883,906 research outputs found

    An Easy And Efficient Method To Produce γ-amino Alcohols By Reduction Of β-enamino Ketones

    Get PDF
    Reduction of β-enamino ketones 2 with NaBH4 in glacial acetic acid gave γ-amino alcohols 1 in 70% to 98% yield with diastereomeric excesses, preferentially the syn product, from 44% to 90%. The stereochemistry of these compounds was confirmed by analysis of their tetrahydro-1,3-oxazine derivatives 3.156971975Gevorgyan, G.A., Agababian, G., (1984) Russ. Chem. Rev., 53, p. 581Jäger, V., Buß, V., (1980) Liebigs Ann. Chem., p. 101Wang, Y.F., Izawa, T., Kobayashi, S., Ohno, M., (1982) J. Am. Chem. Soc., 104, p. 6465Heitsch, H., König, W.A., Decker, H., Bormann, C., Fiedler, H.P., Zähner, H., (1989) J. Antibiotics, 42, p. 711Wovkulich, P.M., Uskokovic, M.R., (1981) J. Am. Chem. Soc., 103, p. 3956Jäger, V., Schwab, W., Bub, V., (1981) Angew. Chem. Int. Ed. Engl., 20, p. 601White, D.W., Gibbs, D.E., Verkade, J.G., (1979) J. Am. Chem. Soc., 101, p. 1937Liguori, A., Romeo, G., Sindona, G., Ucella, N., (1988) Chem. Ber., 121, p. 105Bongini, A., Cardillo, G., Orena, M., Porzi, G., Sandri, S., (1988) Chem. Lett., p. 87Arisa, J., Font, J., Ortuño, R.M., (1990) Tetrahedron, 46, p. 1931Narasaka, K., Ukaji, Y., Yamazaki, S., (1986) Bull. Chem. Soc. Jpn., 59, p. 525Maroni, P., Gazaux, L., Tisnes, P., Zambeti, M., (1980) Bull. Soc. Chim. Fr. P II, p. 179Matsumura, Y., Fujiwara, J., Maruoka, K., Yamamoto, H., (1983) J. Am. Chem. Soc., 105, p. 6312Bartoli, G., Cimarelli, C., Palmieri, G., (1994) J. Chem. Soc., Perkin Trans. 1, p. 537Bartoli, G., Cupone, G., Dalpozzo, R., De Nino, A., Maiuolo, L., Procopio, A., Tagarelli, A., (2002) Tetrahedron Lett., 43, p. 7441Greenhill, J.V., (1977) Chem. Soc. Rev., 6, p. 277Schuda, P.F., Ebner, C.B., Morgan, T.M., (1986) Tetrahedron Lett., 27, p. 2567Barluenga, J., Aguilar, E., Fustero, S., Olano, B., Viado, A.L., (1992) J. Org. Chem., 57, p. 1219Katritzky, A., Harris, P.A., (1990) Tetrahedron, 46, p. 987Pilli, R.A., Russowsky, D., Dias, L.C., (1990) J. Chem. Soc., Perkin Trans. 1, p. 1213Tramontini, M., (1982) Synthesis, p. 605Gribble, G.W., Nutaitis, C.F., (1985) Org. Prep. Proc. Int., 17, p. 317Gribble, G.W., (1998) Chem. Soc. Rev., 27, p. 395Harris, M.I.N.C., (1993) PhD. Thesis, , Universidade Estadual de Campinas, BrazilBraga, A.C.H., Harris, M.I.N.C., CA, 128, p. 243740. , Br PI 9.502.467-0, 1995noteBarluenga, J., Olano, B., Fustero, S., (1985) J. Org. Chem., 50, p. 405

    Hydroamination reactions by metal triflates: Bronsted acid vs. metal catalysis?

