312 research outputs found

    Dissipation, noise and DCC domain formation

    Full text link
    We investigate the effect of friction on domain formation in disoriented chiral condensate. We solve the equation of motion of the linear sigma model, in the Hartree approximation, including a friction and a white noise term. For quenched initial condition, we find that even in presence of noise and dissipation domain like structure emerges after a few fermi of evolution. Domain size as large as 5 fm can be formed.Comment: 7 pages, 3 figure

    How to Make Large Domains of Disoriented Chiral Condensate

    Full text link
    Rajagopal and Wilczek have proposed that relativistic nuclear collisions can generate domains in which the chiral condensate is disoriented. If sufficiently large ({\it i.e.} nucleus sized), such domains can yield measurable fluctuations in the number of neutral and charged pions. However, by numerical simulation of the zero-temperature two-flavor linear sigma model, we find that domains are essentially {\it pion} sized. Nevertheless, we show that large domains can occur if the effective mesons masses are much lighter.Comment: 6 pages and 2 postscript figures, BNL-GGP-

    Comparison of Hadronic Interaction Models at Auger Energies

    Get PDF
    The three hadronic interaction models DPMJET 2.55, QGSJET 01, and SIBYLL 2.1, implemented in the air shower simulation program CORSIKA, are compared in the energy range of interest for the Pierre Auger experiment. The model dependence of relevant quantities in individual hadronic interactions and air showers is investigated.Comment: Contribution to XII Int. Symp. on Very High Energy Cosmic Ray Interactions, 4 pages, 8 figure

    Kinetic description of hadron-hadron collisions

    Full text link
    A transport model based on the mean free path approach to describe pp collisions is proposed. We assume that hadrons can be treated as bags of partons similarly to the MIT bag model. When the energy density in the collision is higher than a critical value, the bags break and partons are liberated. The partons expand and can make coalescence to form new hadrons. The results obtained compare very well with available data and some prediction for higher energies collisions are discussed. Based on the model we suggest that a QGP could already be formed in the pp collisions at high energies

    Directional detection as a strategy to discover Galactic Dark Matter

    Full text link
    Directional detection of Galactic Dark Matter is a promising search strategy for discriminating genuine WIMP events from background ones. Technical progress on gaseous detectors and read-outs has permitted the design and construction of competitive experiments. However, to take full advantage of this powerful detection method, one need to be able to extract information from an observed recoil map to identify a WIMP signal. We present a comprehensive formalism, using a map-based likelihood method allowing to recover the main incoming direction of the signal and its significance, thus proving its galactic origin. This is a blind analysis intended to be used on any directional data. Constraints are deduced in the (σn,mχ\sigma_n, m_\chi) plane and systematic studies are presented in order to show that, using this analysis tool, unambiguous dark matter detection can be achieved on a large range of exposures and background levels.Comment: 20 pages, 5 figures Final version to appear in Phys. Lett.

    Can Disordered Chiral Condensates Form? A Dynamical Perspective

    Full text link
    We address the issue of whether a region of disordered chiral condensate (DCC), in which the chiral condensate has components along the pion directions, can form. We consider a system going through the chiral phase transition either via a quench, or via relaxation of the high temperature phase to the low temperature one within a given time scale (of order 1fm/c\sim 1 \rm{fm/c}). We use a density matrix based formalism that takes both thermal and quantum fluctuations into account non-perturbatively to argue that if the O(4)O(4) linear sigma model is the correct way to model the situation in QCD, then it is very unlikely at least in the Hartree approximation, that a large (>10 fm> 10\ \rm{fm}) DCC region will form. Typical sizes of such regions are 12 fm\sim 1 -2 \ \rm{fm} and the density of pions in such regions is at most of order 0.2/fm3\sim 0.2 / \rm{fm}^3. We end with some speculations on how large DCC regions may be formed.Comment: 21 pages LATEX, 12 figures available upon request via regular mail, PITT-94-0

    What it takes to measure a fundamental difference between dark matter and baryons: the halo velocity anisotropy

    Full text link
    Numerous ongoing experiments aim at detecting WIMP dark matter particles from the galactic halo directly through WIMP-nucleon interactions. Once such a detection is established a confirmation of the galactic origin of the signal is needed. This requires a direction-sensitive detector. We show that such a detector can measure the velocity anisotropy beta of the galactic halo. Cosmological N-body simulations predict the dark matter anisotropy to be nonzero, beta~0.2. Baryonic matter has beta=0 and therefore a detection of a nonzero beta would be strong proof of the fundamental difference between dark and baryonic matter. We estimate the sensitivity for various detector configurations using Monte Carlo methods and we show that the strongest signal is found in the relatively few high recoil energy events. Measuring beta to the precision of ~0.03 will require detecting more than 10^4 WIMP events with nuclear recoil energies greater than 100 keV for a WIMP mass of 100 GeV and a 32S target. This number corresponds to ~10^6 events at all energies. We discuss variations with respect to input parameters and we show that our method is robust to the presence of backgrounds and discuss the possible improved sensitivity for an energy-sensitive detector.Comment: 15 pages, 8 figures, accepted by JCAP. Matches accepted versio

    Limits on spin-dependent WIMP-nucleon cross-sections from the first ZEPLIN-II data

    Get PDF
    The first underground data run of the ZEPLIN-II experiment has set a limit on the nuclear recoil rate in the two-phase xenon detector for direct dark matter searches. In this paper the results from this run are converted into the limits on spin-dependent WIMP-proton and WIMP-neutron cross-sections. The minimum of the curve for WIMP-neutron cross-section corresponds to 0.07 pb at a WIMP mass of around 65 GeV.Comment: 12 pages, 2 figures, to be published in Physics Letters
    corecore