progress on reducing the CMNN disease burden will be dependent on maintaining investment in and policy emphasis on CMNN disease prevention and treatment. Mostly due to growth and ageing of populations, the number of deaths and DALYs due to all causes combined will generally increase. By constructing alternative future scenarios wherein certain risk exposures are eliminated by 2050, we have shown that opportunities exist to substantially improve health outcomes in the future through concerted efforts to prevent exposure to well established risk factors and to expand access to key health interventions

    Global burden and strength of evidence for 88 risk factors in 204 countries and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Understanding the health consequences associated with exposure to risk factors is necessary to inform public health policy and practice. To systematically quantify the contributions of risk factor exposures to specific health outcomes, the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 aims to provide comprehensive estimates of exposure levels, relative health risks, and attributable burden of disease for 88 risk factors in 204 countries and territories and 811 subnational locations, from 1990 to 2021. Methods: The GBD 2021 risk factor analysis used data from 54 561 total distinct sources to produce epidemiological estimates for 88 risk factors and their associated health outcomes for a total of 631 risk–outcome pairs. Pairs were included on the basis of data-driven determination of a risk–outcome association. Age-sex-location-year-specific estimates were generated at global, regional, and national levels. Our approach followed the comparative risk assessment framework predicated on a causal web of hierarchically organised, potentially combinative, modifiable risks. Relative risks (RRs) of a given outcome occurring as a function of risk factor exposure were estimated separately for each risk–outcome pair, and summary exposure values (SEVs), representing risk-weighted exposure prevalence, and theoretical minimum risk exposure levels (TMRELs) were estimated for each risk factor. These estimates were used to calculate the population attributable fraction (PAF; ie, the proportional change in health risk that would occur if exposure to a risk factor were reduced to the TMREL). The product of PAFs and disease burden associated with a given outcome, measured in disability-adjusted life-years (DALYs), yielded measures of attributable burden (ie, the proportion of total disease burden attributable to a particular risk factor or combination of risk factors). Adjustments for mediation were applied to account for relationships involving risk factors that act indirectly on outcomes via intermediate risks. Attributable burden estimates were stratified by Socio-demographic Index (SDI) quintile and presented as counts, age-standardised rates, and rankings. To complement estimates of RR and attributable burden, newly developed burden of proof risk function (BPRF) methods were applied to yield supplementary, conservative interpretations of risk–outcome associations based on the consistency of underlying evidence, accounting for unexplained heterogeneity between input data from different studies. Estimates reported represent the mean value across 500 draws from the estimate's distribution, with 95% uncertainty intervals (UIs) calculated as the 2·5th and 97·5th percentile values across the draws. Findings: Among the specific risk factors analysed for this study, particulate matter air pollution was the leading contributor to the global disease burden in 2021, contributing 8·0% (95% UI 6·7–9·4) of total DALYs, followed by high systolic blood pressure (SBP; 7·8% [6·4–9·2]), smoking (5·7% [4·7–6·8]), low birthweight and short gestation (5·6% [4·8–6·3]), and high fasting plasma glucose (FPG; 5·4% [4·8–6·0]). For younger demographics (ie, those aged 0–4 years and 5–14 years), risks such as low birthweight and short gestation and unsafe water, sanitation, and handwashing (WaSH) were among the leading risk factors, while for older age groups, metabolic risks such as high SBP, high body-mass index (BMI), high FPG, and high LDL cholesterol had a greater impact. From 2000 to 2021, there was an observable shift in global health challenges, marked by a decline in the number of all-age DALYs broadly attributable to behavioural risks (decrease of 20·7% [13·9–27·7]) and environmental and occupational risks (decrease of 22·0% [15·5–28·8]), coupled with a 49·4% (42·3–56·9) increase in DALYs attributable to metabolic risks, all reflecting ageing populations and changing lifestyles on a global scale. Age-standardised global DALY rates attributable to high BMI and high FPG rose considerably (15·7% [9·9–21·7] for high BMI and 7·9% [3·3–12·9] for high FPG) over this period, with exposure to these risks increasing annually at rates of 1·8% (1·6–1·9) for high BMI and 1·3% (1·1–1·5) for high FPG. By contrast, the global risk-attributable burden and exposure to many other risk factors declined, notably for risks such as child growth failure and unsafe water source, with age-standardised attributable DALYs decreasing by 71·5% (64·4–78·8) for child growth failure and 66·3% (60·2–72·0) for unsafe water source. We separated risk factors into three groups according to trajectory over time: those with a decreasing attributable burden, due largely to declining risk exposure (eg, diet high in trans-fat and household air pollution) but also to proportionally smaller child and youth populations (eg, child and maternal malnutrition); those for which the burden increased moderately in spite of declining risk exposure, due largely to population ageing (eg, smoking); and those for which the burden increased considerably due to both increasing risk exposure and population ageing (eg, ambient particulate matter air pollution, high BMI, high FPG, and high SBP). Interpretation: Substantial progress has been made in reducing the global disease burden attributable to a range of risk factors, particularly those related to maternal and child health, WaSH, and household air pollution. Maintaining efforts to minimise the impact of these risk factors, especially in low SDI locations, is necessary to sustain progress. Successes in moderating the smoking-related burden by reducing risk exposure highlight the need to advance policies that reduce exposure to other leading risk factors such as ambient particulate matter air pollution and high SBP. Troubling increases in high FPG, high BMI, and other risk factors related to obesity and metabolic syndrome indicate an urgent need to identify and implement interventions