    Get PDF
    Catalytic hydroamination reactions involving the addition of carboxamides (X = CO), carbamates (X = CO2) and sulfonamides (X = SO2) to unactivated CC bonds are briefly reviewed. Development in this field of catalytic research is briefly charted, followed by a discussion of possible mechanisms, including arguments to support the operation of both metal and Brønsted acid catalysis in these systems. Future developments in the area are summarised. © The Royal Society of Chemistry 2010.39511711175Müller, T.E., Hultzsch, K.C., Yus, M., Foubelo, F., Tada, M., (2008) Chem. Rev., 108, p. 3795Constable, D.J.C., Dunn, P.J., Hayler, J.D., Humphrey, G.R., Leazer, J.L., Linderman, R.J., Lorenz, K., Zhang, T.Y., (2007) Green Chem., 9, p. 411Ranu, B.C., Banerjee, S., (2007) Tetrahedron Lett., 48, p. 141. , For example, seeKumar, R., Chaudhary, P., Nimesh, S., Chandra, R., (2006) Green Chem., 8, p. 356Dzhemilev, U., Tolstikov, G., Khusnutdinov, R., (2009) Russ. J. Org. Chem., 45, p. 957Quinet, C., Jourdain, P., Hermans, C., Atest, A., Lucas, I., Marko, I.E., (2008) Tetrahedron, 64, p. 1077. , See for exampleHorrillo-Martinez, P., Hultzsch, K.C., Gil, A., Branchadell, V., (2007) Eur. J. Org. Chem., p. 3311Crimmin, M.R., Arrowsmith, M., Barrett, A.G.M., Casely, I.J., Hill, M.S., Procopiou, P.A., (2009) J. Am. Chem. Soc., 131, p. 9670Hong, S., Marks, T.J., (2004) Acc. Chem. Res., 37, p. 673Walsh, P.J., Baranger, A.M., Bergman, R.G., (1992) J. Am. Chem. Soc., 114, p. 1708Müller, C., Koch, R., Doye, S., (2008) Chem.-Eur. J., 14, p. 10430Beller, M., Trauthwein, H., Eichberger, M., Breindl, C., Herwig, J., Müller, T.E., Thiel, O.R., (1999) Chem.-Eur. J., 5, p. 1306Rodriguez-Zubiri, M., Anguille, S., Brunet, J.J., (2007) J. Mol. Catal. A: Chem., 271, p. 145Bäckvall, J.E., Åkermark, B., Ljunggren, S.O., (1979) J. Am. Chem. Soc., 101, p. 2411Hahn, C., (2004) Chem.-Eur. J., 10, p. 5888. , See for exampleMotta, A., Fragala, I.L., Marks, T.J., (2006) Organometallics, 25, p. 5533Tobisch, S., (2008) Chem.-Eur. J., 14, p. 8590Aillaud, I., Collin, J., Hannedouche, J., Schulz, E., (2007) Dalton Trans., p. 5105Qian, H., Widenhoefer, R.A., (2005) Org. Lett., 7, p. 2635Karshtedt, D., Bell, A.T., Tilley, T.D., (2005) J. Am. Chem. Soc., 127, p. 12640Zhang, J., Yang, C., He, C., (2006) J. Am. Chem. Soc., 128, p. 1798Brouwer, C., He, C., (2006) Angew. Chem., Int. Ed., 45, p. 1744Giner, X., Najera, C., (2008) Org. Lett., 10, p. 2919Taylor, J.G., Whittall, N., Hii, K.K., (2005) Chem. Commun., p. 5103Taylor, J.G., Whittall, N., Hii, K.K., (2006) Org. Lett., 8, p. 3561Dias, H.V.R., Wu, J., (2008) Eur. J. Inorg. Chem., p. 509. , For a discussion of ethylene complexes ofCu(i), Ag(i) and Au(i), seeMcBee, J.L., Bell, A.T., Tilley, T.D., (2008) J. Am. Chem. Soc., 130, p. 16562Cheng, X.J., Xia, Y.Z., Wei, H., Xu, B., Zhang, C.G., Li, Y.H., Qian, G.M., Li, W., (2008) Eur. J. Org. Chem., p. 1929Rosenfeld, D.C., Shekhar, S., Takemiya, A., Utsunomiya, M., Hartwig, J.F., (2006) Org. Lett., 8, p. 4179Li, Z., Zhang, J., Brouwer, C., Yang, C.-G., Reich, N.W., He, C., (2006) Org. Lett., 8, p. 4175Wabnitz, T.C., Yu, J.Q., Spencer, J.B., (2004) Chem.-Eur. J., 10, p. 484Taylor, J.G., (2008), PhD Thesis, Imperial College LondonHuang, J.M., Wong, C.M., Xu, F.X., Loh, T.P., (2007) Tetrahedron Lett., 48, p. 3375Michaux, J., Terrasson, V., Marque, S., Wehbe, J., Prim, D., Campagne, J.M., (2007) Eur. J. Org. Chem., p. 2601Motokura, K., Nakagiri, N., Mori, K., Mizugaki, T., Ebitani, K., Jitsukawa, K., Kaneda, K., (2006) Org. Lett., 8, p. 4617Yang, L., Xu, L.W., Xia, C.G., (2008) Tetrahedron Lett., 49, p. 2882Kovacs, G., Ujaque, G., Lledos, A., (2008) J. Am. Chem. Soc., 130, p. 853Dorta, R., Egli, P., Zurcher, F., Togni, A., (1997) J. Am. Chem. Soc., 119, p. 10857Hartwig, J.F., (2004) Pure Appl. Chem., 76, p. 507. , These were shown to proceed via allylpalladium(ii) intermediates, see, and references thereinJohns, A.M., Sakai, N., Ridder, A., Hartwig, J.F., (2006) J. Am. Chem. Soc., 128, p. 9306Zhang, Z., Lee, S.D., Widenhoefer, R.A., (2009) J. Am. Chem. Soc., 131, p. 5372Anastas, P., Warner, J., (1998) Green Chemistry: Theory and Practice, , Oxford University Press, New Yor

