21 research outputs found

    Role of needle surface waxes in dynamic exchange of mono- and sesquiterpenes

    Get PDF
    Biogenic volatile organic compounds (BVOCs) produced by plants have a major role in atmospheric chemistry. The different physicochemical properties of BVOCs affect their transport within and out of the plant as well as their reactions along the way. Some of these compounds may accumulate in or on the waxy surface layer of conifer needles and participate in chemical reactions on or near the foliage surface. The aim of this work was to determine whether terpenes, a key category of BVOCs produced by trees, can be found on the epicuticles of Scots pine (Pinus sylvestris L.) and, if so, how they compare with the terpenes found in shoot emissions of the same tree. We measured shoot-level emissions of pine seedlings at a remote outdoor location in central Finland and subsequently analysed the needle surface waxes for the same compounds. Both emissions and wax extracts were clearly dominated by monoterpenes, but the proportion of sesquiterpenes was higher in the wax extracts. There were also differences in the terpene spectra of the emissions and the wax extracts. The results, therefore, support the existence of BVOC associated to the epicuticular waxes. We briefly discuss the different pathways for terpenes to reach the needle surfaces and the implications for air chemistry.Peer reviewe

    Effects of land use and climate on carbon and nitrogen pool partitioning in European mountain grasslands

    Get PDF
    European mountain grasslands are increasingly affected by land-use changes and climate, which have been suggested to exert important controls on grassland carbon (C) and nitrogen (N) pools. However, so far there has been no synthetic study on whether and how land-use changes and climate interactively affect the partitioning of these pools amongst the different grassland compartments. We analyzed the partitioning of C and N pools of 36 European mountain grasslands differing in land-use and climate with respect to above- and belowground phytomass, litter and topsoil (top 23 cm). We found that a reduction of management intensity and the abandonment of hay meadows and pastures increased above-ground phytomass, root mass and litter as well as their respective C and N pools, concurrently decreasing the fractional contribution of the topsoil to the total organic carbon pool. These changes were strongly driven by the cessation of cutting and grazing, a shift in plant functional groups and a related reduction in litter quality. Across all grasslands studied, variation in the impact of land management on the topsoil N pool and C/N-ratio were mainly explained by soil clay content combined with pH. Across the grasslands, below-ground phytomass as well as phytomass- and litter C concentrations were inversely related to the mean annual temperature; furthermore, C/N- ratios of phytomass and litter increased with decreasing mean annual precipitation. Within the topsoil compartment, C concentrations decreased from colder to warmer sites, and increased with increasing precipitation. Climate generally influenced effects of land use on C and N pools mainly through mean annual temperature and less through mean an- nual precipitation. We conclude that site-specific conditions need to be considered for understanding the effects of land use and of current and future climate changes on grassland C and N pools.Peer reviewe

    Pan-Eurasian Experiment (PEEX) Program : An Overview of the First 5 Years in Operation and Future Prospects

    Get PDF
    The Pan-Eurasian Experiment (PEEX) program was initiated as a bottom-up approach by the researchers coming from Finland and Russia in October 2012. The PEEX China kick off meeting was held in November 2013. During its five years in operation, the program has established a governance structure and delivered a science plan for the Northern Eurasian region. PEEX has also introduced a concept design for a modelling platform and ground-based in situ observation systems for detecting land-atmosphere and ocean-atmosphere interactions. Today, PEEX has an extensive researcher’s network representing research communities coming from the Nordic countries, Russia and China. PEEX is currently carrying out its research activities on a project basis, but is looking for more coordinated funding bases, especially in Russia and in China. The near-future challenge in implementing the PEEX research agenda is to achieve a successful integration and identification of the methodological approaches of the socio-economic research to environmental sciences. Here we give insight into these issues and provide an overview on the main tasks for the upcoming years.The Pan-Eurasian Experiment (PEEX) program was initiated as a bottom-up approach by the researchers coming from Finland and Russia in October 2012. The PEEX China kick off meeting was held in November 2013. During its five years in operation, the program has established a governance structure and delivered a science plan for the Northern Eurasian region. PEEX has also introduced a concept design for a modelling platform and ground-based in situ observation systems for detecting land-atmosphere and ocean-atmosphere interactions. Today, PEEX has an extensive researcher’s network representing research communities coming from the Nordic countries, Russia and China. PEEX is currently carrying out its research activities on a project basis, but is looking for more coordinated funding bases, especially in Russia and in China. The near-future challenge in implementing the PEEX research agenda is to achieve a successful integration and identification of the methodological approaches of the socio-economic research to environmental sciences. Here we give insight into these issues and provide an overview on the main tasks for the upcoming years.The Pan-Eurasian Experiment (PEEX) program was initiated as a bottom-up approach by the researchers coming from Finland and Russia in October 2012. The PEEX China kick off meeting was held in November 2013. During its five years in operation, the program has established a governance structure and delivered a science plan for the Northern Eurasian region. PEEX has also introduced a concept design for a modelling platform and ground-based in situ observation systems for detecting land-atmosphere and ocean-atmosphere interactions. Today, PEEX has an extensive researcher’s network representing research communities coming from the Nordic countries, Russia and China. PEEX is currently carrying out its research activities on a project basis, but is looking for more coordinated funding bases, especially in Russia and in China. The near-future challenge in implementing the PEEX research agenda is to achieve a successful integration and identification of the methodological approaches of the socio-economic research to environmental sciences. Here we give insight into these issues and provide an overview on the main tasks for the upcoming years.Peer reviewe

