46 research outputs found

    Experimental hut evaluation of bednets treated with an organophosphate (chlorpyrifos-methyl) or a pyrethroid (lambdacyhalothrin) alone and in combination against insecticide-resistant Anopheles gambiae and Culex quinquefasciatus mosquitoes

    Get PDF
    BACKGROUND: Pyrethroid resistant mosquitoes are becoming increasingly common in parts of Africa. It is important to identify alternative insecticides which, if necessary, could be used to replace or supplement the pyrethroids for use on treated nets. Certain compounds of an earlier generation of insecticides, the organophosphates may have potential as net treatments. METHODS: Comparative studies of chlorpyrifos-methyl (CM), an organophosphate with low mammalian toxicity, and lambdacyhalothrin (L), a pyrethroid, were conducted in experimental huts in CĂ´te d'Ivoire, West Africa. Anopheles gambiae and Culex quinquefasciatus mosquitoes from the area are resistant to pyrethroids and organophosphates (kdr and insensitive acetylcholinesterase Ace.1(R)). Several treatments and application rates on intact or holed nets were evaluated, including single treatments, mixtures, and differential wall/ceiling treatments. RESULTS AND CONCLUSION: All of the treatments were effective in reducing blood feeding from sleepers under the nets and in killing both species of mosquito, despite the presence of the kdr and Ace.1(R )genes at high frequency. In most cases, the effects of the various treatments did not differ significantly. Five washes of the nets in soap solution did not reduce the impact of the insecticides on A. gambiae mortality, but did lead to an increase in blood feeding. The three combinations performed no differently from the single insecticide treatments, but the low dose mixture performed encouragingly well indicating that such combinations might be used for controlling insecticide resistant mosquitoes. Mortality of mosquitoes that carried both Ace.1(R )and Ace.1(S )genes did not differ significantly from mosquitoes that carried only Ace.1(S )genes on any of the treated nets, indicating that the Ace.1(R )allele does not confer effective resistance to chlorpyrifos-methyl under the realistic conditions of an experimental hut

    Distribution of ace-1R and resistance to carbamates and organophosphates in Anopheles gambiae s.s. populations from CĂ´te d'Ivoire

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The spread of pyrethroid resistance in <it>Anopheles gambiae s.s. </it>is a critical issue for malaria vector control based on the use of insecticide-treated nets. Carbamates and organophosphates insecticides are regarded as alternatives or supplements to pyrethroids used in nets treatment. It is, therefore, essential to investigate on the susceptibility of pyrethroid resistant populations of <it>An. gambiae s.s. </it>to these alternative products.</p> <p>Methods</p> <p>In September 2004, a cross sectional survey was conducted in six localities in Côte d'Ivoire: Toumbokro, Yamoussoukro, Toumodi in the Southern Guinea savannah, Tiassalé in semi-deciduous forest, then Nieky and Abidjan in evergreen forest area. <it>An. gambiae </it>populations from these localities were previously reported to be highly resistant to pyrethroids insecticides. Anopheline larvae were collected from the field and reared to adults. Resistance/susceptibility to carbamates (0.4% carbosulfan, 0.1% propoxur) and organophosphates (0.4% chlorpyrifos-methyl, 1% fenitrothion) was assessed using WHO bioassay test kits for adult mosquitoes. Then, PCR assays were run to determine the molecular forms (M) and (S), as well as phenotypes for insensitive acetylcholinesterase (AChE1) due to G119S mutation.</p> <p>Results</p> <p>Bioassays showed carbamates (carbosulfan and propoxur) resistance in all tested populations of <it>An. gambiae s.s. </it>In addition, two out of the six tested populations (Toumodi and Tiassalé) were also resistant to organophosphates (mortality rates ranged from 29.5% to 93.3%). The M-form was predominant in tested samples (91.8%). M and S molecular forms were sympatric at two localities but no M/S hybrids were detected. The highest proportion of S-form (7.9% of <it>An. gambiae </it>identified) was in sample from Toumbokro, in the southern Guinea savannah. The G119S mutation was found in both M and S molecular forms with frequency from 30.9 to 35.2%.</p> <p>Conclusion</p> <p>This study revealed a wide distribution of insensitive acetylcholinesterase due to the G119S mutation in both M and S molecular forms of the populations of <it>An. gambiae s.s. </it>tested. The low cross-resistance between carbamates and organophosphates highly suggests involvement of other resistance mechanisms such as metabolic detoxification or F290V mutation.</p

    Indoor use of attractive toxic sugar bait in combination with long-lasting insecticidal net against pyrethroid-resistant Anopheles gambiae: an experimental hut trial in Mbé, central Côte d'Ivoire.