    Diradicals and their driving forces

    Get PDF
    Several series of aromatic and quinoidal compounds, such as oligothiophenes (Scheme 1), oligophenylene-vinylenes, oligoperylenes (oligophenyls) and graphene nanoribbon derivatives, are studied in the common context of the capability to stabilize diradical structures. [1,2,3,4]. In this work, we try to clarify how several driving forces (i.e., thermodynamic and entropic) are responsible for the generation of diradical and diradicaloid structures. A combination of different types of molecular spectroscopies (i.e., electronic absorption, electronic emission, excited state absorption, vibrational Raman, vibrational infrared, etc.) as well as hybridized with thermal and pressure-dependent techniques are shown to provide important information about the origin of the formation and stabilization of diradicals. From a conceptual point of view, we analyze these properties in the context of the oligomer approach which is the study of the evolution of these spectroscopic quantities as a function of the oligomer size. References [1] P. Mayorga Burrezo, J.L. Zafra, J. Casado. Angew. Chem. Int. Ed., 2017, 56, 2250. [2] J. Casado, R. Ponce Ortiz, J. T. Lopez Navarrete, Chem. Soc. Rev. 2012, 41, 5672. [3] P. Mayorga Burrezo, X. Zhu, S. F. Zhu, Q. Yan, J. T. Lopez Navarrete, H. Tsuji, E. Nakamura, J. Casado, J. Am. Chem. Soc. 2015, 137, 3834-3843. [4] J. Casado, Para-quinodimethanes: A unified review of the quinoidal-versus-aromatic competition and its implications. Top. Curr. Chem. 2017, 375, 73.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Gas Phase Chemistry Of The 2-tert-butyl-3-phenylphosphirenylium Cation: Novel Onium Ions By Nucleophilic Attack At Phosphorus And De Novo P-spiro Bicyclic Phosphonium Ions Via [4 + 2+] Cycloaddition With Dienes

    Get PDF
    The 2-tert-butyl-3-phenylphosphirenylium ion 13 is formed in abundance in the gas phase from 1-chloro-1H-phosphirene 6 upon 70 eV electron ionization. Collision-induced dissociation (CID) and ion-molecule reactions followed by CID of the product ions were performed via pentaquadrupole mass spectrometry to probe the structure and reactivity of 13 towards representative nucleophiles and dienes. Under CID conditions, 13 produces a variety of fragment ions mainly via dissociation processes that are preceded by isomerizations. In ion-molecule reactions, 13 reacts readily with ethers, sulfides, pyridine and aniline to form hitherto unknown oxonium, sulfonium and azonium ions via nucleophilic attack at phosphorus. With butadiene, isoprene, 1-acetoxybutadiene, and with Danishefsky's diene (1-methoxy-3-silyloxybuta-1,3-diene), 13 undergoes [4 + 2+] cycloaddition at phosphorus to generate novel P-spiro bicyclic phosphonium ions. With butadiene and isoprene, a second [4 + 2] cycloaddition occurs which generates P-spiro tricyclic phosphonium ions. Whereas 13 also reacts readily with 1-acetoxybutadiene via [4 + 2+] cycloaddition, most of the nascent P-spiro cycloadducts are unstable and dissociate by the loss of either a neutral ketene or acetic acid molecule. B3LYP/6-31G(d,p) calculations were performed to gain insight into the structures of the product ions. The present study constitutes the first successful attempt to unravel the chemistry of 13, a unique 2π-Hückel phosphirenylium ion for which no direct solution chemical reactivity data are as yet available. The present findings also create a parallel with the solution reactivity of 1-halo-1H-phosphirenes and 1-triflato-1H-phosphirenes as precursors to phosphirenylium ions.12395400Laali, K.K., Geissler, B., Wagner, O., Hoffmann, J., Armbrust, R., Eisfeld, W., Regitz, M., (1994) J. Am. Chem. Soc., 116, p. 9407Laali, K.K., (1999) Advances in Strained and Interesting Organic Molecules, Supplement 1, pp. 223-255. , ed. K. K. Laali, JAI press, Stamford, ConnecticutLaali, K.K., Geissler, B., Hoffmann, A., Fiedler, W., Mackewitz, T., Simon, J., Hollenstein, S., Regitz, M., (1999) Phosphorus, Sulfur Silicon, 144-146, p. 281Eisfeld, W., Regitz, M., (1998) J. Org. Chem., 63, p. 2814Simon, J., Bergstrasser, U., Regitz, M., Laali, K.K., (1999) Organometallics, 18, p. 817Dillon, K.B., Mathey, F., Nixon, J.F., (1998) Phosphorus: The Carbon Copy, , Wiley, ChichesterMemmesheimer, H., Regitz, M., (1994) Rev. Heteroatom Chem., 10, p. 61Mathey, F., Regitz, M., (1996) Comprehensive Heterocyclic Chemistry II, , ed. A. Padwa, Pergamon Press, Oxford, UKRegitz, M., (1992) Bull. Soc. Chim. Belg., 101, p. 361Graul, S.T., Squires, R.R., (1988) Mass Spectrom. Rev., 7, p. 263Riveros, J.M., Jose, S.M., Takashima, K., (1985) Adv. Phys. Org. Chem., 21, p. 197Brodbelt, J.S., (1997) Mass Spectrom. Rev., 16, p. 91Filippi, A., Giardini, A., Piccirillo, S., Speranza, M., (2000) Int. J. Mass Spectrom., 198, p. 137Moraes, L.A.B., Gozzo, F.C., Eberlin, M.N., Vainiotalo, P., (1997) J. Org. Chem., 62, p. 5096Williamson, B.L., Creaser, C.S., (1998) Eur. Mass Spectrom., 4, p. 103Gerbaux, P., Haverbeke, Y.V., Flammang, R., (1998) Int. J. Mass Spectrom., 184, p. 39Wang, F., Tao, W.A., Gozzo, F.C., Eberlin, M.N., Cooks, R.G., (1999) J. Org. Chem., 64, p. 3213Cacace, F., De Petris, G., Pepi, F., Rosi, M., Sgamellotti, A., (1999) Angew. Chem., Int. Ed., 38, p. 2408Frank, A.J., Turecek, F., (1999) J. Phys. Chem. A, 103, p. 5348Brönstrup, M., Schröder, D., Schwarz, H., (1999) Organometallics, 18, p. 1939O'Hair, R.A.J., Andrautsopoulos, N.K., (2000) Org. Lett., 2, p. 2567Moraes, L.A.B., Gozzo, F.C., Laali, K.K., Eberlin, M.N., (2000) J. Am. Chem. Soc., 122, p. 7776D'Oca, M.G.M., Moares, L.A.B., Pilli, R.A., Eberlin, M.N., (2001) J. Org. Chem., 35, p. 2088Wang, F., Ma, S.G., Tao, W.A., Cooks, R.G., (1999) Angew. Chem., Int. Ed., 38, p. 386Wang, F., Tao, W.A., Gozzo, F.C., Eberlin, M.N., Cooks, R.G., (1999) J. Org. Chem., 64, p. 3213Ma, S.G., Wong, P., Cooks, R.G., Gozzo, F.C., Eberlin, M.N., (1997) Int. J. Mass Spectrom. Ion Processes, 163, p. 89Thoen, K.K., Gao, L., Ranatunga, T.D., Vainiotalo, P., Kenttamaa, H.I., (1997) J. Org. Chem., 62, p. 8702Ramirez-Arizmendi, L.E., Yu, Y.Q., Kenttamaa, H.I., (1999) J. Am. Soc. Mass Spectrom., 10, p. 379Yu, Y.Q., Stumpf, C.L., Kenttamaa, H.I., (2000) Int. J. Mass Spectrom., 196, p. 609Steiner, V., Daoust-Maleval, I., Tabet, J.C., (2000) Int. J. Mass Spectrom., 196, p. 121Moraes, L.A.B., Eberlin, M.N., Laali, K.K., (2001) Organometallics, 20, p. 4863Gevrey, S., Taphanel, M.H., Morizur, J.P., (1998) J. Mass Spectrom., 33, p. 399Cowley, A.H., Kemp, R.A., Lasch, J.G., Norman, N.C., Stewart, C.A., Whittlesey, B.R., Wright, T.C., (1986) Inorg. Chem., 25, p. 740Eberlin, M.N., Lemos, A.B., J. Mass Spectrom., , in pressEberlin, M.N., Cooks, R.G., (1993) J. Am. Chem. Soc., 115, p. 9226Meurer, E.C., Eberlin, M.N., (2001) Int. J. Mass. Spectrom., 210-211, p. 469Meurer, E.C., Eberlin, M.N., (2002) J. Mass Spectrom., 37, p. 146Eberlin, M.N., (1997) Mass Spectrom. Rev., 16, p. 113Juliano, V.F., Gozzo, F.C., Eberlin, M.N., Kascheres, C., Lago, C.L., (1996) Anal. Chem., 68, p. 1328Tiernan, T.O., Futrell, J.H., (1968) J. Phys. Chem., 72, p. 3080Lee, C., Yang, W., Parr, R.G., (1988) Phys. Rev. B., 33, p. 785Becke, A.D., (1988) Phys. Rev. A, 38, p. 3098Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Zakrzewski, V.G., Pople, J.A., (1998) GAUSSIAN 98, Revision A.6, , Gaussian, Inc., Pittsburgh P

