69 research outputs found

    Semi-quantitative landslide risk assessment using GIS-based exposure analysis in Kuala Lumpur City

    Full text link
    A semi-quantitative landslide-risk assessment method, which would provide a spatial estimate of future landslide risks in a densely populated area in Kuala Lumpur City, was presented in this study. This work focused on detail risk assessment by identifying the number of elements at risk. A medium-scale analysis was performed using geospatial based techniques. The estimation of rainfall threshold and the landslide hazard map used in the current work are obtained from the previous literature published by the same authors. Subsequently, the vulnerability value was generalized, and then a valid integration between elements at risk and the hazard map was conducted to determine the expected number of elements that would likely be under direct risk. Results showed that the approximate number of predicted affected elements per pixel, as a percentage of the settlement unit, is nearly 50% in residential areas, 35% in commercial buildings, 31% in industrial buildings, 31% in utility areas, and 18% in densely populated areas. Similarly, a significant percentage of predicted losses (27%) were found for the road network. The results showed the capability of the method to approximately predict the number of infrastructure elements and the population density under landslide risk in data-scarce environments

    Spatio-temporal analysis of oil spill impact and recovery pattern of coastal vegetation and wetland using multispectral satellite Landsat 8-OLI imagery and machine learning models

    Full text link
    © 2020, by the authors. Oil spills are a global phenomenon with impacts that cut across socio-economic, health, and environmental dimensions of the coastal ecosystem. However, comprehensive assessment of oil spill impacts and selection of appropriate remediation approaches have been restricted due to reliance on laboratory experiments which offer limited area coverage and classification accuracy. Thus, this study utilizes multispectral Landsat 8-OLI remote sensing imagery and machine learning models to assess the impacts of oil spills on coastal vegetation and wetland and monitor the recovery pattern of polluted vegetation and wetland in a coastal city. The spatial extent of polluted areas was also precisely quantified for effective management of the coastal ecosystem. Using Johor, a coastal city in Malaysia as a case study, a total of 49 oil spill (ground truth) locations, 54 non-oil-spill locations and Landsat 8-OLI data were utilized for the study. The ground truth points were divided into 70% training and 30% validation parts for the classification of polluted vegetation and wetland. Sixteen different indices that have been used to monitor vegetation and wetland stress in literature were adopted for impact and recovery analysis. To eliminate similarities in spectral appearance of oil-spill-affected vegetation, wetland and other elements like burnt and dead vegetation, Support Vector Machine (SVM) and Random Forest (RF) machine learning models were used for the classification of polluted and nonpolluted vegetation and wetlands. Model optimization was performed using a random search method to improve the models' performance, and accuracy assessments confirmed the effectiveness of the two machine learning models to identify, classify and quantify the area extent of oil pollution on coastal vegetation and wetland. Considering the harmonic mean (F1), overall accuracy (OA), User's accuracy (UA), and producers' accuracy (PA), both models have high accuracies. However, the RF outperformed the SVM with F1, OA, PA and UA values of 95.32%, 96.80%, 98.82% and 95.11%, respectively, while the SVM recorded accuracy values of F1 (80.83%), OA (92.87%), PA (95.18%) and UA (93.81%), respectively, highlighting 1205.98 hectares of polluted vegetation and 1205.98 hectares of polluted wetland. Analysis of the vegetation indices revealed that spilled oil had a significant impact on the vegetation and wetland, although steady recovery was observed between 2015-2018. This study concludes that Chlorophyll Vegetation Index, Modified DifferenceWater Index, Normalized Difference Vegetation Index and Green Chlorophyll Index vegetation indices are more sensitive for impact and recovery assessment of both vegetation and wetland, in addition to Modified Normalized Difference Vegetation Index for wetlands. Thus, remote sensing and Machine Learning models are essential tools capable of providing accurate information for coastal oil spill impact assessment and recovery analysis for appropriate remediation initiatives

    Application of frequency ratio, statistical index, and weights-of-evidence models and their comparison in landslide susceptibility mapping in Central Nepal Himalaya

