2,339 research outputs found

    Analytical solution to DGLAP integro-differential equation in a simple toy-model with a fixed gauge coupling

    Full text link
    We consider a simple model for QCD dynamics in which DGLAP integro-differential equation may be solved analytically. This is a gauge model which possesses dominant evolution of gauge boson (gluon) distribution and in which the gauge coupling does not run. This may be N=4{\cal N} =4 supersymmetric gauge theory with softly broken supersymmetry, other finite supersymmetric gauge theory with lower level of supersymmetry, or topological Chern-Simons field theories. We maintain only one term in the splitting function of unintegrated gluon distribution and solve DGLAP analytically for this simplified splitting function. The solution is found by use of the Cauchy integral formula. The solution restricts form of the unintegrated gluon distribution as function of transfer momentum and of Bjorken xx. Then we consider an almost realistic splitting function of unintegrated gluon distribution as an input to DGLAP equation and solve it by the same method which we have developed to solve DGLAP equation for the toy-model. We study a result obtained for the realistic gluon distribution and find a singular Bessel-like behaviour in the vicinity of the point x=0x=0 and a smooth behaviour in the vicinity of the point x=1.x=1.Comment: 25 page

    Longitudinal development of extensive air showers: hybrid code SENECA and full Monte Carlo

    Full text link
    New experiments, exploring the ultra-high energy tail of the cosmic ray spectrum with unprecedented detail, are exerting a severe pressure on extensive air hower modeling. Detailed fast codes are in need in order to extract and understand the richness of information now available. Some hybrid simulation codes have been proposed recently to this effect (e.g., the combination of the traditional Monte Carlo scheme and system of cascade equations or pre-simulated air showers). In this context, we explore the potential of SENECA, an efficient hybrid tridimensional simulation code, as a valid practical alternative to full Monte Carlo simulations of extensive air showers generated by ultra-high energy cosmic rays. We extensively compare hybrid method with the traditional, but time consuming, full Monte Carlo code CORSIKA which is the de facto standard in the field. The hybrid scheme of the SENECA code is based on the simulation of each particle with the traditional Monte Carlo method at two steps of the shower development: the first step predicts the large fluctuations in the very first particle interactions at high energies while the second step provides a well detailed lateral distribution simulation of the final stages of the air shower. Both Monte Carlo simulation steps are connected by a cascade equation system which reproduces correctly the hadronic and electromagnetic longitudinal profile. We study the influence of this approach on the main longitudinal characteristics of proton-induced air showers and compare the predictions of the well known CORSIKA code using the QGSJET hadronic interaction model.Comment: 11 pages (LaTeX), 15 postscript figures, 3 table

    Structure, pinning and supercurrent in YBa2Cu307 films and ReBa2Cu307 multilayers

    Get PDF
    High quality YBa2Cu3O7 (YBCO) films and multilayers of ReBa2Cu3O7 superconductors, where Re is rare earth elements (Y and Nd), have been prepared by pulsed laser deposition. Pinning characteristics of the structures obtained have been analysed and attributed to growth conditions and corresponding structural peculiarities. Relatively thick (~1 ”m) multilayers exhibit better performance than mono-layer YBCO films having arbitrary thickness. differences in the films and multilayers are discussed in terms of their structure homogeneity and defects induced by the growth of the layers

