226 research outputs found

    A new land snail from the Quaternary of Mallorca (Balearic Islands, Western Mediterranean): Darderia bellverica n. gen., n. sp. (Gastropoda, Pulmonata, Helicodontidae)

    Get PDF
    A new genus and species of land snail is described from pre-human paleosoils at Bellver hill in the island of Mallorca. It is a medium-sized helicodontid with 6 tight coils, dome-shaped spire, obtuse peripheral keel, eccentric umbilicus, narrow aperture inclined forward, sinuous reflected peristome, a low angular tooth, 5 infrapalatal denticles, teleoconch with many regular riblets and widely scattered hair pits, and protoconch with simple wrinkles and very thin spiral lines. This very rare species had been reported as a member of the Iberian-Maghribian Oestophora. Similar Plio-Pleistocene fossils from the Balearics and Sardinia are placed in the new genus. This may constitute a biogeographic link within the Lindholmiolinae, now surviving at both ends of the Mediterranean basin. It remains unknown when, why or whether it became extinct

    Els mol·luscs marins: catàleg preliminar

    Get PDF
    S'han recollectat 169 espècies de mol·luscs marins a l'Arxipèlag de Cabrera. La majoria d'aquestes han estat identificades a partir d'exemplars procedents de tanatocenosis, les quals es poden considerar com una mostra qualitativa de la fauna malacològica actual de la zona. Tenint en compte la diversitat trobada, i la fauna coneguda de la Mediterrània occidental, es pot calcular que el nombre total d'espècies de mol·luses marins de Cabrera és de devers 600. La comparació amb les tanatocenosis fòssils del Pleistocè de Cabrera indica que no hi ha hagut canvis importants en la composició específicaA total of 169 species has been collected in the Cabrera Archipelago. Most of these have been identified on the basis of materials from thanatocoenoses, which can be considered as a qualitative sample of the living molluscan fauna. Taking into account the diversity found, as well as the total of the Western Mediterranean fauna, the number of molluscan species living in the area can be estimated at ca. 600. Comparison with the Pleistocene thanatocoenoses of Cabrera shows that there have not been important changes in specific corn positio

    Els caragols i llimacs terrestres (Molusca: gastropoda)

    Get PDF
    La fauna malacològica terrestre de Cabrera apareix com el resultat d'un procés dinàmic. De les 30 espècies de gasteròpodes terrestres recents i pleistocèniques de l'Arxipèlag de Cabrera, només 6 han estat trobades en jaciments pre-humans; una d'aquestes desaparegué amb la darrera glaciació, i la majoria de les altres s'han diferenciat a nivell subespecífic en els diferents illots. Un llimac, una espècie no descrita de zonítid, i potser un vertigínid, es consideren també autòctons. Les altres 21 espècies han estat molt probablement introduïdes en diferents moments pels humans. Dues d'aquestes s'han extingit, una s'ha rarificat molt, i una altra sembla que no ha arribat a establir-se. Dos grans helícids es troben representats per exemplars gegantins, possiblement indicant diferenciació local. La conservació dels elements autòctons requereix la preservació de la identitat de les diferents poblacions; així mateix, seria desitjable l'eliminació dels conreus, les rates, i les ovelles, per tal de permetre la recuperació de la vegetació, i reduir la predació selectiva sobre alguns endemismes.The land molluscan fauna of Cabrera appears to result from a dynamic process. Of the 30 terrestrial gastropod species found in the Cabrera Archipelago, only 6 have been found in pre-human sites. One of these disappeared during the last glaciation, and most others exhibit differentiation at the subspecific level among islets. A slug, an undescribed zonitid species, and possibly a vertiginid, are also considered autochtonous. The remaining 21 species have most likely been introduced at different times by humans. Two of these are extinct, one is now quite rare, and another seems not to be established. Two big helicids are represented by gigantic specimens, possibly indicating local differentiation. Conservation of the autochtonous elements requires preserving the identity of the different populations. Likewise, it would be desirable to eliminate crops, rats, and sheep, in order to allow the vegetation to recover and avoid selective predation on some endemism

    Captive breeding of Margaritifera auricularia (Spengler, 1793) and its conservation importance

