
Diradicals and their Driving Forces

Juan Casado

Department of Physical Chemistry, University of Málaga, Andalucia Tech, Campus de Teatinos, s/n, 29071, Málaga, Spain casado@uma.es

Several series of aromatic and quinoidal compounds, such as oligothiophenes (Scheme 1), oligophenylene-vinylenes, oligoperylenes (oligophenyls) and graphene nanoribbon derivatives, are studied in the common context of the capability to stabilize diradical structures. [1,2,3,4]. In this work, we try to clarify how several driving forces (i.e., thermodynamic and entropic) are responsible for the generation of diradical and diradicaloid structures.

Scheme 1. Left: Quinoidal oligothiophenes and their conversion into aromatic diradicals. Right: Aromatic oligorylenes and their conversion into non-aromatic diradicals.

A combination of different types of molecular spectroscopies (i.e., electronic absorption, electronic emission, excited state absorption, vibrational Raman, vibrational infrared, etc.) as well as hybridized with thermal and pressure-dependent techniques are shown to provide important information about the origin of the formation and stabilization of diradicals. From a conceptual point of view, we analyze these properties in the context of the oligomer approach which is the study of the evolution of these spectroscopic quantities as a function of the oligomer size.

References

- [1] P. Mayorga Burrezo, J.L. Zafra, J. Casado. Angew. Chem. Int. Ed., 2017, 56, 2250.
- [2] J. Casado, R. Ponce Ortiz, J. T. Lopez Navarrete, Chem. Soc. Rev. 2012, 41, 5672.
- [3] P. Mayorga Burrezo, X. Zhu, S. F. Zhu, Q. Yan, J. T. Lopez Navarrete, H. Tsuji, E. Nakamura, J. Casado, *J. Am. Chem. Soc.* **2015**, *137*, 3834-3843.
- [4] J. Casado, *Para-quinodimethanes: A unified review of the quinoidal-versus-aromatic competition and its implications. Top. Curr. Chem.* **2017**, 375, 73.