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Abstract: Background: Triple-negative locally advanced breast cancer is an aggressive tumor type.
Currently, the standard sequence treatment is applied, administering anthracyclines first and then a
taxane plus platinum. Clinical studies for all possible treatment combinations are not practical or
affordable, but mathematical modeling of the active mitotic cell population is possible. Our study
aims to show the regions with the tumor’s most substantial cellular population variation by utilizing
all possible values of the parameters

(
αi

s

)
that define the annihilatory drug capacity according to the

proposed treatment. Method: A piecewise linear mathematical model was used to analyze the cell
population growth by applying four treatments: standard sequences of 21 days (SS21) and 14 days
(SS14), administering anthracyclines first, followed by a taxane plus platinum, and inverted sequences
of 21 days (IS21) and 14 days (IS14), administering a taxane plus platinum first then anthracyclines.
Results: The simulation showed a higher effect of IS14 over SS14 when the rate of drug resistance
was larger in the cell population during DNA synthesis (G1 and S) compared to cells in mitosis
(G2 and M). However, if the proportion of resistant cells in both populations was equivalent, then
treatments did not differ. Conclusions: When resistance is considerable, IS14 is more efficient than
SS14, reducing the tumor population to a minimum.

Keywords: mathematical model and simulations; neoadjuvant chemotherapy; triple-negative; locally
advanced breast cancer

MSC: 37N25; 92-10; 34C60

1. Introduction

During the last 50 years, different mathematical models have been developed to illus-
trate how a cancerous tumor’s growth begins, its dynamics, and treatments. Some models
include the organism’s resistance to the different drugs that are usually administered as
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the first step to reduce the size of the tumor (neoadjuvant therapy) before the primary
treatment, usually consisting of surgery for all types of cancer [1–4] but especially for breast
cancer [5–11].

Because breast cancer is one of the most studied pathologies in the world, many efforts
have been devoted to understanding the relationships between immune cells, tumor cells,
and certain adjuvant treatments [6,12–14]. To cite an example, Jarett et al. [12] discussed the
effects of trastuzumab on the overexpression of the HER2 gene, which is characteristic of
breast cancer, using a mathematical model and integrating the experimental results [12–14].
Other examples include those where neoadjuvant treatment affects the immune system
and its interaction with cancer cells [12,14,15].

When cancer is in its early stages, surgery is performed first and then radiotherapy.
Therefore, implementing the reverse sequence (radiotherapy first and later surgery) has
been widely ruled out for many cancers. For instance, Lopez-Alonso and Poleszczuk J.
et al. [16,17] reversed the traditional treatment (radiotherapy first to induce antitumor
immunity and then surgery) for different cancers and evaluated the overall survival (OS)
and the disease-free survival (DFS), obtaining better results. We were interested in inquiring
if a reverse or different sequence would produce better results compared with a traditional
one as a research question.

Triple-negative breast cancer (no expression of estrogen receptor, progesterone recep-
tor, and growth factor 2 receptor (Her2)) represents 20% of breast cancer cases in young
women, with early recurrence and dissemination to the viscera and central nervous system.
In patients with triple-negative, locally advanced breast cancer (TN-LABC; T3-T4, N1-N3),
unlike other molecular subtypes, the complete pathological response (pCR) is a surrogate
for more remarkable overall survival and DFS compared with that of patients with residual
disease [18,19].

The order of chemotherapy administration before or after surgery may change the
outcome. For example, the National Surgical Adjuvant Breast and Bowel Project (NS-
ABP) Study B-18 demonstrated a 13% pCR rate when doxorubicin (DX) (60 mg/m2) plus
cyclophosphamide (CPh) (600 mg/m2) was administered every 21 days for four cycles
during the pre-surgery period. This chemotherapy slightly improved the survival and
disease-free time compared with the same chemotherapy administered in the post-surgery
period. However, the NSABP Study B-27 later showed that adding docetaxel every 21 days
for four cycles after the standard neoadjuvant sequence with DX and CPh increased the
pCR to 26% (p < 0.001) [20].

Adding carboplatin (CP) to the sequential neoadjuvant chemotherapy scheme in-
creases the probability of the pCR in patients with TN-LABC by 13% [21]. However, other
long-term results of randomized phase II studies, CALGB 40603 (Alliance) [22] and Gepar-
Sixto [23], showed that CP increases the pCR but does not improve the event-free interval.
The low number of patients may explain these controversial findings.

The morphological phenotypes in TN-LABC might determine a low response to sys-
temic therapy in TN-LABC; other poor-prognosis factors are inflammatory carcinoma in
individuals older than 40 years and a high proliferation index [24]. Different susceptibili-
ties to treatment depend on their genotype (tumor markers), e.g., basal-like (BL) tumors
carrying pathogenic mutations in the BRCA1 gene (57%) or BRCA2 gene (23%) respond
to treatment with platinum agents [25]. In a study with 290 patients with TN-LABC, 47%
of BL-1 tumors responded to chemotherapy compared with 28% of BL-2 tumors [26]. Ad-
ditionally, patients with tumors expressing p53 and Ki-67 protein markers treated with
taxanes might respond better to neoadjuvant chemotherapy [27,28].

