7 research outputs found

    Characterisation of an Electrostatic Vibration Harvester

    Get PDF
    Harvesting energy from ambient vibration is proposed as an alternative to storage based power supplies for autonomous systems. The system presented converts the mechanical energy of a vibration into electrical energy by means of a variable capacitor, which is polarized by an electret. A lumped element model is used to study the generator and design a prototype. The device has been micromachined in silicon, based on a two-wafer process. The prototype was successfully tested, both using an external polarization source and an electret.Comment: Submitted on behalf of EDA Publishing Association (http://irevues.inist.fr/EDA-Publishing

    The European Academy for Cognitive Behavioural Therapy for Insomnia : An initiative of the European Insomnia Network to promote implementation and dissemination of treatment

    Get PDF
    Insomnia, the most prevalent sleep disorder worldwide, confers marked risks for both physical and mental health. Furthermore, insomnia is associated with considerable direct and indirect healthcare costs. Recent guidelines in the US and Europe unequivocally conclude that cognitive behavioural therapy for insomnia (CBT‐I) should be the first‐line treatment for the disorder. Current treatment approaches are in stark contrast to these clear recommendations, not least across Europe, where, if any treatment at all is delivered, hypnotic medication still is the dominant therapeutic modality. To address this situation, a Task Force of the European Sleep Research Society and the European Insomnia Network met in May 2018. The Task Force proposed establishing a European CBT‐I Academy that would enable a Europe‐wide system of standardized CBT‐I training and training centre accreditation. This article summarizes the deliberations of the Task Force concerning definition and ingredients of CBT‐I, preconditions for health professionals to teach CBT‐I, the way in which CBT‐I should be taught, who should be taught CBT‐I and to whom CBT‐I should be administered. Furthermore, diverse aspects of CBT‐I care and delivery were discussed and incorporated into a stepped‐care model for insomnia.Peer reviewe

    Innovative micropower solutions for wireless autonomous sensor nodes

    No full text
    Low-power is one of the key demands for wireless autonomous sensor nodes. This demand has motivated industry and research institutes to work on various advanced systems that can efficiently deliver power to demanding applications. This paper deals with energy harvesters and energy storage systems as important building blocks for such sensor nodes. Energy harvesting is the process of converting unused ambient energy into usable electrical power. As these energy harvesting devices shrink in dimension, while still providing sufficient energy, they will be key enablers for autonomous wireless transducer systems. For such purposes, harvesting devices designed for a footprint of 1 cm(exp 2) and an average power harvesting level of 100 microwatt are being investigated. The power module will convert the highly irregular energy flow from the energy harvester further into regulated energy suitable to charge an energy storage device, e.g. battery or ultracapacitor, or to directly power the wireless autonomous sensor network modules. In such a module, the battery¿s basic task is to store energy obtained from the harvester and to release it to the load when needed. A complete wireless autonomous node has more functional blocks besides a micropower module. A sensor device will capture the required physical or chemical parameter. The Analog-to- Digital and signal processor will be used for transforming the measurements into (processed) digital information. A radio module will allow communication with external receivers. The focus in this paper will be on the micropower module, consisting of the harvester and the energy storage functions

    Electrostatic energy scavengers for wireless autonomous transducer solutions

    No full text
    Autonomous devices such as wireless sensor nodes within sensor networks need a long life time; current battery solutions are not sufficient for these devices. A generator that extracts energy from the ambient would be a promising power supply for these sensor systems. This paper describes aMEMS-based energy scavenger that converts mechanical vibrations into electrical power by means of a variable capacitor
    corecore