    Get PDF
    BACKGROUND: Indoor attractive toxic sugar bait (ATSB) has potential as a supplementary vector-control and resistance-management tool, offering an alternative mode of insecticide delivery to current core vector-control interventions, with potential to deliver novel insecticides. Given the high long-lasting insecticidal bed net (LLIN) coverage across Africa, it is crucial that the efficacy of indoor ATSB in combination with LLINs is established before it is considered for wider use in public health. METHODS: An experimental hut trial to evaluate the efficacy of indoor ATSB traps treated with 4% boric acid (BA ATSB) or 1% chlorfenapyr (CFP ATSB) in combination with untreated nets or LLINs (holed or intact), took place at the M'bé field station in central Côte d'Ivoire against pyrethroid resistant Anopheles gambiae sensu lato. RESULTS: The addition of ATSB to LLINs increased the mortality rates of wild pyrethroid-resistant An. gambiae from 19% with LLIN alone to 28% with added BA ATSB and to 39% with added CFP ATSB (p < 0.001). Anopheles gambiae mortality with combined ATSB and untreated net was similar to that of combined ATSB and LLIN regardless of which insecticide was used in the ATSB. The presence of holes in the LLIN did not significantly affect ATSB-induced An. gambiae mortality. Comparative tests against pyrethroid resistant and susceptible strains using oral application of ATSB treated with pyrethroid demonstrated 66% higher survival rate among pyrethroid-resistant mosquitoes. CONCLUSION: Indoor ATSB traps in combination with LLINs enhanced the control of pyrethroid-resistant An. gambiae. However, many host-seeking An. gambiae entering experimental huts with indoor ATSB exited into the verandah trap without sugar feeding when restricted from a host by a LLIN. Although ATSB has potential for making effective use of classes of insecticide otherwise unsuited to vector control, it does not exempt potential selection of resistance via this route

    Evaluation of standard pyrethroid based LNs (MiraNet and MagNet) in experimental huts against pyrethroid resistant Anopheles gambiae s.l. M'bé, Côte d'Ivoire: Potential for impact on vectorial capacity.

    Get PDF
    BACKGROUND: There is evidence from experimental hut and household studies that the entomological efficacy of long lasting pyrethroid treated nets (LLINs) is compromised in areas of pyrethroid resistance. The rapid increase in resistance intensity in African malaria vectors could further undermine the performance of these nets. The pyrethroid resistance intensity in Anopheles gambiae s.l. M'bé from central Côte d'Ivoire is reported to be high (> 1700 fold). Whether this translates into an increase in entomological indicators of malaria transmission needs investigation. METHOD: The efficacy of two long lasting insecticidal nets (LN) MiraNet and MagNet, both alpha-cypermethrin based was evaluated in experimental huts against pyrethroid resistant Anopheles gambiae in M'bé, central Côte d'Ivoire. All nets were deliberately holed to simulate wear-and-tear and were tested unwashed and after 20 standardized washes. RESULTS: The entry rates of An. gambiae s.l. into huts with insecticide treated nets were 62-84% lower than entry into huts with untreated nets (p < 0.001). Exit rates of An. gambiae s.l. with unwashed MiraNet and MagNet LNs were significantly greater than with untreated nets (50-60% vs 26%) and this effect after washing 20 times nets did not decrease. Blood-feeding with both nets was significantly inhibited relative to the untreated reference net (31-55%) (p < 0.001). Washing MiraNet LN 20 times had no significant impact on protection against An. gambiae s.l. bites but it did cause a significant fall by 40% in protection with MagNet LN (p < 0.001). All insecticide treated nets induced higher mortality of An. gambiae s.l. than the untreated net (p < 0.05). The impact though significant was limited (14-30%). The personal protection against An. gambiae s.l. bites derived from all treatments was high (75-90%). The overall insecticidal effect was compromised by pyrethroid resistance and was not detectable in some treatments. CONCLUSION: In this area of high pyrethroid resistance intensity (over 1700 fold), both MiraNet and MagNet LNs still conferred appreciable personal protection against mosquito bites despite inducing only slightly greater mortality of pyrethroid resistant Anopheles mosquitoes than untreated nets. The impact is comparable to moderately intense Benin resistance area (207 fold) and Burkina Faso (over 1000 fold). This preserved level of protection plus the small but sensitive killing of mosquitoes may continue to impact vectorial capacity despite high intensity of resistance. Nevertheless, there is an obvious need for strategies and nets with novel mode of action to enhance vector control