    Get PDF
    The Mugling–Narayanghat road section falls within the Lesser Himalaya and Siwalik zones of Central Nepal Himalaya and is highly deformed by the presence of numerous faults and folds. Over the years, this road section and its surrounding area have experienced repeated landslide activities. For that reason, landslide susceptibility zonation is essential for roadside slope disaster management and for planning further development activities. The main goal of this study was to investigate the application of the frequency ratio (FR), statistical index (SI), and weights-of-evidence (WoE) approaches for landslide susceptibility mapping of this road section and its surrounding area. For this purpose, the input layers of the landslide conditioning factors were prepared in the first stage. A landslide inventory map was prepared using earlier reports, aerial photographs interpretation, and multiple field surveys. A total of 438 landslide locations were detected. Out these, 295 (67 %) landslides were randomly selected as training data for the modeling using FR, SI, and WoE models and the remaining 143 (33 %) were used for the validation purposes. The landslide conditioning factors considered for the study area are slope gradient, slope aspect, plan curvature, altitude, stream power index, topographic wetness index, lithology, land use, distance from faults, distance from rivers, and distance from highway. The results were validated using area under the curve (AUC) analysis. From the analysis, it is seen that the FR model with a success rate of 76.8 % and predictive accuracy of 75.4 % performs better than WoE (success rate, 75.6 %; predictive accuracy, 74.9 %) and SI (success rate, 75.5 %; predictive accuracy, 74.6 %) models. Overall, all the models showed almost similar results. The resultant susceptibility maps can be useful for general land use planning

    Landslide susceptibility mapping using support vector machine and GIS at the Golestan province, Iran

    Get PDF
    The main goal of this study is to produce landslide susceptibility map using GIS-based support vector machine (SVM) at Kalaleh Township area of the Golestan province, Iran. In this paper, six different types of kernel classifiers such as linear, polynomial degree of 2, polynomial degree of 3, polynomial degree of 4, radial basis function (RBF) and sigmoid were used for landslide susceptibility mapping. At the first stage of the study, landslide locations were identified by aerial photographs and field surveys, and a total of 82 landslide locations were extracted from various sources. Of this, 75% of the landslides (61 landslide locations) are used as training dataset and the rest was used as (21 landslide locations) the validation dataset. Fourteen input data layers were employed as landslide conditioning factors in the landslide susceptibility modelling. These factors are slope degree, slope aspect, altitude, plan curvature, profile curvature, tangential curvature, surface area ratio (SAR), lithology, land use, distance from faults, distance from rivers, distance from roads, topographic wetness index (TWI) and stream power index (SPI). Using these conditioning factors, landslide susceptibility indices were calculated using support vector machine by employing six types of kernel function classifiers. Subsequently, the results were plotted in ArcGIS and six landslide susceptibility maps were produced. Then, using the success rate and the prediction rate methods, the validation process was performed by comparing the existing landslide data with the six landslide susceptibility maps. The validation results showed that success rates for six types of kernel models varied from 79% to 87%. Similarly, results of prediction rates showed that RBF (85%) and polynomial degree of 3 (83%) models performed slightly better than other types of kernel (polynomial degree of 2 = 78%, sigmoid = 78%, polynomial degree of 4 = 78%, and linear = 77%) models. Based on our results, the differences in the rates (success and prediction) of the six models are not really significant. So, the produced susceptibility maps will be useful for general land-use planning

    Landslides

    Full text link

    A novel integrated model for assessing landslide susceptibility mapping using CHAID and AHP pair-wise comparison

    Full text link
    This article uses an integrated methodology based on a chi-squared automatic interaction detection (CHAID) model combined with analytic hierarchy process (AHP) for pair-wise comparison to assess medium-scale landslide susceptibility in a catchment in the Inje region of South Korea. An inventory of 3596 landslide locations was collected using remote sensing, and a random sample comprising 30% of these was used to validate the model. The remaining portion (70%) was processed by the nearest-neighbour index (NNI) technique and used for extracting the cluster patterns at each location. These data were used for model training purposes. Ten landslide-conditioning factors (independent variables) representing four main domains, namely (1) topology, (2) geology, (3) hydrology, and (4) land cover, were used to produce two landslide-susceptibility maps. The first landslide-susceptibility map (LSM1) was produced by overlaying the terminal nodes of the CHAID result tree. The second landslide-susceptibility map (LSM2) was produced using the overlay result of AHP pair-wise comparisons of CHAID terminal nodes. The prediction rate curve results were better with LSM2 (area under the prediction curve (AUC) = 0.80) than with LSM1 (AUC = 0.76). The results confirmed that the integrated hybrid model has superior prediction performance and reliability, and it is recommended for future use in medium-scale landslide-susceptibility mapping
    corecore