    Alkaline pretreatment of Mexican pine residues for bioethanol production

    Get PDF
    The locally sourced residue samples of Pinus arizonica, Pinus cooperi, and Pinus durangensis from the state of Durango in Mexico were analyzed for optimal yield of ethanol production. The samples were mixed at an equal proportion using a particle size of 0.59 mm. Each individual mixture was pretreated with either NaOH or Ca (OH)2 (at 0.5, 1.0 and 1.5% w/v) for periods of 30, 60, and 90 min at 60, 90, and 120°C. The pretreated blending was subjected to enzymatic hydrolysis for 130 h at 80 rpm and 50°C with an enzymatic load of 25 filter paper units (FPU) and 50 IU ÎČ-glucosidase per gramme of cellulose to obtain a maximum yield of reducing sugars (RS) with NaOH subject at 120°C for 90 min. The results show that the hydrolysis yield depends on temperature and alkali concentration particularly (NaOH), which increased from 2.0 to 3.5% w/v. The best yield of glucose (41.33% w/w) was obtained using a pretreatment of 2.5% NaOH for 90 min, 120°C, and a hydrolysis residence time of 130 h. The removal of lignin and hemicellulose acetylation was observed to have influence on the enzymatic digestibility of cellulose. This process could theoretically produce a maximum yield of 90.19% of ethanol / substrate (glucose) and about 80 L of bioethanol per dry ton of woody biomass from pine residues.Keywords: Lignocellulosic biomass, alkaline pretreatment, enzymatic hydrolysis, fermentable sugars, fermentationAfrican Journal of Biotechnology Vol. 12(31), pp. 4956-496

    "Antelope": a hybrid-logic model checker for branching-time Boolean GRN analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In Thomas' formalism for modeling gene regulatory networks (GRNs), <it>branching time</it>, where a state can have <it>more than one possible future</it>, plays a prominent role. By representing a certain degree of unpredictability, branching time can model several important phenomena, such as (a) asynchrony, (b) incompletely specified behavior, and (c) interaction with the environment. Introducing more than one possible future for a state, however, creates a difficulty for ordinary simulators, because <it>infinitely many </it>paths may appear, limiting ordinary simulators to statistical conclusions. <it>Model checkers </it>for branching time, by contrast, are able to prove properties in the presence of infinitely many paths.</p> <p>Results</p> <p>We have developed <it>Antelope </it>("Analysis of Networks through TEmporal-LOgic sPEcifications", <url>http://turing.iimas.unam.mx:8080/AntelopeWEB/</url>), a model checker for analyzing and constructing Boolean GRNs. Currently, software systems for Boolean GRNs use branching time almost exclusively for asynchrony. <it>Antelope</it>, by contrast, also uses branching time for incompletely specified behavior and environment interaction. We show the usefulness of modeling these two phenomena in the development of a Boolean GRN of the <it>Arabidopsis thaliana </it>root stem cell niche.</p> <p>There are two obstacles to a direct approach when applying model checking to Boolean GRN analysis. First, ordinary model checkers normally only verify whether or not a <it>given </it>set of model states has a given property. In comparison, a model checker for Boolean GRNs is preferable if it <it>reports </it>the set of states having a desired property. Second, for efficiency, the expressiveness of many model checkers is limited, resulting in the inability to express some interesting properties of Boolean GRNs.</p> <p><it>Antelope </it>tries to overcome these two drawbacks: Apart from reporting the set of all states having a given property, our model checker can express, at the expense of efficiency, some properties that ordinary model checkers (e.g., NuSMV) cannot. This additional expressiveness is achieved by employing a logic extending the standard Computation-Tree Logic (CTL) with hybrid-logic operators.</p> <p>Conclusions</p> <p>We illustrate the advantages of <it>Antelope </it>when (a) modeling incomplete networks and environment interaction, (b) exhibiting the set of all states having a given property, and (c) representing Boolean GRN properties with hybrid CTL.</p

    Anomalous widespread arid events in Asia over the past 550,000 years

    Get PDF
    Records of element ratios obtained from the Maldives Inner Sea sediments provide a detailed view on how the Indian Monsoon System has varied at high-resolution time scales. Here, we present records from International Ocean Discovery Program (IODP) Site U1471 based on a refined chronology through the past 550,000 years. The record's high resolution and a proper approach to set the chronology allowed us to reconstruct changes in the Indian Monsoon System on a scale of anomalies and to verify their relationships with established records from the East Asian Monsoon System. On the basis of Fe/sum and Fe/Si records, it can be demonstrated that the Asia continental aridity tracks sea-level changes, while the intensity of winter monsoon winds responds to changes in Northern Hemisphere summer insolation. Furthermore, the anomalies of continental aridity and intensity of winter monsoon winds at millennial-scale events exhibit power in the precession band, nearly in antiphase with Northern Hemisphere summer insolation. These observations indicate that the insolation drove the anomalies in the Indian Summer Monsoon. The good correspondence between our record and the East Asian monsoon anomaly records suggests the occurrence of anomalous widespread arid events in Asia.info:eu-repo/semantics/publishedVersio