    Evaluation of an alpha-cypermethrin + PBO mixture long-lasting insecticidal net VEERALIN® LN against pyrethroid resistant Anopheles gambiae s.s.: an experimental hut trial in M'bé, central Côte d'Ivoire.

    Get PDF
    BACKGROUND: Long-lasting insecticidal nets (LLINs) are the primary method of malaria prevention. However, the widespread resistance to pyrethroids among major malaria vector species represents a significant threat to the continued efficacy of pyrethroid LLIN. Piperonyl butoxide (PBO) is a synergist that inhibits the activity of metabolic enzymes of the cytochrome P450 family known to detoxify insecticides including pyrethroids. Synergist LLIN incorporating PBO and a pyrethroid may provide improved control compared to pyrethroid-only LLIN. METHODS: The efficacy of VEERALIN® LN (VKA polymers Pvt Ltd, India), an alpha-cypermethrin PBO synergist net was evaluated in experimental huts in M'bé, central Côte d'Ivoire against wild pyrethroid resistant Anopheles gambiae s.s. Comparison was made with a standard alpha-cypermethrin-treated net (MAGNet® LN, VKA polymers Pvt Ltd, India). Nets were tested unwashed and after 20 standardized washes. RESULTS: VEERALIN® LN demonstrated improved efficacy compared to MAGNet® LN against wild free-flying pyrethroid-resistant An. gambiae s.s. Before washing, VEERALIN® LN produced mortality of An. gambiae s.s. (51%) significantly higher than the standard pyrethroid-only net (29%) (P < 0.0001). Although there was a significant reduction in mortality with both LLINs after 20 washes, VEERALIN® LN remained superior in efficacy to MAGNet® LN (38 vs 17%) (P < 0.0001). Blood-feeding was significantly inhibited with both types of insecticide-treated nets relative to the untreated control net (P < 0.0001). Unwashed VEERALIN® LN induced significantly higher blood-feeding inhibition of An. gambiae s.s. (62.6%) compared to MAGNet® LN (35.4%) (P < 0.001). The difference persisted after washing, as there was no indication that either LLIN lost protection against biting or blood-feeding. The level of personal protection derived from the use of VEERALIN® LN was high (87%) compared to MAGNet® LN (66-69%) whether unwashed or washed. The AI content of VEERALIN® LN after 20 washes decreased from 6.75 to 6.03 g/kg for alpha-cypermethrin and from 2.95 to 2.64 g/kg for PBO, corresponding to an overall retention of 89% for each compound. CONCLUSIONS: The addition of the synergist PBO to pyrethroid net greatly improved protection and control of pyrethroid-resistant An. gambiae s.s. The pyrethroid-PBO VEERALIN® LN has the potential to reduce transmission in areas compromised by pyrethroid resistance

    Empirical and theoretical investigation into the potential impacts of insecticide resistance on the effectiveness of insecticide-treated bed nets.