    Get PDF
    Margaritifera auricularia is one of the most endangered freshwater mussels (Bivalvia, Unionida) in the world. Since 2013, the abundance of this species in the Ebro River basin (Spain) has sharply declined, driving the species to the verge of regional extinction. Therefore, any management measures that might facilitate the recovery of this species would be essential for its conservation. During 2014–2016, captive breeding of M. auricularia allowed the production of >106 juveniles, out of which 95% were released into the natural environment, and 5% were grown in the laboratory under controlled conditions. The aim of this experimental work was to establish the best culture conditions for the survival and growth of M. auricularia juveniles in the laboratory. The experiment was divided into two phases: phase I, in which juveniles recently detached from fish gills were cultured in detritus boxes until they reached a shell length of 1 mm; and phase II, in which these specimens were transferred to larger aquaria to grow up to 3–4 mm. The best experimental conditions for juvenile survival and growth corresponded to treatments in glass containers at a density of 0.2 ind. L−1, using river water, with added substrate and detritus, enriched with phytoplankton, and avoiding extra aeration. The highest survival and growth rates attained, respectively, values of c. 60% at 100 days and 2.56 mm in shell length at 30–32 weeks. This is the first study to report on the long‐term survival and growth of juvenile M. auricularia in the laboratory, providing essential information in order to implement future conservation measures addressed at reinforcing the natural populations of this highly threatened species in European water bodies.This project was funded by the Government of Aragón, Department of Rural Development and Sustainability and carried out by the Environmental Service Department of SARGA. Special thanks go to Manuel Alcántara, Miguel Ángel Muñoz, Ester Ginés, Carlos Catalá, and Juan Pablo de la Roche, who were involved in the project. The authors appreciate the work of the reviewer and editor who improved the quality of the manuscript. The Aragón's forest rangers are thanked for their assistance during fieldwork

    The paracladistic approach to phylogenetic taxonomy

    Get PDF
    The inclusion of some paraphyletic groups in a temporally and taxonomically comprehensive phylogenetic classification is inevitable because cladistic methodology is incapable of excluding the possibility that a structurally (i.e., based on the branching pattern of a given cladogram) monophyletic group contains the ancestor of another group, i.e., that it is historically paraphyletic. Paracladistics is proposed as a pragmatic synthesis of phylogenetic and evolutionary taxonomy in which true monophyly is distinguished from structural monophyly with historical paraphyly, some structurally paraphyletic groups are retained in the interest of nomenclatorial continuity and stability, and both unranked and suprageneric ranked taxon names are defined phylogenetically. Ancestral groups are structurally paraphyletic or structurally monophyletic but historically paraphyletic sets of species that are believed to contain the ancestor for the most recent common ancestor of a descendent group. Historical paraphyly is determined by considering evidence of nesting in cladistic analyses, timing of first appearances in the fossil record, polarity in character evolution, and taxa that are morphologically intermediate between groups of species. The decision to name an ancestral group is based on the same criteria as the decision to name a clade. Ancestral groups are defined in the same manner as clades, except that their descendent group(s) are designated as external specifiers. Recognizing that two supposedly monophyletic, cladistically defined sister taxa can represent ancestral and descendent groups has implications for inferring their times of origination. To illustrate the advantages of the paracladistic approach to phylogenetic taxonomy, alternative paracladistic and phylogenetic classifications of the crown group families of Nuculanoidea (Mollusca, Bivalvia) are presented

    Functional divergence in the role of N-linked glycosylation in smoothened signaling

    Get PDF
    The G protein-coupled receptor (GPCR) Smoothened (Smo) is the requisite signal transducer of the evolutionarily conserved Hedgehog (Hh) pathway. Although aspects of Smo signaling are conserved from Drosophila to vertebrates, significant differences have evolved. These include changes in its active sub-cellular localization, and the ability of vertebrate Smo to induce distinct G protein-dependent and independent signals in response to ligand. Whereas the canonical Smo signal to Gli transcriptional effectors occurs in a G protein-independent manner, its non-canonical signal employs Gαi. Whether vertebrate Smo can selectively bias its signal between these routes is not yet known. N-linked glycosylation is a post-translational modification that can influence GPCR trafficking, ligand responsiveness and signal output. Smo proteins in Drosophila and vertebrate systems harbor N-linked glycans, but their role in Smo signaling has not been established. Herein, we present a comprehensive analysis of Drosophila and murine Smo glycosylation that supports a functional divergence in the contribution of N-linked glycans to signaling. Of the seven predicted glycan acceptor sites in Drosophila Smo, one is essential. Loss of N-glycosylation at this site disrupted Smo trafficking and attenuated its signaling capability. In stark contrast, we found that all four predicted N-glycosylation sites on murine Smo were dispensable for proper trafficking, agonist binding and canonical signal induction. However, the under-glycosylated protein was compromised in its ability to induce a non-canonical signal through Gαi, providing for the first time evidence that Smo can bias its signal and that a post-translational modification can impact this process. As such, we postulate a profound shift in N-glycan function from affecting Smo ER exit in flies to influencing its signal output in mice

    Could dark energy be vector-like?