When the tumor’s interstitial fluid pressure (IFP) increases, the bioavailability of
antineoplastic drugs decreases. Therefore, the drugs do not reach the tumor cells at a
sufficient concentration. When paclitaxel (PX) is administered after anthracyclines, the
IFP increases. However, PX is administered before anthracyclines. In that case, the IFP
decreases [29,30], and the order of the treatment sequence in TN-LABC patients may
increase reduction rates and favor increases in complete pathological responses.
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Mathematical models help to explain the response probability to treatments and
their combinations. The logarithmic death or log-kill is a cancer model with a constant
exponential growth fraction per time step. However, the presence of effective cancer drugs
also decreases the tumor size by a constant fraction. For example, if a drug eliminates 90%
of a tumor cell population and a second drug destroys 90%, in the end, they may eliminate
99% of the tumor cells [31]. A modification to the log-kill is the Norton–Simon hypothesis,
which relates the treatment effects to the growth rate and the tumor size [32]. For example,
a small tumor with a high growth rate can be eliminated using a particular medication at a
specific dose; however, the same drug has a weaker effect on treating tumors of a larger
size with a low growth rate.

A piecewise linear mathematical model (PLMM) based on Roe-Dale R. et al. [13] was
proposed to analyze four treatment schedules (standard sequence, 21 and 14 days, and
inverted sequence, 21 and 14 days) [22]. The novelty of our PLMM is a wide spectrum
of growth rates of the active mitotic cell population (AMCP) for treatment sequences and
chemotherapy cell resistance.

2. Materials and Methods

Four chemotherapy sequences were described using standard doses of DX, CPh, CP,
and PX (defined in Section 2.1); then, the evolution of the AMCP was described using linear
ordinary differential equations (ODEs). Finally, we determined which treatment sequence
had a higher probability of success for neoadjuvant chemotherapy patients with TN-LABC
to reach a maximum tumor reduction that could direct a better pCR and more conservative
breast surgeries.

2.1. Standard Doses

The standard dose scheme we used for our model is detailed below:

(a) The DX dose was 60 mg/m2 body surface area every 21 or 14 days for 4 cycles.
(b) The CPh dose was 600 mg/m2 body surface area every 21 or 14 days for 4 cycles. The

treatment administered every 14 days is proposed by the NCCN guidelines in the
United States of America; however, some countries continue administering treatment
every 21 days as described in previous studies [20]. The treatment administration
every 14 days is associated with unacceptable hematological toxicity. That must be
balanced by administering granulocyte colony-stimulating factor (GCSF) [33].

(c) The PX dose was 80 mg/m2 of body surface area intravenously every week for
12 weeks.

(d) The CP dose was obtained through the Calvert formula, Dose = (IFG + 25)× AUC,
where IFG is the glomerular function index or creatinine clearance; this is the volume
of fluid filtered per time unit from renal glomerular capillaries into Bowman’s capsule,
usually measured in milliliters per minute. The IFG varies for each patient. For the
CP every three weeks, which was our schedule, the AUC = 6 (6 units equals 6 mg.
min/mL), where the AUC is the area under the curve of free plasma carboplatin
concentration versus time. This is a method used to reduce toxicity based on renal
clearance values calculated using the age and health condition of the patient.

2.2. Standard Sequence of 21-Day Cycle (SS21)

DX plus CPh was administered every 21 days for four cycles during the first phase.
In the second phase, PX was issued weekly on days 1, 8, and 15. Moreover, CP was
administered on day 1 of each of the four cycles, as shown in Figure 1a.



Mathematics 2023, 11, 2410 4 of 22Mathematics 2023, 11, x FOR PEER REVIEW 4 of 23 
 

 

 
Figure 1. The standard sequence of neoadjuvant chemotherapy treatment for triple-negative locally 
advanced breast cancer. It starts with phase 1 and finishes with phase 2: (a) standard sequence of 21 
day cycles (SS21) and (b) standard sequence of 14 day cycles (SS14). 

2.3. Standard Sequence of 14-Day Cycle (SS14) 
The chemotherapy sequence was the same as the standard dose but with a DX and 

CPh administration every 14 days for four cycles, as shown in Figure 1b. 
Neoadjuvant therapy with SS21 (Figure 1a) is considered a safe and efficient option 

for treating TN-LABC. However, because this therapy can induce drug resistance [34], 
treatment with SS14 (Figure 1b) prevents the repopulation of tumor cells but at the cost of 
higher toxicity. Therefore, GCSF was administered in patients with breast cancer receiving 
neoadjuvant chemotherapy per cycle of chemotherapy. 

2.4. Inverted Sequence of 21-Day Cycle (IS21) 
In the inverted sequence, phase 2 was used as the first treatment; that is, PX was ad-

ministered on days 1, 8, and 15, and CP on day 1 of each cycle for four cycles. Next, DX 
and CPh were sequentially administered using standard doses every 21 days, as shown 
in Figure 2a. 

 

Figure 1. The standard sequence of neoadjuvant chemotherapy treatment for triple-negative locally
advanced breast cancer. It starts with phase 1 and finishes with phase 2: (a) standard sequence of
21 day cycles (SS21) and (b) standard sequence of 14 day cycles (SS14).

2.3. Standard Sequence of 14-Day Cycle (SS14)

The chemotherapy sequence was the same as the standard dose but with a DX and
CPh administration every 14 days for four cycles, as shown in Figure 1b.

Neoadjuvant therapy with SS21 (Figure 1a) is considered a safe and efficient option
for treating TN-LABC. However, because this therapy can induce drug resistance [34],
treatment with SS14 (Figure 1b) prevents the repopulation of tumor cells but at the cost of
higher toxicity. Therefore, GCSF was administered in patients with breast cancer receiving
neoadjuvant chemotherapy per cycle of chemotherapy.