    Get PDF
    In spite of widespread insecticide resistance in vector mosquitoes throughout Africa, there is limited evidence that long-lasting insecticidal bed nets (LLINs) are failing to protect against malaria. Here, we showed that LLIN contact in the course of host-seeking resulted in higher mortality of resistant Anopheles spp. mosquitoes than predicted from standard laboratory exposures with the same net. We also found that sublethal contact with an LLIN caused a reduction in blood feeding and subsequent host-seeking success in multiple lines of resistant mosquitoes from the laboratory and the field. Using a transmission model, we showed that when these LLIN-related lethal and sublethal effects were accrued over mosquito lifetimes, they greatly reduced the impact of resistance on malaria transmission potential under conditions of high net coverage. If coverage falls, the epidemiological impact is far more pronounced. Similarly, if the intensity of resistance intensifies, the loss of malaria control increases nonlinearly. Our findings help explain why insecticide resistance has not yet led to wide-scale failure of LLINs, but reinforce the call for alternative control tools and informed resistance management strategies

    Presence of susceptible wild strains of Anopheles gambiae in a large industrial palm farm located in Aboisso, South-Eastern of CĂ´te d'Ivoire.

    Get PDF
    The effectiveness of malaria control programmes through implementation of vector control activities is challenged by the emergence of insecticide resistance. In the South-Eastern region of Côte d'Ivoire, where palm oil plantations remain the predominant agricultural crop, the susceptibility of wild Anopheles gambiae sensu lato species is still unknown and thus requires a particular attention. The current study was carried out to address the gap by in-depth characterization of susceptibility level of An. gambiae mosquitoes from Ehania-V1 to WHO-recommended doses of six insecticides belonging to available classes and also to screen a subset for target site mutations and possible inhibition of P450 enzymes. Overall results showed variable resistance profile across WHO-recommended insecticides tested. Mortalities ranged from 8.3% (the lowest mortality was recorded with DDT) to 98% (the highest mortality was recorded with fenitrothion). Importantly, mortality to deltamethrin, an important pyrethroid used in public health for impregnation of mosquito nets was close to 98%, precluding a possible susceptibility to this insecticide, albeit further investigations are required. Pre-exposure of An. gambiae s.l. to PBO did not show any significant variation across insecticides (p = 0.002), although a partial increase was detected for alphacypermethrin and bendiocarb, suggesting a low of activity of cytochrome P450 enzymes (p = 0.277). High frequency of kdr L1014F was recorded in both Anopheles coluzzii (91%) and in An. gambiae (96%), associated with ace-1 (R) G119S mutation at low frequency (<20%). The high mortality rate to deltamethrin, organophosphate and the non-detection of P450 activity in resistance observed in Ehania-V1 appears as a positive outcome for further control strategies as metabolic-based P450 resistance remains major challenge to manage. These results should help the National Malaria Control Programme when designing strategies for vector control in palm oil areas of Côte d'Ivoire

    Screening and field performance of powder-formulated insecticides on eave tube inserts against pyrethroid resistant Anopheles gambiae s.l.:an investigation into 'actives' prior to a randomized controlled trial in CĂ´te d'Ivoire

    Get PDF
    BACKGROUND: The widespread emergence of insecticide resistance in African malaria vectors remains one of the main challenges facing control programmes. Electrostatic coating that uses polarity to bind insecticide particles is a new way of delivering insecticides to mosquitoes. Although previous tests demonstrated the resistance breaking potential of this application method, studies screening and investigating the residual efficacy of a broader range of insecticides are necessary. METHODS: Eleven insecticide powder formulations belonging to six insecticide classes (pyrethroid, carbamate, organophosphate, neonicotinoid, entomopathogenic fungus and boric acid) were initially screened for residual activity over 4 weeks against pyrethroid resistant Anopheles gambiae sensu lato (s.l.) from the M'bé valley, central Côte d'Ivoire. Tests were performed using the eave tube assay that simulates the behavioural interaction between mosquitoes and insecticide-treated inserts. With the best performing insecticide, persistence was monitored over 12 months and the actual contact time lethal to mosquitoes was explored, using a range of transient exposure time (5 s, 30 s, 1 min up to 2 min) in the tube assays in laboratory. The mortality data were calibrated against overnight release-recapture data from enclosure around experimental huts incorporating treated inserts at the M'bé site. The natural recruitment rate of mosquitoes to the tube without insecticide treatment was assessed using fluorescent dust particles. RESULTS: Although most insecticides assayed during the initial screening induced significant mortality (45-100%) of pyrethroid resistant An. gambiae during the first 2 weeks, only 10% beta-cyfluthrin retained high residual efficacy, killing 100% of An. gambiae during the first month and > 80% over 8 subsequent months. Transient exposure for 5 s of mosquitoes to 10% beta-cyfluthrin produced 56% mortality, with an increase to 98% when contact time was extended to 2 min (P = 0.001). In the experimental hut enclosures, mortality of An. gambiae with 10% beta-cyfluthrin treated inserts was 55% compared to similar rate (44%) of mosquitoes that contacted the inserts treated with fluorescent dusts. This suggests that all host-seeking female mosquitoes that contacted beta-cyfluthrin treated inserts during host-seeking were killed. CONCLUSION: The eave tube technology is a novel malaria control approach which combines house proofing and targeted control of anopheline mosquitoes using insecticide treated inserts. Beta-cyfluthrin showed great promise for providing prolonged control of pyrethroid resistant An. gambiae and has potential to be deployed year-round in areas where malaria parasites are transmitted by highly pyrethroid resistant An. gambiae across sub-Saharan Africa