    Get PDF
    In this paper I explore whether a vector field can be the origin of the present stage of cosmic acceleration. In order to avoid violations of isotropy, the vector has be part of a ``cosmic triad'', that is, a set of three identical vectors pointing in mutually orthogonal spatial directions. A triad is indeed able to drive a stage of late accelerated expansion in the universe, and there exist tracking attractors that render cosmic evolution insensitive to initial conditions. However, as in most other models, the onset of cosmic acceleration is determined by a parameter that has to be tuned to reproduce current observations. The triad equation of state can be sufficiently close to minus one today, and for tachyonic models it might be even less than that. I briefly analyze linear cosmological perturbation theory in the presence of a triad. It turns out that the existence of non-vanishing spatial vectors invalidates the decomposition theorem, i.e. scalar, vector and tensor perturbations do not decouple from each other. In a simplified case it is possible to analytically study the stability of the triad along the different cosmological attractors. The triad is classically stable during inflation, radiation and matter domination, but it is unstable during (late-time) cosmic acceleration. I argue that this instability is not likely to have a significant impact at present.Comment: 28 pages, 6 figures. Uses RevTeX4. v2: Discussion about relation to phantoms added and additional references cite

    Spin half fermions with mass dimension one: theory, phenomenology, and dark matter

    Full text link
    We provide the first details on the unexpected theoretical discovery of a spin-one-half matter field with mass dimension one. It is based upon a complete set of dual-helicity eigenspinors of the charge conjugation operator. Due to its unusual properties with respect to charge conjugation and parity, it belongs to a non-standard Wigner class. Consequently, the theory exhibits non-locality with (CPT)^2 = - I. We briefly discuss its relevance to the cosmological `horizon problem'. Because the introduced fermionic field is endowed with mass dimension one, it can carry a quartic self-interaction. Its dominant interaction with known forms of matter is via Higgs, and with gravity. This aspect leads us to contemplate the new fermion as a prime dark matter candidate. Taking this suggestion seriously we study a supernova-like explosion of a galactic-mass dark matter cloud to set limits on the mass of the new particle and present a calculation on relic abundance to constrain the relevant cross-section. The analysis favours light mass (roughly 20 MeV) and relevant cross-section of about 2 pb. Similarities and differences with the WIMP and mirror matter proposals for dark matter are enumerated. In a critique of the theory we bare a hint on non-commutative aspects of spacetime, and energy-momentum space.Comment: 78 pages [Changes: referee-suggested improvements, additional important references, and better readability

    Self-Renewal of Acute Lymphocytic Leukemia Cells Is Limited by the Hedgehog Pathway Inhibitors Cyclopamine and IPI-926

    Get PDF
    Conserved embryonic signaling pathways such as Hedgehog (Hh), Wingless and Notch have been implicated in the pathogenesis of several malignancies. Recent data suggests that Hh signaling plays a role in normal B-cell development, and we hypothesized that Hh signaling may be important in precursor B-cell acute lymphocytic leukemia (B-ALL). We found that the expression of Hh pathway components was common in human B-ALL cell lines and clinical samples. Moreover, pathway activity could be modulated by Hh ligand or several pathway inhibitors including cyclopamine and the novel SMOOTHENED (SMO) inhibitor IPI-926. The inhibition of pathway activity primarily impacted highly clonogenic B-ALL cells expressing aldehyde dehydrogenase (ALDH) by limiting their self-renewal potential both in vitro and in vivo. These data demonstrate that Hh pathway activation is common in B-ALL and represents a novel therapeutic target regulating self-renewal and persistence of the malignant clone

    Recent advances in understanding the roles of whole genome duplications in evolution

    Get PDF
    Ancient whole-genome duplications (WGDs)—paleopolyploidy events—are key to solving Darwin’s ‘abominable mystery’ of how flowering plants evolved and radiated into a rich variety of species. The vertebrates also emerged from their invertebrate ancestors via two WGDs, and genomes of diverse gymnosperm trees, unicellular eukaryotes, invertebrates, fishes, amphibians and even a rodent carry evidence of lineage-specific WGDs. Modern polyploidy is common in eukaryotes, and it can be induced, enabling mechanisms and short-term cost-benefit assessments of polyploidy to be studied experimentally. However, the ancient WGDs can be reconstructed only by comparative genomics: these studies are difficult because the DNA duplicates have been through tens or hundreds of millions of years of gene losses, mutations, and chromosomal rearrangements that culminate in resolution of the polyploid genomes back into diploid ones (rediploidisation). Intriguing asymmetries in patterns of post-WGD gene loss and retention between duplicated sets of chromosomes have been discovered recently, and elaborations of signal transduction systems are lasting legacies from several WGDs. The data imply that simpler signalling pathways in the pre-WGD ancestors were converted via WGDs into multi-stranded parallelised networks. Genetic and biochemical studies in plants, yeasts and vertebrates suggest a paradigm in which different combinations of sister paralogues in the post-WGD regulatory networks are co-regulated under different conditions. In principle, such networks can respond to a wide array of environmental, sensory and hormonal stimuli and integrate them to generate phenotypic variety in cell types and behaviours. Patterns are also being discerned in how the post-WGD signalling networks are reconfigured in human cancers and neurological conditions. It is fascinating to unpick how ancient genomic events impact on complexity, variety and disease in modern life
    corecore