2.4. Inverted Sequence of 21-Day Cycle (IS21)

In the inverted sequence, phase 2 was used as the first treatment; that is, PX was
administered on days 1, 8, and 15, and CP on day 1 of each cycle for four cycles. Next, DX
and CPh were sequentially administered using standard doses every 21 days, as shown in
Figure 2a.
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2.5. Inverted Sequence of 14-Day Cycle (IS14)

This chemotherapy was identical in dosage to that described above, but DX and CPh
were administered every 14 days for four cycles, as shown in Figure 2b.

Treatment was inverted beginning with phase 2, starting with PX treatment, then CP
was added on day 1 of each cycle, followed by phase 1, DX plus CPh. This was used to
prevent cross-resistance (when acquired resistance induced by a drug treatment results
in resistance to other drugs). This significantly increases the possibility of pCR and more
conservative breast surgery in TN-LABC patients [21].

2.6. Glossary of Parameters Used in Models

Ni: N1 and N2 are the numbers of cells in compartments 1 and 2, respectively.
G0, G1, S, G2, and M are cellular phases: G1 and S are in compartment N1, and G2 and

M are in compartment N2.

λi: is the exchange between compartments N1 and N2.
αi

s: is the tumor cell survival proportion after applying drugs s (DX plus CPh).
γ: is the effect of PX on mitosis.
κi: represents the portion of susceptible cells resistant because of drug s.
βi

s: parameter that indicates the decrease in the resistant population.

2.7. Quantitative Model

For the quantitative comparison of the chemotherapy sequencing strategies, we used
a dynamic system describing the evolution of the different cell populations that contain the
tumor. Based on the PLMM [13], we described the development of cell populations using a
linear ODE, including the cancer treatment cycle. Although our model included the primary
tumor and possible positive axillary nodes in TN-LABC, both were considered a single
tumor volume, and cell proliferation was not limited to a specific geometry. Therefore, the
model will not work with metastatic disease because cells spreading to other tissues have
higher proliferation rates, and the response to the SS21 treatment was low.

Five phases of the cell cycle were described: quiescent cells (G0), cells that start
synthesizing RNA and proteins (G1), DNA synthesis replication (S), proteins and RNA
continue to be synthesized (G2), and mitosis (M). The G0 state is not properly part of the
division process; thus, this phase was not considered in the PLMM. Instead, phases G1 and
S were grouped into the N1 compartment and phases G2 and M into N2 (in this study, we
defined Ni, i = 1, 2 as the AMCP). The cell cycle followed an exponential growth pattern
in each compartment, represented by a first-order ODE system:

dN1

dt
= −λ1N1 + 2λ2N2;

dN2

dt
= −λ1N1 − λ2N2 (1)

where λ1 and λ2 are the rate of exchange between compartments N1 and N2, and 2λ2 rep-
resents the M phase of the cell cycle. Under the Norton–Simon hypothesis [32], our model
corresponded to the exponential growth phase (that is, we were far from the saturation
point where medications have low effectiveness because of the tumor size). Therefore, the
matrix representation of Equation (1) is defined as:

N =

(
N1
N2

)
∈ R2 (2)

dN
dt

=
d
dt

(
N1
N2

)
=

(
−λ1 2λ2
λ1 −λ2

)
N = GN; G =

(
−λ1 2λ2
λ1 −λ2

)
(3)

The solution for the whole linear system of the autonomous ODE is given by exp(Gτ).
The product of this matrix by the initial condition N(0) provides the value of the population
in period τ:

N(τ) = exp(Gτ)N(0) (4)
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where exp(Gτ) = ∑∞
i=0

1
i! (Gτ)i. The growth in the N1 and N2 populations depends on

parameters λ1 and λ2. Determining which value of these parameters corresponds to each
subject is challenging. These can change because of numerous circumstances owing to
individual differences in the cell proliferation speed (usually measured by the proliferation
index Ki-67) [27,28]. Nevertheless, the growth of these cell populations can be estimated by
sweeping a values interval of these parameters using clinical knowledge from published
studies and comparing the development of the tumor cell population.

2.8. Doxorubicin and Cyclophosphamide Effect

A drug’s effect on treatment is described as an instant change in the AMCP when
the dose is administered. The application of matrix Ds to population N represents this
behavior. The subscript s represents DX and CPh drugs: the type of chemotherapy that
inhibits the replication of tumor cells. Following the PLMM, the matrix instantly acts on the
N population; the matrix is diagonal because drugs independently modify each population.

Ds =

(
α1

s 0
0 α2

s

)
(5)

Here, αi
s, i = 1, 2, is the tumor cell survival proportion after applying drug s to AMCPs

N1 and N2. The cell population affected by drug s in each treatment within period τ is
expressed as follows:

N(τ) = Dsexp(Gτ)N(0) (6)

The effect of matrix Ds depends on the time it is applied. Figure 3 shows that when
Ds is used at different times (τ1, τ2, and τ3), the population change ∆Ni, i = 1, 2 after
chemotherapy can be negative, zero, or positive.
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The time interval was limited in size because of the toxicity effect of Ds. Therefore, τ
was considered, given this restriction. According to our chemotherapy sequencing model
with s drugs, the minimum time interval to prevent toxicity was 14 days, reinforced with
the GCSF.
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Note that when m doses of drug s are administered, the resulting number of AMCPs
is as follows:

N(mτ) = (Dsexp (Gτ))(Dsexp (Gτ)) . . . (Dsexp (Gτ))N(0)

N(mτ) = (Dsexp(Gτ))mN(0) (7)

where N(mτ) denotes the administration of different chemotherapy sequences by the
corresponding matrix multiplication for τ1 = 21−day and τ2 = 14− day cycles (as defined
in the chemotherapy sequences in Figures 1 and 2).

