1,962 research outputs found

    High-resolution x-ray-emission study of 1s4p and 1s3d two-electron photoexcitations in Kr

    Get PDF
    High-energy-resolution photoexcited KN2,3 x-ray-emission measurements were carried out on krypton with the excitation energy tuned around the 1s4p and 1s3d double-excitation thresholds. Comprehensive two-dimensional resonant inelastic x-ray-scattering maps were recorded for the range of excitation and emission energies corresponding to both types of double excitations. The double-excitation signal could be clearly resolved from the dominant 1s ionization signal. The latter was subtracted from the measured maps, yielding isolated 1s4p and 1s3d photoexcitation spectra. Both two-electron excitation spectra are well described by a model spectrum built of consecutive bound-bound discrete transitions and shake-up and shake-off channels giving precise energies and intensities of the corresponding contributions. The obtained results are compared with other existing experimental values based on x-ray-absorption measurements and theoretical predictions

    Maximising the benefits of renewable energy infrastructure in displacement settings: optimising the operation of a solar-hybrid mini-grid for institutional and business users in Mahama Refugee Camp, Rwanda

    Get PDF
    Humanitarian organisations typically rely on expensive, polluting diesel generators to provide power for services in refugee camps, whilst camp residents often have no access to electricity. Integrating solar and battery storage capacity into existing diesel-based systems can provide significant cost and emissions savings and offer an opportunity to provide power to displaced communities. By analysing monitored demand data and using computational energy system modelling, we assess the savings made possible by the integration of solar (18.4 kWp) and battery (78 kWh) capacity into the existing diesel-powered mini-grid in Mahama Refugee Camp, Rwanda. We find that the renewables infrastructure reduces fuel expenditure by 41,500andemissionsby44tCO2eq(both7441,500 and emissions by 44 tCO2eq (both 74%) over five years under the generator’s current operational strategy. An alternative strategy, with deeper battery cycling, unlocks further savings of 4100 and 12.4 tCO2eq, using 33% of battery lifetime versus 15% under the original strategy. This reduces the cost of electricity by 33% versus diesel generation alone, whilst more aggressive cycling strategies could prove economical if moderate battery price decreases are realised. Extending the system to businesses in the camp marketplace can completely offset the system fuel costs if the mini-grid company charges customers the same tariff as the one it uses in the host community, but not the national grid tariff. Humanitarian organisations and the private sector should explore opportunities to integrate renewables into existing diesel-based infrastructure, and optimise its performance once installed, to reduce costs and emissions and provide meaningful livelihood opportunities to displaced communities

    Antiferromagnetic 4-d O(4) Model

    Get PDF
    We study the phase diagram of the four dimensional O(4) model with first (beta1) and second (beta2) neighbor couplings, specially in the beta2 < 0 region, where we find a line of transitions which seems to be second order. We also compute the critical exponents on this line at the point beta1 =0 (F4 lattice) by Finite Size Scaling techniques up to a lattice size of 24, being these exponents different from the Mean Field ones.Comment: 26 pages LaTeX2e, 7 figures. The possibility of logarithmic corrections has been considered, new figures and tables added. Accepted for publication in Physical Review

    Elemental characterisation of melanin in feathers via synchrotron X-ray imaging and absorption spectroscopy

    Get PDF
    Melanin is a critical component of biological systems, but the exact chemistry of melanin is still imprecisely known. This is partly due to melanin’s complex heterogeneous nature and partly because many studies use synthetic analogues and/or pigments extracted from their natural biological setting, which may display important differences from endogenous pigments. Here we demonstrate how synchrotron X-ray analyses can non-destructively characterise the elements associated with melanin pigment in situ within extant feathers. Elemental imaging shows that the distributions of Ca, Cu and Zn are almost exclusively controlled by melanin pigment distribution. X-ray absorption spectroscopy demonstrates that the atomic coordination of zinc and sulfur is different within eumelanised regions compared to pheomelanised regions. This not only impacts our fundamental understanding of pigmentation in extant organisms but also provides a significant contribution to the evidence-based colour palette available for reconstructing the appearance of fossil organisms

    Multicolour photometry for exoplanet candidate validation

    Full text link
    Context. The TESS and PLATO missions are expected to find vast numbers of new transiting planet candidates. However, only a fraction of these candidates will be legitimate planets, and the candidate validation will require a significant amount of follow-up resources. Radial velocity follow-up can be carried out only for the most promising candidates around bright, slowly rotating, stars. Thus, before devoting RV resources to candidates, they need to be vetted using cheaper methods, and, in the cases for which an RV confirmation is not feasible, the candidate's true nature needs to be determined based on these alternative methods alone. Aims. We study the applicability of multicolour transit photometry in the validation of transiting planet candidates when the candidate signal arises from a real astrophysical source. We seek to answer how securely can we estimate the true uncontaminated star-planet radius ratio when the light curve may contain contamination from unresolved light sources inside the photometry aperture when combining multicolour transit observations with a physics-based contamination model. Methods. The study is based on simulations and ground-based transit observations. The analyses are carried out with a contamination model integrated into the PyTransit v2 transit modelling package, and the observations are carried out with the MuSCAT2 multicolour imager installed in the 1.5 m TCS in the Teide Observatory. Results. We show that multicolour transit photometry can be used to estimate the amount of flux contamination and the true radius ratio. Combining the true radius ratio with an estimate for the stellar radius yields the true absolute radius of the transiting object, which is a valuable quantity in statistical candidate validation, and enough in itself to validate a candidate whose radius falls below the theoretical lower limit for a brown dwarf.Comment: Accepted to A&

    High-speed fixed-target serial virus crystallography

    Get PDF
    We report a method for serial X-ray crystallography at X-ray free-electron lasers (XFELs), which allows for full use of the current 120-Hz repetition rate of the Linear Coherent Light Source (LCLS). Using a micropatterned silicon chip in combination with the high-speed Roadrunner goniometer for sample delivery, we were able to determine the crystal structures of the picornavirus bovine enterovirus 2 (BEV2) and the cytoplasmic polyhedrosis virus type 18 polyhedrin, with total data collection times of less than 14 and 10 min, respectively. Our method requires only micrograms of sample and should therefore broaden the applicability of serial femtosecond crystallography to challenging projects for which only limited sample amounts are available. By synchronizing the sample exchange to the XFEL repetition rate, our method allows for most efficient use of the limited beam time available at XFELs and should enable a substantial increase in sample throughput at these facilities

    Laser-induced transient magnons in Sr<sub>3</sub>Ir<sub>2</sub>O<sub>7</sub> throughout the Brillouin zone

    Get PDF
    Although ultrafast manipulation of magnetism holds great promise for new physical phenomena and applications, targeting specific states is held back by our limited understanding of how magnetic correlations evolve on ultrafast timescales. Using ultrafast resonant inelastic X-ray scattering we demonstrate that femtosecond laser pulses can excite transient magnons at large wavevectors in gapped antiferromagnets and that they persist for several picoseconds, which is opposite to what is observed in nearly gapless magnets. Our work suggests that materials with isotropic magnetic interactions are preferred to achieve rapid manipulation of magnetism
    corecore