    Thermal Decomposition Of (η6-benzene)tricarbonylchromium(0) Inside The α-cages Of The Na56 Y Zeolite

    Get PDF
    We present here the first results that show the different thermal stabilities of the complex (η6-benzene)tricarbonylchromium(0), [Cr(η6-C6H6)(CO)3], when anchored at different sites inside the a-cages of zeolite Na56 Y, sites 1 and 2. When the system is heated under dynamic vacuum, the complex anchored at site 1, in which the interactions C6H6-Na + and Na+-OC are stronger, decomposes slower than the complex anchored at site 2, in which such interactions are weaker. When the system is heated under static vacuum, the rates of decomposition of the complex anchored in both sites are comparable. The complex inside Na56 Y is less stable than the same complex in the solid state.15179Gates, B.C., Guczi, L., Knozinger, H., (1986) Metal Clusters in Catalysis, , Elsevier: AmsterdamOzin, G.A., Gil, C., (1989) Chem. Rev., 89, p. 1749Ozin, G.A., Kuperman, A., Stein, A., (1989) Angew. Chem. Int. Ed., 28, p. 359Stucky, G.D., Macdougall, J.E., (1990) Science, 247, p. 433Zecchina, A., Otero-Arean, C., (1993) Catal. Rev.-Sci. Eng., 35, p. 261Bein, T., (1996) Comprehensive Supramolecular Chemistry, 7. , Lehn, J.-M.Atwood, J.L.Davies, J.E.D.MacNicol, D.D.Vögtle, F., eds.Pergamon: Oxford, ch. 20Psaro, R., Recchia, S., (1998) Catal. Today, 41, p. 139Brémard, C., (1998) Coord. Chem. Rev., 180, p. 1647Shen, G.C., Liu, A.M., Ichikawa, M.J., (1998) J. Chem. Soc., Faraday Trans., 94, p. 1353Muller, B.R., Calzaferri, G., (1998) Microporous Mesoporous Mater., 21, p. 59Özkar, S., Ozin, G.A., Moller, K., Bein, T., (1990) J. Am. Chem. Soc., 112, p. 9575Ozin, G.H., Özkar, S., Pastore, H.O., Pöe, A.J., Vichi, E.J.S., (1992) ACS Symp. Series, 499, p. 314Brémard, C., Ginestet, G., Le Maire, M., (1996) J. Am. Chem. Soc., 118, p. 12724Shirley, W., Scoville, S.P., (2000) Microporous Mesoporous Mater., 37, p. 271Huang, Y., Poissant, R.R., (2002) Langmuir, 18, p. 5487Pastore, H.O., Ozin, G.A., Pöe, A.J., (1993) J. Am. Chem. Soc., 115, p. 121