    Optimization of total anthocyanin content and antioxidant activity of a Hibiscus sabdariffa infusion using response surface methodology

    Get PDF
    Hibiscus sabdariffa L. calyces are underutilized sources of health-promoting anthocyanins. Infusions are the most common way to consume them, but because anthocyanins are thermosensitive, prolonged extraction times at high temperatures may reduce their bioactivities, suggesting the need to identify optimal preparation conditions. Response surface methodology was used to establish calyces-to-water ratio (X1: 1–20 g/100 mL), temperature (X2: 70–100 °C), and time (X3: 1–30 min) that would produce an infusion with optimized total anthocyanin content (TAC) and antioxidant activity. Under optimum conditions (X1=10 g/100 mL, X2=88.7 °C, and X3=15.5 min) TAC was 132.7±7.8 mg cyanidin-3-glucoside equivalents (C3G)/100 mL, and antioxidant activity was 800.6±69.9 (DPPH assay), and 1792.0±153.5 (ABTS assay) ÎŒmol Trolox equivalents (TE)/100 mL. Predicted and experimental results were statistically similar. Identifying ideal processing conditions can promote consumption of an H. sabdariffa-based functional beverage with high anthocyanin content and antioxidant activity that exert health-promoting bioactivities on the consumer

    A Mathematical Model to Optimize the Neoadjuvant Chemotherapy Treatment Sequence for Triple-Negative Locally Advanced Breast Cancer

    Get PDF
    Background: Triple-negative locally advanced breast cancer is an aggressive tumor type. Currently, the standard sequence treatment is applied, administering anthracyclines first and then a taxane plus platinum. Clinical studies for all possible treatment combinations are not practical or affordable, but mathematical modeling of the active mitotic cell population is possible. Our study aims to show the regions with the tumor’s most substantial cellular population variation by utilizing all possible values of the parameters () that define the annihilatory drug capacity according to the proposed treatment. Method: A piecewise linear mathematical model was used to analyze the cell population growth by applying four treatments: standard sequences of 21 days (SS21) and 14 days (SS14), administering anthracyclines first, followed by a taxane plus platinum, and inverted sequences of 21 days (IS21) and 14 days (IS14), administering a taxane plus platinum first then anthracyclines. Results: The simulation showed a higher effect of IS14 over SS14 when the rate of drug resistance was larger in the cell population during DNA synthesis (G1 and S) compared to cells in mitosis (G2 and M). However, if the proportion of resistant cells in both populations was equivalent, then treatments did not differ. Conclusions: When resistance is considerable, IS14 is more efficient than SS14, reducing the tumor population to a minimum

    Statins Inhibit HIV-1 Infection by Down-regulating Rho Activity

    Get PDF
    Human immunodeficiency virus (HIV)-1 infectivity requires actin-dependent clustering of host lipid raft–associated receptors, a process that might be linked to Rho guanosine triphosphatase (GTPase) activation. Rho GTPase activity can be negatively regulated by statins, a family of drugs used to treat hypercholesterolemia in man. Statins mediate inhibition of Rho GTPases by impeding prenylation of small G proteins through blockade of 3-hydroxy-3-methylglutaryl coenzyme A reductase. We show that statins decreased viral load and increased CD4+ cell counts in acute infection models and in chronically HIV-1–infected patients. Viral entry and exit was reduced in statin-treated cells, and inhibition was blocked by the addition of l-mevalonate or of geranylgeranylpyrophosphate, but not by cholesterol. Cell treatment with a geranylgeranyl transferase inhibitor, but not a farnesyl transferase inhibitor, specifically inhibited entry of HIV-1–pseudotyped viruses. Statins blocked Rho-A activation induced by HIV-1 binding to target cells, and expression of the dominant negative mutant RhoN19 inhibited HIV-1 envelope fusion with target cell membranes, reducing cell infection rates. We suggest that statins have direct anti–HIV-1 effects by targeting Rho
    • 

    corecore