2.9. Qualitative Behavior of Paclitaxel

One of the mechanisms of the action of PX is the inhibition of mitotic spindle formation
during cell division, blocking the mitosis process. The addition of PX as matrix P, a
modification of matrix G, was represented. PX influences the cell cycle growth matrix;
therefore, this drug has continuous effects over time during its application.

Therefore, the AMCP N now takes the following form:

dN
dt

= PN (8)

We represented matrix P as follows:

P =

(
−λ1 γλ2
λ1 −λ2

)
(9)

where coefficient γ is the effect of PX on mitosis; γ ∈ [0, 2] is considered. For γ = 2, we
have cell mitosis; for γ = 1, a bifurcation point exists; and for γ < 1, the eigenvalue is
negative (see Appendix A) as the tumor size decreases to zero. Therefore, in this case, the
effectiveness of PX was sufficient for the tumor to disappear. Additionally, the addition
of CP on day 1 of each cycle is shown in Figures 1 and 2, and the action mechanism
through which PX destroyed the tumor cells was enhanced, for which the γ value was
even more reduced. Therefore, we implemented the CP effect in the mathematical model
to increase parameter γ, which was a robust approximation of the effect of CP and PX in
each simulation cycle.

We contrasted cell growth for SS21, SS14, IS21, and IS14 of the s drugs, including PX.
The results of the combination of chemotherapy with PX are represented in Figure 4. The
objective was to minimize the active mitotic cell fraction Ni(τ), i = 1, 2.

Figure 4a shows that in period τ, exponential growth was such that after applying Ds, it
could not return to the initial population state, in which ∆Ni was positive, referring to tumor
growth at a slower rate. However, PX could reduce the maximum growth of the exp(Gτ),
resulting in a new matrix exp(Pτ), where the effect of chemotherapy reached the objective
of reducing the initial population, for which ∆Ni was negative, as shown in Figure 4b. The
above demonstrated that the tumor would have been almost or entirely reduced.

When ∆Ni is negative, repeating this chemotherapy process allowed the tumor to be
effectively reduced, as shown in Figure 4c, where the reduction is shown after mDs.
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2.10. Resistance Model

When the drug resistance effect was incorporated into the model, the cell population
was divided into chemotherapy-resistant and susceptible. Furthermore, a pharmacological
effect was defined as when a cell group transitions from susceptible to resistant, and such
conversion occurred instantly in our simulations. Following the same PLMM scheme, we
have N(t), the AMCP with a vector of four components, that is, in R4.

dN
dt

=

(
G 0
0 G

)
N(t) = G̃N(t) (10)

Here, G is as defined in Equation (3), 0 is the null matrix, and N(t) is defined as

N(t) =


Nse

1
Nse

2
Nre

1
Nre

2

 (11)

where Nse
1 and Nse

2 are the susceptible AMCPs and Nre
1 and Nre

2 are the resistant AMCPs.

The fundamental matrix of this system is exp
(

G̃τ
)

, and the AMCP with the effect of drugs

D̃s after period τ is as follows:

N(τ) = D̃sexp
(

G̃τ
)

N(0) (12)



Mathematics 2023, 11, 2410 9 of 22

In this case, matrix D̃s represents the population’s instantaneous change through the
susceptible cell’s annihilation by drugs and the cell transformation from susceptible to
resistant. Therefore, matrix D̃s takes the following form:

D̃s =


(1− k1)α

1
s 0 0 0

0 (1− k2)α
2
s 0 0

k1α1
s 0 β1

s 0
0 k2α2

s 0 β2
s

 (13)

where the αi
s parameters are the same as those described in Section 2.8; parameters βi

s,
where i =1, 2, indicate a decrease in the resistant population (they represent the survival
rate after applying drugs s to the N1 and N2 AMCPs); and the parameter ki, where i = 1, 2,
represents the rate of cell exchange speed for the susceptible to the resistant population. For
example, the resistance model we described in Equation (12) depends on the ki parameters,
where k1 is the parameter of the N1 population, and k2 is the parameter of the N2 population
because of s drugs. As two inputs, D̃s(3, 3) = D̃s(4, 4), represent the effect of drugs on the
resistant cells, and because such cells do not change owing to this effect, their numerical
value is equal to 1. Therefore, the matrix of Equation (13) is as follows:

D̃S =


(1− k1)α

1
S 0 0 0

0 (1− k2)α
2
S 0 0

k1α1
S 0 1 0

0 k2α2
S 0 1

 (14)

In the results, Section 3.4 shows the simulations of numerical experiments with resis-
tant and susceptible AMCPs under different parameters.

3. Results
3.1. Growth Rate Simulations of Tumor Cell Population

Figure 5 illustrates the rationale behind the lambda values that we used in our sim-
ulations and shows three graphs of the growth rate of the total tumor cell population for
parameters λi ∈ [0, 0.12], i = 1, 2. The unit of λi is 1/day. We considered the interval
reasonable compared with the possible growth. Using the linear ODE model, we presented
the growth rate of the total AMCP (N f /Ni, where N f = N1(τ) + N2(τ) was the final cell
population, and Ni = N1(0) + N2(0) was the initial AMCP) for end time of τ = 25 days .
The purpose of timing was to observe any significant difference in AMCP growth within a
time interval.

As shown in the graphs, the population growth rate (N1(τ) + N2(τ))/(N1(0) + N2(0))
was relatively homogeneous regarding parameters λi. λ2 was more susceptible to popu-
lation growth than λ1 because λ2 was the parameter that described final active mitosis.
The yellow curve represents the λi for which N f /Ni = 2 for τ = 25 days. Total tumor
doubling time ranged from 60 to 175 days [35–37]; however, our model represented the
growth rate of the tumor’s AMCP (10% to 20%) [38–41]. Appendix B shows that if the
tumor doubling time was 100 days, then the AMCP rate of the tumor should double every
28.9 days. Because only the AMCP was considered in this study, we used a doubling time of
25 days. In these simulations, we used the same initial conditions: N1 = 500 and N2 = 300.
Appendix C shows that the results obtained were independent of the initial conditions.