    Material sound source localization through headphones

    Full text link
    [EN] In the present paper a study of sound localization is carried out, considering two different sounds emitted from different hit materials (wood and bongo) as well as a Delta sound. The motivation of this research is to study how humans localize sounds coming from different materials, with the purpose of a future implementation of the acoustic sounds with better localization features in navigation aid systems or training audio-games suited for blind people. Wood and bongo sounds are recorded after hitting two objects made of these materials. Afterwards, they are analysed and processed. On the other hand, the Delta sound (click) is generated by using the Adobe Audition software, considering a frequency of 44.1 kHz. All sounds are analysed and convolved with previously measured non-individual Head-Related Transfer Functions both for an anechoic environment and for an environment with reverberation. The First Choice method is used in this experiment. Subjects are asked to localize the source position of the sound listened through the headphones, by using a graphic user interface. The analyses of the recorded data reveal that no significant differences are obtained either when considering the nature of the sounds (wood, bongo, Delta) or their environmental context (with or without reverberation). The localization accuracies for the anechoic sounds are: wood 90.19%, bongo 92.96% and Delta sound 89.59%, whereas for the sounds with reverberation the results are: wood 90.59%, bongo 92.63% and Delta sound 90.91%. According to these data, we can conclude that even when considering the reverberation effect, the localization accuracy does not sig- nificantly increase. © Pleiades Publishing, Ltd., 2012.This research was supported by Research Center in Graphic Technology from the Universidad Politecnica de Valencia.Dunai, L.; Peris Fajarnes, G.; Lengua, I.; Tortajada Montañana, I. (2012). Material sound source localization through headphones. Acoustical Physics. 58(5):610-617. doi:10.1134/S1063771012050077S610617585D. S. Brungart and W. M. Rabinowitz, J. Acoust. Soc. Am. 106, 1465 (1999).D. S. Brungart, I. Nathaniel, and W. R. Rabinowitz, J. Acoust. Soc. Am. 106, 1956 (1999).H. Bruce and D. Hirsh, J. Acoust. Soc. Am. 31, 486 (1959).D. I. Shore, S. E. Hall, and R. M. Klein, J. Acoust. Soc. Am. 103, 3730 (1998).J. C. Kidd and J. H. Hogloben, J. Acoust. Soc. Am., 116, 1116 (2004).L. Dunai, G. P. Fajarnes, B. D. Garcia, N. O. Araque, and F. B. Simon, Acoust. Phys. 55, 448 (2009).L. Dunai, G. P. Fajarnes, B. D. Garcia, and V. S. Praderas, Acoust. Phys. 56, 348 (2010).M. Gröhn, Proc. Int. Conf. on Auditory Display, Kyoto, 2002.E. S. Malinina and I. G. Andreeva, Acoust. Phys. 56, 576 (2010).E. D. Shabalina, N. V. Shirgina, and A. V. Shanin, Acoust. Phys. 56, 525 (2010).A. Pompey, M. A. Sumbatyan, and N. F. Todorov, Acoust. Phys. 55, 760 (2009).R. L. Klatzky, D. K. Pai, and E. P. Krotkov, Presence: Teleoperators and Virtual Environments 9, 399 (2000).M. Aramaki, M. Besson, R. Kronland-Martinet, and S. Ystad, Proc. 5th Int. Symp. on Comp. Music Model. Retriev. (CMMR 2008), Copenhagen, 2008, pp. 1–8.W. Gaver, PhD Dissertation, Univ. California, San Diego, 1988.N. I. Durlach, A. Rigapolus, X. D. Pang, W. S. Woods, A. Kulkarni, H. S. Colburn, and E. M. Wenzel, Presence: Teleoperators and Virtual Environments 1, 251 (1992).S. A. Gelfand, Essentials of Audiology, 3rd ed. (Thieme Medical Publishers, New York, 2009).J. Jerger, ASHA 4, 139 (1962).H. Mershon, W. L. Ballenger, A. D. Little, P. L. McMurtry, and J. L. Buchanan, Perception 18, 403 (1989).D. O. Kim, A. Moiseff, T. J. Bradley, and J. Gull, Acta Otolaryngologica 128, 328 (2008).P. Zahorik, Proc. Int. Conf. on Auditory Display, Kyoto, 2002

