206 research outputs found
Surveying Access to Healthcare in Kisumu and Siaya Counties, Kenya
This study aims to understand the barriers that many Kenyans face towards accessing healthcare. This study was conducted in Kisumu and Siaya Counties, Kenya. Kisumu is an urban environment, whereas Siaya is a rural environment. Throughout both counties, areas with presumably low access to healthcare were surveyed. In Kisumu County, surveys were conducted in three informal settlements: Nyalenda, Obunga, and Manyatta. In Siaya County, surveys were conducted in Simenya Village.
This study has shown that financial accessibility is a large barrier to healthcare throughout the study population, as the majority of study participants felt that healthcare in Kenya is not affordable. This is likely due to low health coverage and low enrollment rates into Kenyaâs national health insurance plan, National Hospital Insurance Fund (NHIF). Geographic barriers are also faced by members of the survey population. Despite the fact that most of the survey participants live within a reasonable distance (under 3km) of a healthcare facility, it can still take them a large amount of time to reach the facility. This is typically because of the indirect and unpaved paths and because travel is especially difficult for those that are old, sick, injured, or carrying children. The geographic barriers are directly linked to the financial barriers, as many people do not have enough money to pay for both the transportation to and from the facility and the care they need. The leading reason that survey participants made their facility choice was due to quality service, which shows that most people do find the healthcare facilities to offer acceptable service, despite other barriers that may exist. This study helped to clarify the barriers Kenyans face towards accessing healthcare and now measures can be taken to ensure that quality healthcare is readily available to all throughout the area
Ab-Initio Calculation of the Metal-Insulator Transition in Sodium rings and chains and in mixed Sodium-Lithium systems
We study how the Mott metal-insulator transition (MIT) is influenced when we
deal with electrons with different angular momenta. For lithium we found an
essential effect when we include -orbitals in the description of the Hilbert
space. We apply quantum-chemical methods to sodium rings and chains in order to
investigate the analogue of a MIT, and how it is influenced by periodic and
open boundaries. By changing the interatomic distance we analyse the character
of the many-body wavefunction and the charge gap. In the second part we mimic a
behaviour found in the ionic Hubbard model, where a transition from a band to a
Mott insulator occurs. For that purpose we perform calculations for mixed
sodium-lithium rings. In addition, we examine the question of bond alternation
for the pure sodium system and the mixed sodium-lithium system, in order to
determine under which conditions a Peierls distortion occurs.Comment: 8 pages, 7 figures, accepted Eur. J. Phys.
Modelling Age- and Density-Related Gas Exchange of Picea abies Canopies in the Fichtelgebirge, Germany
Differences in canopy exchange of water and carbon dioxide that occur due to changes in tree structure and density in montane Norway spruce stands of Central Germany were analyzed with a three dimensional microclimate and gas exchange model STANDFLUX. The model was used to calculate forest radiation absorption, the net photosynthesis and transpiration of single trees, and gas exchange of tree canopies. Model parameterizations were derived for six stands of Picea abies (L.) Karst. differing in age from 40 to 140 years and in density from 1680 to 320 trees per hectare. Parameterization included information on leaf area distribution from tree harvests, tree positions and tree sizes. Gas exchange was modelled using a single species-specific set of physiological parameters and assuming no influence of soil water availability. For our humid montane stands, these simplifying assumptions appeared to be acceptable. Comparisons of modelled daily tree transpiration with water use estimates from xylem sapflow measurements provided a test of the model. Estimates for canopy transpiration rate derived from the model and via xylem sapflow measurements agreed within 20%, especially at moderate to high air vapor pressure deficits. The results suggest that age and density dependent changes in canopy structure (changes in clumping of needles) and their effect on light exposure of the average needle lead to shifts in canopy conductance and determine tree canopy transpiration in these managed montane forests. Modelled canopy net photosynthesis rates are presented, but have not yet been verified at the canopy level
Transculturation: Mission and Modernity in Africa
This volume is a collection of papers dealing with cultural interaction between Europe and Africa resulting from missionary activity in Africa. The main focus is on the premises and impact of Protestant missionary work, both in Africa and in Europe, but one paper deals with similar processes in Islam
CDK2 regulates nuclear envelope protein dynamics and telomere attachment in mouse meiotic prophase
In most organisms, telomeres attach to the nuclear envelope at the onset of meiosis to promote the crucial processes of pairing, recombination and synapsis during prophase I. This attachment of meiotic telomeres is mediated by the specific distribution of several nuclear envelope components that interact with the attachment plates of the synaptonemal complex. We have determined by immunofluorescence and electron microscopy that the ablation of the kinase CDK2 alters the nuclear envelope in mouse spermatocytes, and that the proteins SUN1, KASH5 (also known as CCDC155) and lamin C2 show an abnormal cap-like distribution facing the centrosome. Strikingly, some telomeres are not attached to the nuclear envelope but remain at the nuclear interior where they are associated with SUN1 and with nuclear-envelope-detached vesicles. We also demonstrate that mouse testis CDK2 phosphorylates SUN1 in vitro. We propose that during mammalian prophase I the kinase CDK2 is a key factor governing the structure of the nuclear envelope and the telomere-led chromosome movements essential for homolog pairin
Mammalian Sperm Head Formation Involves Different Polarization of Two Novel LINC Complexes
Background: LINC complexes are nuclear envelope bridging protein structures formed by interaction of SUN and KASH proteins. They physically connect the nucleus with the peripheral cytoskeleton and are critically involved in a variety of dynamic processes, such as nuclear anchorage, movement and positioning and meiotic chromosome dynamics. Moreover, they are shown to be essential for maintaining nuclear shape. Findings: Based on detailed expression analysis and biochemical approaches, we show here that during mouse sperm development, a terminal cell differentiation process characterized by profound morphogenic restructuring, two novel distinctive LINC complexes are established. They consist either of spermiogenesis-specific Sun3 and Nesprin1 or Sun1g, a novel non-nuclear Sun1 isoform, and Nesprin3. We could find that these two LINC complexes specifically polarize to opposite spermatid poles likely linking to sperm-specific cytoskeletal structures. Although, as shown in co-transfection/ immunoprecipitation experiments, SUN proteins appear to arbitrarily interact with various KASH partners, our study demonstrates that they actually are able to confine their binding to form distinct LINC complexes. Conclusions: Formation of the mammalian sperm head involves assembly and different polarization of two novel spermiogenesis-specific LINC complexes. Together, our findings suggest that theses LINC complexes connect the differentiating spermatid nucleus to surrounding cytoskeletal structures to enable its well-directed shaping and elongation
- âŚ