Figure 5 demonstrates the results from homogeneity; parameters λ1 = 0.1 and
λ2 = 0.05 were considered throughout the study to ensure that the active cell fraction
duplicated after 25 days. Appendix C shows that the qualitative behavior of the AMCP
growth evolution was similar for several parameters because of the linearity of Equation (4).
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3.2. Simulations of Effects of Doxorubicin and Cyclophosphamide

To perform a comparative analysis of cell growth, we defined the values of αi
s for the s

drugs. However, because we did not have a specific value for these parameters, we swept
the possible oncological values of these parameters, so αi

s ∈ [0, 1], i = 1, 2.
αi

s = 1 indicates that the drug does not affect the cells; αi
s = 0 indicates that the drug

annihilates the whole AMCP, as shown in Figure 6. The λi of the G matrix parameters and
the initial conditions were the same as those chosen in the previous section.

When performing the numeric simulations with the cell cycles, we first let the tu-
mor cell growth evolve with no drug for five days (corresponding to the zero time).
We exposed the AMCP to m = 4 cycles with s drugs (as shown in Figures 1 and 2).
The result of the growth rate with the effect of the s drugs, standard doses (defined in
Section 2.1), and τ2 = 14 days is shown in Figure 6a, where the color bar represents the
rate NSS14

(
t f

)
/NSS14(0) =

(
N(1)SS14

(
t f

)
+ N(2)SS14

(
t f

))
/
(

N(1)SS14(0) + N(2)SS14(0)
)

for t f = mτ2 + 5.
When the sensitivity to medications was high, administering the same dose in a shorter

time τ2 had a benefit up to an intermediate point of αi
s ≈ 0.5 values because tumor growth

was prevented. Drugs were highly effective in killing tumor cells at low values of αi
s. AMCP

growth was small compared with that shown by the color bar (dark colors) in Figure 6a.
Mathematically, reducing each drug period was convenient, not reaching an excessive
increase in the dose to avoid intolerable toxicity.

The darkest part (black color) in Figure 6b is diagonal, indicating a more significant
reduction in AMCP growth. As expected, SS14 treatment reduced the AMCP more than
SS21 treatment, but the values of the medication parameters modulated this reduction αi

S,
whereas those of SS14 produced a better response.
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The two simulations showed the importance of drug administration in an optimal
period to prevent tumor growth. In addition, the best SS14 treatment used GCSF to prevent
high toxicity.
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Figure 6. Growth rate simulations of the tumor AMCP with the s (DX + CPh) drug

effect: (a) NSS14

(
t f

)
/NSS14(0) =

(
N(1)SS14

(
t f

)
+ N(2)SS14

(
t f

))
/
(

N(1)SS14(0) + N(2)SS14(0)
)

and (b) NSS14

(
t f

)
/NSS21

(
t f

)
=
(

N(1)SS14

(
t f

)
+ N(2)SS14

(
t f

))
/
(

N(1)SS21

(
t f

)
+ N(2)SS21

(
t f

))
,

where τ1 = 21 days and τ2 = 14 days, and t f = mτi + 5. The color bar represents the tumor
AMCP rate.

3.3. Simulations of the Paclitaxel Effect

Figure 7 illustrates the active mitotic cell population (the y-axis represents logarithmic
values) for specific αi

s values as a function of time. The active mitotic cell population
(N1 + N2) evolved as a function of λi to double this population in 25 days. The growth rate
without drugs (red line) was exponential from an initial population of 800 million cells to
reach an order of 129,825 million cells after 184 days, which was a doubling approximately
every 25 days. Concerning the final cell population after the treatment with SS14, the
population was 158 million cells (yellow line followed by dark blue line); after SI14, it
was 125 million cells (green line followed by light blue line) after 184 days. SI14 killed the
AMCP 21% more effectively than SS14.

Figure 8 shows a comparison of the final AMCP after treatments of SS14 and IS14,
doing a complete sweep of the αi

s interval, using λi values to double the AMCP in 25 days.
The simulation results shown in Figure 8a show the difference in the population

growth rate between the SS14 and IS14 treatments. In both cases, τ2 = 14− day cycles were
considered for s drugs. We chose γ = 1.5 because it is a common value and is far from the
bifurcation point for the cases in which the PX cycle is applied. The final total population
result with the SS14 treatment was compared with that of IS14

[
NSS14

(
t f

)
/NIS14

(
t f

)]
.

The final versus initial AMCP growth rate of SS14
[

NSS14

(
t f

)
/NSS14(0)

]
is shown in

Figure 8b and of IS14
[

NIS14

(
t f

)
/NIS14(0)

]
in Figure 7c to compare the growth order. As
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in previous simulations, the AMCP evolved without drugs for 5 days and m = 4 cycles so
that t f = mτ2 + 5. Including PX therapy, in four cycles of 15 days (as shown in the second
phase in Figure 1 and the first phase in Figure 2), t f remained equal to t f = 4τ2 + 4× 15+ 5.
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Figure 7. Temporal evolution of the AMCP rate of the tumor during the complete treatment of SS14
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(DX + CPh) followed by dark blue (CP + PX, PX), and the IS14 by a green line (PX + CP, PX) followed
by the light blue line (DX + CPh).
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(a) comparing
[

NSS14

(
t f

)
/NIS14

(
t f

)]
; (b)

[
NSS14

(
t f

)
/NSS14(0)

]
, and (c)

[
NIS14

(
t f

)
/NIS14(0)

]
,

where t f = mτ2 + 5 for m = 4 cycles and τ2 = 14 days. The color bar represents the tumor AMCP
rate.
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We can see in Figure 8a that by doing the complete sweep over the parameters α1
S

and α2
S, the resulting population in SS14 was more significant than that obtained in IS14.