    Identification of the driving forces in methanol-to-olefin conversion by modeling the zeolite cage and contents

    Get PDF
    The rapidly increasing demand of oil-based chemicals calls for the development of new technologies based on other natural sources. Among these emerging alternatives, the methanol-to-olefin process (MTO) in acidic zeolites is one of the most promising. However, unraveling the reaction mechanism of such an extremely complex catalytic process like MTO conversion has been a challenging task from both experimental and theoretical viewpoint. For over 30 years the actual mechanism has been one of the most discussed topics in heterogeneous catalysis.[1] Instead of plainly following direct routes,[2-3] the MTO process has experimentally been found to proceed through a hydrocarbon pool mechanism, in which organic reaction centers act as cocatalysts inside the zeolite pores, adding a whole new level of complexity to this issue.[4-5] Therefore, a more detailed understanding of the elementary reaction steps can be obtained with the complementary assistance of theoretical modeling. In this work, a complete supramolecular complex of both the zeolite framework and the co-catalytic hydrocarbon pool species is modeled through state-of-the-art quantum chemical techniques [6-7]. This approach provides a more detailed understanding of the crucial interactions between the zeolite framework and its contents, which form the driving forces for successful methanol-to-olefin conversion. [1] Stocker, M., Microporous Mesoporous Mater. 29 (1999) 3. [2] Song, W.G., Marcus, D.M., Fu, H., Ehresmann, J.O., Haw, J.F., J. Am. Chem. Soc. 124 (2002) 3844. [3] Lesthaeghe, D., Van Speybroeck, V., Marin, G.B., Waroquier, M., Angew. Chem. Int. Ed. 45 (2006) 1714. [4] Dessau, R. M., J. Catal. 99 (1986) 111. [5] Dahl, I.M., Kolboe, S., Catal. Lett. 20 (1993) 329. [6] Lesthaeghe, D., De Sterck, B., Van Speybroeck, V., Marin, G.B., Waroquier, M., Angew. Chem. Int. Ed. 46 (2007) 1311. [7] McCann, D.M., Lesthaeghe, D., Kletnieks, P.W., Guenther, D.R., Hayman, M.J., Van Speybroeck, V., Waroquier, M., Haw, J.F. Angew. Chem. Int. Ed. 47 (2008) 5179