    The role of human and mosquito behaviour in the efficacy of a house-based intervention : Lethal House Lure for Malaria Mosquitoes

    Get PDF
    Housing improvement such as blocking eaves and screening windows can help in reducing exposure to indoor biting mosquitoes. The impacts of physical barriers could potentially be boosted by the addition of a mechanism that kills mosquitoes as they attempt to enter the house. One example is to combine household screening with EaveTubes, which are insecticide-treated tubes inserted into closed eaves that attract and kill host-searching mosquitoes. The epidemiological impact of screening + EaveTubes is being evaluated in a large cluster randomized trial in Cote d'Ivoire. The study presented here is designed as a complement to this trial to help better understand the functional roles of screening and EaveTubes. We began by evaluating householder behaviour and household condition in the study villages. This work revealed that doors (and to some extent windows) were left open for large parts of the evening and morning, and that even houses modified to make them more 'mosquito proof' often had possible entry points for mosquitoes. We next built two realistic experimental houses in a village to enable us to explore how these aspects of behaviour and household quality affected the impact of screening and EaveTubes. We found that screening could have a substantial impact on indoor mosquito densities, even with realistic household condition and behaviour. By contrast, EaveTubes had no significant impact on indoor mosquito density, either as a stand-alone intervention or in combination with screening. However, there was evidence that mosquitoes recruited to the EaveTubes, and the resulting mortality could create a community benefit. These complementary modes of action of screening and EaveTubes support the rationale of combining the technologies to create a 'Lethal House Lure'. This article is part of the theme issue 'Novel control strategies for mosquito-borne diseases'

    Global malaria predictors at a localized scale

    Get PDF
    Malaria is a life-threatening disease caused by Plasmodium parasites transmitted by Anopheles mosquitoes. In 2022, more than 249 million cases of malaria were reported worldwide, with an estimated 608,000 deaths. While malaria incidence has decreased globally in recent decades, some public health gains have plateaued, and many endemic hotspots still face high transmission rates. Understanding local drivers of malaria transmission is crucial but challenging due to the complex interactions between climate, entomological and human variables, and land use. This study focuses on highly climatically suitable and endemic areas in Côte d’Ivoire to assess the explanatory power of coarse climatic predictors of malaria transmission at a fine scale. Using data from 40 villages participating in a randomized controlled trial of a household malaria intervention, the study examines the effects of climate variation over time on malaria transmission. Through panel regressions and statistical modeling, the study investigates which variable (temperature, precipitation, or entomological inoculation rate) and its form (linear or unimodal) best explains seasonal malaria transmission and the factors predicting spatial variation in transmission. The results highlight the importance of temperature and rainfall, with quadratic temperature and all precipitation models performing well, but the causal influence of each driver remains unclear due to their strong correlation. Further, an independent, mechanistic temperature-dependent R0 model based on laboratory data, which predicts that malaria transmission peaks at 25°C and declines at lower and higher temperatures, aligns well with observed malaria incidence rates, emphasizing the significance and predictability of temperature suitability across scales. By contrast, entomological variables, such as entomological inoculation rate, were not strong predictors of human incidence in this context. Finally, the study explores the predictors of spatial variation in malaria, considering land use, intervention, and entomological variables. The findings contribute to a better understanding of malaria transmission dynamics at local scales, aiding in the development of effective control strategies in endemic regions
    corecore