Furthermore, the area covered by values αi
s, corresponded to the greater efficiency of the

IS14, whereas the SS14 occupied approximately 90%, which meant that IS14 was more
efficient in containing tumor growth. We had a similar behavior if the value of τ1 = 21 days.

Figure 8b,c shows the tumor growth for SS14 and IS14, respectively. The color level
represents how much the tumor grew compared with the initial population. The IS14
treatment, including the PX and CP, was found to be one of the best chemotherapies for
patients with TN-LABC. Its population growth was minimal compared with that under
the SS14 treatment [22,23,29]. Notably, the toxicity of the therapy had to remain within a
specific limit.

3.4. Simulations of Resistance Model

The first simulation group came from an initial AMCP, with λ1 = 0.1 and λ2 = 0.05,
used in Figure 5. As in the previous simulations, the matrix (14) αi

S ∈ [0, 1], i = 1, 2
parameters represented the drug effects, and the unit intervals were partitioned into
100 equidistant portions. Figure 8 shows the results of five simulations of the tumor popula-
tion rate with the effect of resistance to s drugs. The color bar corresponds to the final popu-
lation rate versus the initial population

(
Nse

SS14

(
t f

)
+ Nre

SS14

(
t f

))
/
(

Nse
SS14(0) + Nre

SS14(0)
)
;

the simulation time was t f = mτ + 5 = 4× 14 + 5.
When the plots of Figure 9 were analyzed, we observed homogeneity in the growing

proportion of the resistant and susceptible populations as the ki value increased. The yellow
line in the five charts shows that the final population was equal to the initial population, for
which it took a value of one; this line separates the areas of the α1

S and α2
S parameters, where

the population increased or decreased. The yellow line in Figure 9d,e represents no growth
or a decrease in the active AMCP, closer to the axis origin, indicating that a more aggressive
therapy should be chosen to prevent the tumor from becoming resistant to the drug.

In the following numerical experiment, we performed some simulations to compare
the efficiency of the standard sequence versus the inverse sequence, considering the effect
of s drug resistance. Figure 9 shows the results of the simulations of the growth rate of the
final AMCP, SS14 versus IS14

[(
Nse

SS14

(
t f

)
+ Nre

SS14

(
t f

))
/
(

Nse
IS14

(
t f

)
+ Nre

IS14

(
t f

))]
, for

the same simulation time t f before and ki values as in Figure 9b–d. The extreme values of ki
in Figure 9a,e were not considered because the smallest value produced almost no change
from susceptible to resistant cells. The highest value corresponded to a quick change from
susceptible to resistant cells. The values of the parameters (λ1 = 0.1 and λ2 = 0.05) were
the same as the previous simulations, and γ = 1.5 was the same as that used in Figure 7 in
Section 3.3, which was dedicated to PX.

When Figure 10a–c was analyzed for k1 = k2, we observed that the growth rate of
the tumor AMCP for SS14 versus IS14 was similar, with a slight variation, as shown in
Figure 10c by the color bar. However, when comparing the k1 6= k2 values, a significant
difference was observed in the efficiency of the two treatments. The conversion rate from
susceptible to resistant cells differed between the N1 and N2 populations. Figure 10d–f
shows that the performance of the IS14 treatment was more efficient than that of SS14,
provided that k1 > k2. Note that the variation in the population proportion in the color bar
is higher than in Figure 10a–c, where rates above one predominated. At the right end of
graph (f), we can observe a population below the yellow line.
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proportion of tumor cell populations
[(

Nse
SS14

(
t f

)
+ Nre

SS14

(
t f

))
/
(

Nse
SS14(0) + Nre

SS14(0)
)]

, and the
yellow line represents the value 1 of the population rate.
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A more detailed analysis of Figure 10 is shown in Figure 11; this figure compares the
population growth rate simulations of the tumor cells, SS14 versus IS14, for three cases:
k1 > k2, k1 < k2, and k1 = k2 where the exchanges of k1 and k2 values were analyzed when
they were close.
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The yellow line represents a value of 1; because the final populations of the SS14 and
IS14 treatments were equal, the line shifts to the left when k1 < k2 and k1 = k2, respectively.
When k1 > k2, IS14 was more efficient than SS14. On the contrary, the yellow line divides
the graph when k1 < k2, and SS14 was more efficient than IS14. In Figure 11a, the area
covered by the highest efficiency of the IS14 treatment is noticeably larger. In Figure 11b,
the highest efficiency of SS14 barely exceeded that of IS14, and when k1 = k2, we could
not differentiate which of the two sequences was more efficient. Notably, the results were
qualitatively similar for the 21-day cycles.

4. Discussion

In this study, we used a PLMM to describe the parameters that defined the order
of four proposed oncological treatments. In addition, a uniform numerical sweep was
performed for the parameters λi ∈ [0, 0.12] and αi

s ∈ [0, 1] to obtain a realistic tumor
growth function. This approach produced an extensive qualitative and quantitative vision
of the problem to explain the effects of the drugs on the AMCP.
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Cancerous tumors actively divide cells during the G2 and M phases (active reproduc-
tion phase). In TN-LABC, the AMCP is between 20% and 60% of the tumor mass (43,44),
which is used when calculating the doubling time of the tumor. In this study, the simula-
tions of the tumor duplication were obtained for reasonable clinical times, τ = 25 days
using the initial conditions of N1 = 500 and N2 = 300, as shown in Figure 5. Appendix C
shows that the results obtained were independent of the initial conditions.