    Phenology and plant functional type dominance drive CO2 exchange in seminatural grasslands in the Pyrenees

    No full text
    Understanding the mechanisms underlying net ecosystem CO2 exchange (NEE) in mountain grasslands is important to quantify their relevance in the global carbon budget. However, complex interactions between environmental variables and vegetation on NEE remain unclear; and there is a lack of empirical data, especially from the high elevations and the Mediterranean region. A chamber-based survey of CO2 exchange measurements was carried out in two climatically contrasted grasslands (montane v. subalpine) of the Pyrenees; assessing the relative contribution of phenology and environmental variables on CO2 exchange at the seasonal scale, and the influence of plant functional type dominance (grasses, forbs and legumes) on the NEE light response. Results show that phenology plays a crucial role as a CO2 exchange driver, suggesting a differential behaviour of the vegetation community depending on the environment. The subalpine grassland had a more delayed phenology compared to the montane, being more temperature than water constrained. However, temperature increased net CO2 uptake at a higher rate in the subalpine than in the montane grassland. During the peak biomass, productivity (+74%) and net CO2 uptake (NEE +48%) were higher in the subalpine grassland than in the montane grassland. The delayed phenology at the subalpine grassland reduced vegetation's sensitivity to summer dryness, and CO2 exchange fluxes were less constrained by low soil water content. The NEE light response suggested that legume dominated plots had higher net CO2 uptake per unit of biomass than grasses. Detailed information on phenology and vegetation composition is essential to understand elevation and climatic differences in CO2 exchange.ISSN:0021-8596ISSN:1469-514

    Plant traits as predictor of ecosystem carbon fluxes - a case study across European grasslands

    No full text
    International audiencePredicting ecosystem responses to global change has become a major challenge, particularly as terrestrial ecosystems contribute to the mitigation of global climate change through carbon sequestration. Plant traits are major surrogates of ecosystem physiology may thus help to predict carbon (C) fluxes and their consequences for the delivery of ecosystem services (e.g. C sequestration) across climatic gradients and in changing environments. However, linkages between community abundance-weighted means (CWM) of plant functional traits and ecosystem C fluxes have rarely been tested. It is also not known to what degree traits, which are typically measured at a defined point in time, are suitable for predicting annual C fluxes. We analysed the relationships between ecosystem fluxes and community level plant traits for 13 European grasslands under contrasting climate and management regimes, using multiyear eddy covariance data. Plant traits (specific leaf area SLA, leaf dry matter content LDMC, specific root length SLR) were determined at peak biomass. Analyses showed that GPPmax (at maximum radiation) was related to SLA, SRL and LDMC across sites and management, where GPPmax was an excellent indicator for annual GPP. Similar relations were found between for root density (and -diameter) and ecosystem respiration. Ecosystems respiration at GPPmax was also in line with annual respiration, indicating the strong predictive potential of plant community traits. Our study therefore suggests that above- and belowground community level plant traits are well suited surrogates for predicting ecosystem C fluxes at peak biomass and at annual scale

    Ancillary vegetation measurements at ICOS ecosystem stations

    No full text
    The Integrated Carbon Observation System is a Pan-European distributed research infrastructure that has as its main goal to monitor the greenhouse gas balance of Europe. The ecosystem component of Integrated Carbon Observation System consists of a multitude of stations where the net greenhouse gas exchange is monitored continuously by eddy covariance measurements while, in addition many other measurements are carried out that are a key to an understanding of the greenhouse gas balance. Amongst them are the continuous meteorological measurements and a set of non-continuous measurements related to vegetation. The latter include Green Area Index, aboveground biomass and litter biomass. The standardized methodology that is used at the Integrated Carbon Observation System ecosystem stations to monitor these vegetation related variables differs between the ecosystem types that are represented within the network, whereby in this paper we focus on forests, grasslands, croplands and mires. For each of the variables and ecosystems a spatial and temporal sampling design was developed so that the variables can be monitored in a consistent way within the ICOS network. The standardisation of the methodology to collect Green Area Index, above ground biomass and litter biomass and the methods to evaluate the quality of the collected data ensures that all stations within the ICOS ecosystem network produce data sets with small and similar errors, which allows for inter-comparison comparisons across the Integrated Carbon Observation System ecosystem network

    Importance of reporting ancillary site characteristics, and management and disturbance information at ICOS stations

    Get PDF
    There are many factors that influence ecosystem scale carbon, nitrogen and greenhouse gas dynamics, including the inherent heterogeneity of soils and vegetation, anthropogenic management interventions, and biotic and abiotic disturbance events. It is important therefore, to document the characteristics of the soils and vegetation and to accurately report all management activities, and disturbance events to aid the interpretation of collected data, and to determine whether the ecosystem either amplifies or mitigates climate change. This paper outlines the importance of assessing both the spatial and temporal variability of soils and vegetation and to report all management events, the import or export of C or N from the ecosystem, and the occurrence of biotic/abiotic disturbances at ecosystem stations of the Integrated Carbon Observation System, a pan-European research infrastructure.Peer reviewe
    corecore