171 research outputs found

    Exchange of ejecta between Telesto and Calypso: Tadpoles, horseshoes, and passing orbits

    Full text link
    We have numerically integrated the orbits of ejecta from Telesto and Calypso, the two small Trojan companions of Saturn's major satellite Tethys. Ejecta were launched with speeds comparable to or exceeding their parent's escape velocity, consistent with impacts into regolith surfaces. We find that the fates of ejecta fall into several distinct categories, depending on both the speed and direction of launch. The slowest ejecta follow sub-orbital trajectories and re-impact their source moon in less than one day. Slightly faster debris barely escape their parent's Hill sphere and are confined to tadpole orbits, librating about Tethys' triangular Lagrange points L4 (leading, near Telesto) or L5 (trailing, near Calypso) with nearly the same orbital semi-major axis as Tethys, Telesto, and Calypso. These ejecta too eventually re-impact their source moon, but with a median lifetime of a few dozen years. Those which re-impact within the first ten years or so have lifetimes near integer multiples of 348.6 days (half the tadpole period). Still faster debris with azimuthal velocity components >~ 10 m/s enter horseshoe orbits which enclose both L4 and L5 as well as L3, but which avoid Tethys and its Hill sphere. These ejecta impact either Telesto or Calypso at comparable rates, with median lifetimes of several thousand years. However, they cannot reach Tethys itself; only the fastest ejecta, with azimuthal velocities >~ 40 m/s, achieve "passing orbits" which are able to encounter Tethys. Tethys accretes most of these ejecta within several years, but some 1 % of them are scattered either inward to hit Enceladus or outward to strike Dione, over timescales on the order of a few hundred years

    Coupled h-m fracture interaction using fem with zero-thickness interface elements

    Get PDF
    Intensive hydraulic fracturing is a procedure employed for low permeability reservoir stimulation. This technique consists of generating a sequence of regularly spaced parallel fractures (multi-stage fracturing). The generation of a fracture involves the modification of the local stress state, and therefore, in the case of multi-stage fracturing, the propagation of a certain fracture can be affected by the injection sequence, as it has been observed with microseismicity monitoring [1]. This paper describes a study of this technique by means of the Finite Element Method with zero-thickness interface elements for the geo-mechanical modelling of discontinuities [2]. The technique consists in inserting interface elements in between standard elements to allow jumps in the displacement solution fields. For the mechanical problem, their kinematic constitutive variables are relative displacements, and the corresponding static variables are stress tractions. The relationship between variables is controlled via a fracture-based constitutive law with elasto-plastic structure [3]. Concerning the hydraulic problem, the interface formulation includes both the longitudinal flow (with a longitudinal conductivity parameter strongly dependent on the fracture aperture), as well as and the transversal flow across the element [4]. Previous work by the authors focused on the validation of the method, the analysis a single fracture plane problem [5, 6]. In this case the method is extended to allow free propagation of fractures in any direction, by means of inserting interface elements between all continuum elements. The results presented in this paper analyse the effect of material properties, in particular fracture characterization, in the propagation and the effect of different major to minor principal horizontal stress ratio, on the trajectory and interaction of the fractures

    Assessment of density-functional approximations: Long-range correlations and self-interaction effects

    Get PDF
    The complex nature of electron-electron correlations is made manifest in the very simple but nontrivial problem of two electrons confined within a sphere. The description of highly nonlocal correlation and self-interaction effects by widely used local and semilocal exchange-correlation energy density functionals is shown to be unsatisfactory in most cases. Even the best such functionals exhibit significant errors in the Kohn-Sham potentials and density profiles

    Local Behavior of the First-Order Gradient Correction to the Thomas-Fermi Kinetic Energy Functional

    Full text link
    The first order gradient correction to the Thomas-Fermi functional, proposed by Haq, Chattaraj and Deb (Chem. Phys. Lett. vol. 81, 8031, 1984) has been studied by evaluating both the total kinetic energy and the local kinetic energy density. For testing the kinetic energy density we evaluate its deviation from an exact result through a quality factor, a parameter that reflects the quality of the functionals in a better way than their relative errors. The study is performed on two different systems: light atoms (up to Z=18) and a noninteracting model of fermions confined in a Coulombic-type potential. It is found than this approximation gives very low relative errors and a better local behavior than any of the usual generalized gradient approximation semilocal kinetic density functionals.Comment: 7 pages, 2 tables, 4 figure

    Top-shaped Asteroids as Lens-shaped Bodies

    Full text link
    Several asteroids are known to be shaped like toy tops. This paper models Top-Shaped Asteroids (TSAs) as Homogeneous Symmetric Lenses (HSLs), and derives their rotational, self-gravitational, and total energies as functions of their mass, density, and angular momentum. Then we raise, test, and ultimately reject the hypothesis that TSAs take the shape of lowest total energy, subject to the constraint that they keep the same mass, density, and angular momentum, while remaining HSLs. Other processes must control the shapes of TSAs. For completeness, we also describe a Core-Mantle Model for TSAs, as well as an Inverted Core-Mantle Model, and derive their self-gravitational energies, along with their rotational energies. The gravitational potential at the center of an HSL then is derived.Comment: Submitted to Icaru

    Hydraulic fracture modelling with double node zero-thickness interface elements.

    Get PDF

    Ghrelin neutralization during fasting-refeeding cycle impairs the recuperation of body weight and alters hepatic energy metabolism

    Get PDF
    Ghrelin, a hormone whose levels increase during food deprivation, plays a pivotal role in the regulation of food intake, energy metabolism and storage, as well as in insulin sensitivity. Here, we investigated the effects of acyl-ghrelin neutralization with the acyl-ghrelin-binding compound NOX-B11(2) during the fasting-refeeding cycle. Our data demonstrate that ghrelin neutralization with NOX-B11(2) impairs recuperation of lost body weight after food deprivation. Analysis of enzymes involved in glucose and lipid metabolism in liver of fed, fasted and refed rats revealed that neutralization of acyl-ghrelin resulted in minor decreases in the enzymes of glycolytic and lipogenic pathways during fasting. However, during refeeding these enzymes as well as glycogen levels recovered more slowly when acyl-ghrelin was blocked. The high levels of ghrelin in response to food deprivation may contribute to an adequate decrease in hepatic glycolytic and lipogenic enzymes and aid in the recovery of body weight and energetic reserves once food becomes available after the fasting period
    corecore