The matrix Ds, from Equation (5), represents the annihilating effect of s drugs on the
AMCP. The drug effect was considered instantaneous concerning the timescales involved
in the AMCP growth evolution. These timescales involved in sudden cell death were
compared with the timeframe of AMCP growth without drugs. Proposing the killing effect
of the medications as instantaneous was a suitable approximation, as illustrated in Figure 4.

We used a simplified mathematical model based on Roe et al.’s model (16), as men-
tioned throughout the text. One strength of this analysis were the exhaustive scenarios
considered regarding ratios between cell populations and cellular dynamics by rates after
treatments. However, one of this model’s limitations was using two populations instead
of more populations that corresponded to the cell cycle, as Roe et al. did in their model.
The AMCPs grouped the G1 (protein and RNA synthesis) and S (replication synthesis)
cycles in population N1 and the G2 (protein and RNA synthesis continues) and M (mitosis)
cycles in population N2; in this process, the state G0 (quiescent cells) was not considered.
The reason for grouping the populations this way was that the drugs acted approximately
homogeneously on the G1 and S cycles and the G2 and M cycles, which allowed us to
handle a limited number of parameters. Although this was a limitation of the model, it was
an advantage because we could study the global behavior of the model for a wide range of
these parameters. Therefore, we obtained a broad qualitative and quantitative overview of
the model.

Regarding the complexity of the tumor, owing to the model representing generic
populations at any point in the tumor, by varying the model’s parameters, we could explore
a wide range of cell types that considered this complexity. In the next phase of the study,
we will add the effects of the immune system to the mathematical model.

A randomized phase II trial demonstrated that adding CP to weekly PX followed
by DX and CPh significantly increased the pCR rate in stages II-III of TN-LABC [22].
Strategies to reduce the toxicity of sequential neoadjuvant chemotherapy in TN-LABC
include adjusting the weekly CP dose, compensated with GCEF [29], adjusting by the age
and comorbidity of patients to define the best treatment, determine adequate premedication,
and prevent severe adverse reactions to PX.

The findings of Shepherd et al. [22] supported our mathematical model because the
authors obtained higher PCR rates (administering first CP plus PX and then DX plus CPh)
and provided helpful information for training our mathematical model with the specific
parameters λ and α. As a result, our mathematical model was flexible enough to increase
prediction accuracy with future adjustments using the poor clinical prognosis features of
TN-LABC. These characteristics may include age less than 40 years, tumor size greater
than 5 cm, presence of palpable axillary lymph nodes, inflammatory changes in the breast,
histological characteristics (high histological grade tumors), and the immunohistochemical
characteristics (triple-negative) of elevated Ki67, p53-positivity, and tumor-infiltrating
lymphocytes ≥30. Comparing the findings of this study with our mathematical model, and
we verified the consistency in the results obtained in the clinic, as observed in Figures 7–11,
which showed that the IS14 treatment was more efficient than the SS14 treatment.

This type of PLMM swept all values of the computed parameters, helping to examine
a wide range of drugs that can be used in clinical trials.

5. Conclusions

The sweep of all parameters λi and αi
s allowed us to visualize the variability in cell

growth concerning variations in the amount of drug applied. Here, the inverted treatment
sequence outperformed the standard treatment, allowing maximum AMCP and tumor
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size reductions. In addition, IS14 was more effective than IS21 but with a higher degree
of toxicity; however, this can be compensated for with GCSF because some TN-LABC
patients (with the basal-like subtype, BRCA1 gene mutations, p53 and ki-67, inflammatory
carcinoma in individuals under 40 years of age, and other tumors with a high proliferation
index) will need it, especially those who do not respond to IS21 treatment. The numerical
results obtained in this study are consistent with the clinical results referenced in the
manuscript. This study provides a complementary approach to that used in the clinic for
optimal control.
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Appendix A

This section develops a mathematical model to explain the PX action on TN-LABC
with the BL subtype (12).

We calculated the eigenvalue of the matrix P =

(
−λ1 γλ2
λ1 −λ2

)
and values of γ ε [0, 2],

where γ measures PX effectiveness, as defined in Section 2.6. In solving it, we obtained the
following spectrum:

ρ± =
−(λ1 + λ2)±

√
(λ1 + λ2)

2 + 4(γ− 1)λ1λ2

2
(A1)

For γ = 1, the following is obtained:

ρ± =

{
0

−(λ1 + λ2)
(A2)

For γ = 1 there is a bifurcation point in the cell population; this means that when
ρ± = 0, the solution is a constant behavior (with no changes), while for ρ± = −(λ1 + λ2),
the behavior is of exponential decay.

For γ > 1, we have D =
√
(λ1 + λ2)

2 + 4(γ− 1)λ1λ2 > (λ1 + λ2); therefore, an
eigenvalue shall be positive, and the other negative; the tumor will grow for almost any
initial condition.

For γ < 1, we have D =
√
(λ1 + λ2)

2 + 4(γ− 1)λ1λ2 < (λ1 + λ2). In this case, both
eigenvalues are negative, for which the tumor size will decrease to zero. In this case, the
PX effectiveness is enough to reduce the tumor.
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Appendix B

In TN-LABC, only a fraction of the tumor Pa (AMCP) is in active mitosis, usually
between 10% and 20% [38–41], as shown in Figure A1.
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Figure A1. Schematic of a TN-LABC tumor, the active mitotic cell population is Pa, and Pe is the
non-mitotic cell population.