    Global burden and strength of evidence for 88 risk factors in 204 countries and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Understanding the health consequences associated with exposure to risk factors is necessary to inform public health policy and practice. To systematically quantify the contributions of risk factor exposures to specific health outcomes, the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 aims to provide comprehensive estimates of exposure levels, relative health risks, and attributable burden of disease for 88 risk factors in 204 countries and territories and 811 subnational locations, from 1990 to 2021. Methods: The GBD 2021 risk factor analysis used data from 54 561 total distinct sources to produce epidemiological estimates for 88 risk factors and their associated health outcomes for a total of 631 risk–outcome pairs. Pairs were included on the basis of data-driven determination of a risk–outcome association. Age-sex-location-year-specific estimates were generated at global, regional, and national levels. Our approach followed the comparative risk assessment framework predicated on a causal web of hierarchically organised, potentially combinative, modifiable risks. Relative risks (RRs) of a given outcome occurring as a function of risk factor exposure were estimated separately for each risk–outcome pair, and summary exposure values (SEVs), representing risk-weighted exposure prevalence, and theoretical minimum risk exposure levels (TMRELs) were estimated for each risk factor. These estimates were used to calculate the population attributable fraction (PAF; ie, the proportional change in health risk that would occur if exposure to a risk factor were reduced to the TMREL). The product of PAFs and disease burden associated with a given outcome, measured in disability-adjusted life-years (DALYs), yielded measures of attributable burden (ie, the proportion of total disease burden attributable to a particular risk factor or combination of risk factors). Adjustments for mediation were applied to account for relationships involving risk factors that act indirectly on outcomes via intermediate risks. Attributable burden estimates were stratified by Socio-demographic Index (SDI) quintile and presented as counts, age-standardised rates, and rankings. To complement estimates of RR and attributable burden, newly developed burden of proof risk function (BPRF) methods were applied to yield supplementary, conservative interpretations of risk–outcome associations based on the consistency of underlying evidence, accounting for unexplained heterogeneity between input data from different studies. Estimates reported represent the mean value across 500 draws from the estimate's distribution, with 95% uncertainty intervals (UIs) calculated as the 2·5th and 97·5th percentile values across the draws. Findings: Among the specific risk factors analysed for this study, particulate matter air pollution was the leading contributor to the global disease burden in 2021, contributing 8·0% (95% UI 6·7–9·4) of total DALYs, followed by high systolic blood pressure (SBP; 7·8% [6·4–9·2]), smoking (5·7% [4·7–6·8]), low birthweight and short gestation (5·6% [4·8–6·3]), and high fasting plasma glucose (FPG; 5·4% [4·8–6·0]). For younger demographics (ie, those aged 0–4 years and 5–14 years), risks such as low birthweight and short gestation and unsafe water, sanitation, and handwashing (WaSH) were among the leading risk factors, while for older age groups, metabolic risks such as high SBP, high body-mass index (BMI), high FPG, and high LDL cholesterol had a greater impact. From 2000 to 2021, there was an observable shift in global health challenges, marked by a decline in the number of all-age DALYs broadly attributable to behavioural risks (decrease of 20·7% [13·9–27·7]) and environmental and occupational risks (decrease of 22·0% [15·5–28·8]), coupled with a 49·4% (42·3–56·9) increase in DALYs attributable to metabolic risks, all reflecting ageing populations and changing lifestyles on a global scale. Age-standardised global DALY rates attributable to high BMI and high FPG rose considerably (15·7% [9·9–21·7] for high BMI and 7·9% [3·3–12·9] for high FPG) over this period, with exposure to these risks increasing annually at rates of 1·8% (1·6–1·9) for high BMI and 1·3% (1·1–1·5) for high FPG. By contrast, the global risk-attributable burden and exposure to many other risk factors declined, notably for risks such as child growth failure and unsafe water source, with age-standardised attributable DALYs decreasing by 71·5% (64·4–78·8) for child growth failure and 66·3% (60·2–72·0) for unsafe water source. We separated risk factors into three groups according to trajectory over time: those with a decreasing attributable burden, due largely to declining risk exposure (eg, diet high in trans-fat and household air pollution) but also to proportionally smaller child and youth populations (eg, child and maternal malnutrition); those for which the burden increased moderately in spite of declining risk exposure, due largely to population ageing (eg, smoking); and those for which the burden increased considerably due to both increasing risk exposure and population ageing (eg, ambient particulate matter air pollution, high BMI, high FPG, and high SBP). Interpretation: Substantial progress has been made in reducing the global disease burden attributable to a range of risk factors, particularly those related to maternal and child health, WaSH, and household air pollution. Maintaining efforts to minimise the impact of these risk factors, especially in low SDI locations, is necessary to sustain progress. Successes in moderating the smoking-related burden by reducing risk exposure highlight the need to advance policies that reduce exposure to other leading risk factors such as ambient particulate matter air pollution and high SBP. Troubling increases in high FPG, high BMI, and other risk factors related to obesity and metabolic syndrome indicate an urgent need to identify and implement interventions. Funding: Bill & Melinda Gates Foundation
    corecore