    Flash Spark Plasma Sintering (FSPS) of Pure ZrB2

    Get PDF
    Export Date: 19 August 2014 CODEN: JACTA Correspondence Address: Reece, M.J.; School of Engineering and Material Science, Queen Mary University of London, London E1 4NS, United Kingdom; email: [email protected] Funding Details: EP/K008749/1, EPSRC, European Commission Funding Details: FP7 2007-2013, EC, European Commission References: Cologna, M., Rashkova, B., Raj, R., Flash Sintering of Nanograin Zirconia in <5 s at 850°C (2010) J. Am. Ceram. Soc., 93 (11), pp. 3556-3559; Downs, J.A., Sglavo, V.M., Electric Field Assisted Sintering of Cubic Zirconia at 390°C (2013) J. Am. Ceram. Soc., 96 (5), pp. 1342-1344; Muccillo, R., Muccillo, E.N.S., An Experimental Setup for Shrinkage Evaluation during Electric Field-Assisted Flash Sintering: Application to Yttria-Stabilized Zirconia (2013) J. Eur. Ceram. Soc., 33 (3), pp. 515-520; Muccillo, R., Muccillo, E.N.S., Electric Field-Assisted Flash Sintering of Tin Dioxide (2014) J. Eur. Ceram. Soc., 34 (4), pp. 915-923; Jha, S.K., Raj, R., The Effect of Electric Field on Sintering and Electrical Conductivity of Titania (2014) J. Am. Ceram. Soc., 97 (2), pp. 527-534; Zapata-Solvas, E., Bonilla, S., Wilshaw, P.R., Todd, R.I., Preliminary Investigation of Flash Sintering of SiC (2013) J. Eur. Ceram. Soc., 33 (1314), pp. 2811-2816; Grasso, S., Sakka, Y., Rendtorff, N., Hu, C., Maizza, G., Borodianska, H., Vasylkiv, O., Modeling of the Temperature Distribution of flash sintered Zirconia (2011) Nippon Seramikkusu Kyokai Gakujutsu Ronbunshi/J. Ceram. Soc. Jpn., 119 (1386), pp. 144-146; Park, J., Chen, I.W., In Situ Thermometry Measuring Temperature Flashes Exceeding 1,700°C in 8 mol% Y2O3-Stablized Zirconia under Constant-Voltage Heating (2013) J. Am. Ceram. Soc., 96 (3), pp. 697-700; Zapata-Solvas, E., Jayaseelan, D.D., Lin, H.T., Brown, P., Lee, W.E., Mechanical Properties of ZrB2- and HfB2-Based Ultra-High Temperature Ceramics Fabricated by Spark Plasma Sintering (2013) J. Eur. Ceram. Soc., 33 (7), pp. 1373-1386; Grasso, S., Sakka, Y., Maizza, G., Electric Current Activated/Assisted Sintering (ECAS): A Review of Patents 1906-2008 (2009) Sci. Technol. Adv. Mater., 10 (5), p. 053001; Mallik, M., Kailath, A.J., Ray, K.K., Mitra, R., Electrical and Thermophysical Properties of ZrB2 and HfB 2 Based Composites (2012) J. Eur. Ceram. Soc., 32 (10), pp. 2545-2555; Steil, M.C., Marinha, D., Aman, Y., Gomes, J.R.C., Kleitz, M., From Conventional Ac Flash-Sintering of YSZ to Hyper-Flash and Double Flash (2013) J. Eur. Ceram. Soc., 33 (11), pp. 2093-2101; Ortiz, A.L., Zamora, V., Rodríguez-Rojas, F., A Study of the Oxidation of ZrB2 Powders during High-Energy Ball-Milling in Air (2012) Ceram. Int., 38 (4), pp. 2857-2863; Porwal, H., Tatarko, P., Grasso, S., Hu, C., Boccaccini, A.R., Dlouhý, I., Reece, M., Toughened and Machinable Glass Matrix Composites Reinforced with Graphene and Graphene-Oxide Nano Platelets (2013) Sci. Technol. Adv. Mater., 14, p. 055007 Pure ZrB2 powder was Flash sintered in an SPS furnace (FSPS). The samples were densified up to 95.0% in 35 s under an applied pressure of 16 MPa. Compared to Conventional SPS (CSPS), the newly developed FSPS technique resulted in an unprecedented energy and time savings of about 95% and 98% respectively. ZrB2 monoliths obtained by CSPS and FSPS were compared with respect to microstructures, densification behavior, and grain growth. The developed methodology might find application to a wide range of highly conductive ceramics as such refractory borides and carbides. © 2014 The American Ceramic Society.Export Date: 19 August 2014 CODEN: JACTA Correspondence Address: Reece, M.J.; School of Engineering and Material Science, Queen Mary University of London, London E1 4NS, United Kingdom; email: [email protected] Funding Details: EP/K008749/1, EPSRC, European Commission Funding Details: FP7 2007-2013, EC, European Commission References: Cologna, M., Rashkova, B., Raj, R., Flash Sintering of Nanograin Zirconia in <5 s at 850°C (2010) J. Am. Ceram. Soc., 93 (11), pp. 3556-3559; Downs, J.A., Sglavo, V.M., Electric Field Assisted Sintering of Cubic Zirconia at 390°C (2013) J. Am. Ceram. Soc., 96 (5), pp. 1342-1344; Muccillo, R., Muccillo, E.N.S., An Experimental Setup for Shrinkage Evaluation during Electric Field-Assisted Flash Sintering: Application to Yttria-Stabilized Zirconia (2013) J. Eur. Ceram. Soc., 33 (3), pp. 515-520; Muccillo, R., Muccillo, E.N.S., Electric Field-Assisted Flash Sintering of Tin Dioxide (2014) J. Eur. Ceram. Soc., 34 (4), pp. 915-923; Jha, S.K., Raj, R., The Effect of Electric Field on Sintering and Electrical Conductivity of Titania (2014) J. Am. Ceram. Soc., 97 (2), pp. 527-534; Zapata-Solvas, E., Bonilla, S., Wilshaw, P.R., Todd, R.I., Preliminary Investigation of Flash Sintering of SiC (2013) J. Eur. Ceram. Soc., 33 (1314), pp. 2811-2816; Grasso, S., Sakka, Y., Rendtorff, N., Hu, C., Maizza, G., Borodianska, H., Vasylkiv, O., Modeling of the Temperature Distribution of flash sintered Zirconia (2011) Nippon Seramikkusu Kyokai Gakujutsu Ronbunshi/J. Ceram. Soc. Jpn., 119 (1386), pp. 144-146; Park, J., Chen, I.W., In Situ Thermometry Measuring Temperature Flashes Exceeding 1,700°C in 8 mol% Y2O3-Stablized Zirconia under Constant-Voltage Heating (2013) J. Am. Ceram. Soc., 96 (3), pp. 697-700; Zapata-Solvas, E., Jayaseelan, D.D., Lin, H.T., Brown, P., Lee, W.E., Mechanical Properties of ZrB2- and HfB2-Based Ultra-High Temperature Ceramics Fabricated by Spark Plasma Sintering (2013) J. Eur. Ceram. Soc., 33 (7), pp. 1373-1386; Grasso, S., Sakka, Y., Maizza, G., Electric Current Activated/Assisted Sintering (ECAS): A Review of Patents 1906-2008 (2009) Sci. Technol. Adv. Mater., 10 (5), p. 053001; Mallik, M., Kailath, A.J., Ray, K.K., Mitra, R., Electrical and Thermophysical Properties of ZrB2 and HfB 2 Based Composites (2012) J. Eur. Ceram. Soc., 32 (10), pp. 2545-2555; Steil, M.C., Marinha, D., Aman, Y., Gomes, J.R.C., Kleitz, M., From Conventional Ac Flash-Sintering of YSZ to Hyper-Flash and Double Flash (2013) J. Eur. Ceram. Soc., 33 (11), pp. 2093-2101; Ortiz, A.L., Zamora, V., Rodríguez-Rojas, F., A Study of the Oxidation of ZrB2 Powders during High-Energy Ball-Milling in Air (2012) Ceram. Int., 38 (4), pp. 2857-2863; Porwal, H., Tatarko, P., Grasso, S., Hu, C., Boccaccini, A.R., Dlouhý, I., Reece, M., Toughened and Machinable Glass Matrix Composites Reinforced with Graphene and Graphene-Oxide Nano Platelets (2013) Sci. Technol. Adv. Mater., 14, p. 055007 Pure ZrB2 powder was Flash sintered in an SPS furnace (FSPS). The samples were densified up to 95.0% in 35 s under an applied pressure of 16 MPa. Compared to Conventional SPS (CSPS), the newly developed FSPS technique resulted in an unprecedented energy and time savings of about 95% and 98% respectively. ZrB2 monoliths obtained by CSPS and FSPS were compared with respect to microstructures, densification behavior, and grain growth. The developed methodology might find application to a wide range of highly conductive ceramics as such refractory borides and carbides. © 2014 The American Ceramic Society.S.G. was supported by EPSRC (EP/K008749/1, XMat). T.S. was supported by EC FP7 2007-2013 (ADMACOM). O.C. was supported by CONACYT (Consejo Nacional de Ciencia y Tecnología, México)