However, if we call the tumor Pe, then the active part grows as follows:

Pa(T) = Pa(0)eλT (A3)

At time T, the complete tumor grows in the form:

Pa(T) + Pe = Pa(0)eλT + Pe (A4)

Therefore, the time T at which the tumor doubles its total size is:

Pa(T) + Pe = 2(Pa(0) + Pe) (A5)

Substituting Equation (A4) in (A5), we have:

Pa(0)eλT + Pe = 2(Pa(0) + Pe) (A6)

Solving T from Equation (A6) gives us the following:

eλT =
2Pa(0) + Pe

Pa(0)

T =
1
λ

ln
(

2Pa(0) + Pe

Pa(0)

)
(A7)

During this time, the active part of the tumor Pa(T) has grown. Solving Equation (A3)
and replacing T, we have:

Pa(T)
Pa (0)

= eλT

Pa(T) = Pa(0)e
λ( 1

λ ln( 2Pa(0)+Pe
Pa(0)

))

Pa(T)
Pa (0)

=
2Pa(0) + Pe

Pa(0)
(A8)

Therefore, the relationship between the doubling times of the active part and the
complete tumor is as follows:

ln(2)

ln
(

2Pa(0)+Pe
Pa(0)

) (A9)
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For example, if the active part of the tumor is 10%, then Pa (0) = 1 and Pe (0) = 9; in
this case, the relationship between the doubling time of the active part and the complete
tumor is:

ln(2)
ln(11)

= 0.289 (A10)

If the complete tumor doubles every 100 days, the active part doubles every 28.9 days.
As in this paper, the model only considered the AMCP; for this reason, we used a

doubling time of 25 days.

Appendix C

Many simulations presented in this study had arbitrary initial conditions. However, in
this appendix, we show that the results obtained in simulations, in general, are independent
of the initial conditions taken, mainly because the results only depend on the initial and
final AMCP rates.

Because the model is a system of piecewise linear differential equations, then the
stability of the system depends solely on the principal eigenvalue p of the fundamental
matrix (15), which competes with the damping parameters αi

s owing to the drug represented
in the matrix Ds (Equation (5)). Therefore, p× αi

s > 1 represents system instability and
p× αi

s < 1 represents system stability.
We considered tumor cell growth without any drug action. The following Equation

represents AMCP growth.
N(τ) = exp

(
G̃τ
)

N(0) (A11)

where N might be in R2 or R4. The AMCP N(τ) may be approximately expressed as:

‖N(τ)‖ ∼ p‖p0‖
〈

N(0), p0
〉

(A12)

where p is the most significant eigenvalue of the matrix exp
(

G̃τ
)

and p0 the corresponding
eigenvector, so that:

exp
(

G̃τ
)

p0 ∼ pp0 (A13)

We may say that for almost all initial populations, they shall be practically aligned
with the final population to p0; therefore, the rate between ‖N(0)‖ and ‖N(τ)‖ in general,
is independent of the initial population N(0).

We observed that the reason why the PLMM dynamics are determined by p was from
the eigenvalues of the matrix of Equation (3), considering that the matrix parameters are
λ1 = λ and λ2 = αλ, where α is a coefficient, so that α ε [0, ∞). Therefore, the matrix
spectrum is as follows:

ρ± = − (1 + α)λ

2

(
1±

√
1 + 4α/(1 + α)2

)
(A14)

where ρ+ > 0 and ρ− < 0 for ∀α ε [0, ∞). That is, the origin has hyperbolic point stability,
and the rate of the eigenvalues is as follows:

ρr =
|ρ−|
|ρ+|

=
1 +

√
1 + 4α/(1 + α)2

1−
√

1 + 4α/(1 + α)2
(A15)

Its variation of ρr ε [5.7, ∞), that is, the |ρ−| ∼ 6|ρ+|. This means that the dynamic
may be understood as a sudden contraction to the eigenvector corresponding to the positive
eigenvalue, and then the entire dynamic develops in this direction. Finally, we indicated
that (N1, N2) in the R2 first only contains the eigenvector of the positive eigenvalue.
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Now, for the standard sequence, when we consider that the tumor is treated with an
n-k dose of the s drug (DX and CF) and for a k dose of PX, where n > k and integer numbers,
the population dynamic evolves as follows:

Na(nτ) = (Ds exp
(
Gτ
)
)

n−k
(

exp
(

P̃τ
))k

N(0) (A16)

We can approximate the final population magnitude as follows:

‖Na(nτ)‖ ∼ pn−kqk〈N(0), q0
〉〈

p0, q0
〉

(A17)

where q is the most significant eigenvalue of the matrix exp
(

P̃τ
)

, and q0 is its corresponding

eigenvector; p is the most significant eigenvalue of the matrix Ds exp
(
Gτ
)
, and p0 is its

corresponding eigenvector.
For the inverted sequence, we have the following:

Nb(nτ) = (exp
(

P̃τ
)
)

n−k(
Ds exp

(
G̃τ
))k

N(0) (A18)

for which the final population size approximates as follows:

‖Nb(nτ)‖ ∼ ‖qn−k pk〈N(0), p0
〉〈

p0, q0
〉
‖ (A19)

If we consider that
〈

N(0), p0
〉
∼
〈

N(0), q0
〉
, then the rate between these final popu-

lations is approximately:
‖Na‖
‖Nb‖

∼ pn−kqk

pkqn−k
∼=
(

p
q

)n−2k
(A20)

regardless of what the initial population is.
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