    A recursive-faulting model of distributed damage in confined brittle materials

    Get PDF
    We develop a model of distributed damage in brittle materials deforming in triaxial compression based on the explicit construction of special microstructures obtained by recursive faulting. The model aims to predict the effective or macroscopic behavior of the material from its elastic and fracture properties; and to predict the microstructures underlying the microscopic behavior. The model accounts for the elasticity of the matrix, fault nucleation and the cohesive and frictional behavior of the faults. We analyze the resulting quasistatic boundary value problem and determine the relaxation of the potential energy, which describes the macroscopic material behavior averaged over all possible fine-scale structures. Finally, we present numerical calculations of the dynamic multi-axial compression experiments on sintered aluminum nitride of Chen and Ravichandran [1994. Dynamic compressive behavior of ceramics under lateral confinement. J. Phys. IV 4, 177–182; 1996a. Static and dynamic compressive behavior of aluminum nitride under moderate confinement. J. Am. Soc. Ceramics 79(3), 579–584; 1996b. An experimental technique for imposing dynamic multiaxial compression with mechanical confinement. Exp. Mech. 36(2), 155–158; 2000. Failure mode transition in ceramics under dynamic multiaxial compression. Int. J. Fracture 101, 141–159]. The model correctly predicts the general trends regarding the observed damage patterns; and the brittle-to-ductile transition resulting under increasing confinement

    Sarcopenic Obesity: Prevalence and Association With Metabolic Syndrome in the Korean Longitudinal Study on Health and Aging (KLoSHA)

    Get PDF
    OBJECTIVE - We investigated the prevalence of sarcopenic obesity (SO) and its relationship with metabolic syndrome in a community-based elderly cohort in Korea. RESEARCH DESIGN AND METHODS - In this study, 287 men and 278 women aged 65 or older were recruited. Sarcopenia was defined as the appendicular skeletal muscle mass (ASM) divided by height squared (Ht(2)) (kg/m(2)) or by weight (Wt) (%) of = 100 cm(2). RESULTS - The prevalence of SO was 16.7% in men and 5.7% in women with sarcopenia defined by ASM/Ht(2); however, it was 35.1% in men and 48.1% in women by ASM/Wt. Using ASM/Wt, the homeostasis model assessment of insulin resistance of subjects with SO was higher and they were at higher risk for metabolic syndrome (odds ratio [OR] 8.28 [95% Cl 4.45-15.40]) than the obese (5.51 [2.81-10.80]) or sarcopenic group (2.64 [1.08-6.44]). CONCLUSIONS - SO defined by ASM/Wt was more closely associated with metabolic syndrome than either sarcopenia or obesity alone.Lim S, 2010, OBESITY, V18, P826, DOI 10.1038/oby.2009.232Stephen WC, 2009, J NUTR HEALTH AGING, V13, P460, DOI 10.1007/s12603-009-0084-zZamboni M, 2008, NUTR METAB CARDIOVAS, V18, P388, DOI 10.1016/j.numecd.2007.10.002Schrager MA, 2007, J APPL PHYSIOL, V102, P919, DOI 10.1152/japplphysiol.00627.2006Newman AB, 2006, J GERONTOL A-BIOL, V61, P72Janssen I, 2006, J AM GERIATR SOC, V54, P56, DOI 10.1111/j.1532-5415.2005.00540.xNair KS, 2005, AM J CLIN NUTR, V81, P953Baumgartner RN, 2004, OBES RES, V12, P1995Zoico E, 2004, INT J OBESITY, V28, P234, DOI 10.1038/sj.ijo.0802552Matsuzawa Y, 2002, CIRC J, V66, P987Janssen I, 2002, J AM GERIATR SOC, V50, P889Cleeman JI, 2001, JAMA-J AM MED ASSOC, V285, P2486, DOI 10.1001/jama.285.19.2486Baumgartner RN, 2000, ANN NY ACAD SCI, V904, P437*WHO W PAC REG, 2000, AS PAC PERSP RED OBSBaumgartner RN, 1998, AM J EPIDEMIOL, V147, P755
    corecore