2,403 research outputs found

    Spontaneous breaking of rotational symmetry in superconductors

    Full text link
    We show that homogeneous superconductors with broken spin/isospin symmetry lower their energy via a transition to a novel superconducting state where the Fermi-surfaces are deformed to a quasi-ellipsoidal form at zero total momentum of Cooper pairs. In this state, the gain in the condensation energy of the pairs dominates over the loss in the kinetic energy caused by the lowest order (quadrupole) deformation of Fermi-surfaces from the spherically symmetric form. There are two energy minima in general, corresponding to the deformations of the Fermi-spheres into either prolate or oblate forms. The phase transition from spherically symmetric state to the superconducting state with broken rotational symmetry is of the first order.Comment: 5 pages, including 3 figures, published versio

    Molecular regulation of GLUT-4 targeting in 3T3-L1 adipocytes

    Get PDF
    Insulin stimulates glucose transport in muscle and adipose tissue by triggering the movement of the glucose transporter GLUT-4 from an intracellular compartment to the cell surface. Fundamental to this process is the intracellular sequestration of GLUT-4 in nonstimulated cells. Two distinct targeting motifs in the amino and carboxy termini of GLUT-4 have been previously identified by expressing chimeras comprised of portions of GLUT-4 and GLUT-1, a transporter isoform that is constitutively targeted to the cell surface, in heterologous cells. These motifs-FQQ1 in the NH terminus and LL in the COOH terminus-resemble endocytic signals that have been described in other proteins. In the present study we have investigated the roles of these motifs in GLUT-4 targeting in insulin-sensitive cells. Epitope-tagged GLUT-4 constructs engineered to differentiate between endogenous and transfected GLUT-4 were stably expressed in 3T3-L1 adipocytes. Targeting was assessed in cells incubated in the presence or absence of insulin by subcellular fractionation. The targeting of epitope-tagged GLUT-4 was indistinguishable from endogenous GLUT-4. Mutation of the FQQI motif (F to A) caused GLUT-4 to constitutively accumulate at the cell surface regardless of expression level. Mutation of the dileucine motif (LL to AA) caused an increase in cell surface distribution only at higher levels of expression, but the overall cell surface distribution of this mutant was less than that of the amino-terminal mutants. Both NH- and COOH-terminal mutants retained insulin-dependent movement from an intracellular to a cell surface locale, suggesting that neither of these motifs is involved in the insulin-dependent redistribution of GLUT-4. We conclude that the phenylalanine-based NH-terminal and the dileucine-based COOH-terminal motifs play important and distinct roles in GLUT-4 targeting in 3T3-L1 adipocytes

    Anisotropic multi-gap superfluid states in nuclear matter

    Full text link
    It is shown that under changing density or temperature a nucleon Fermi superfluid can undergo a phase transition to an anisotropic superfluid state, characterized by nonvanishing gaps in pairing channels with singlet-singlet (SS) and triplet-singlet (TS) pairing of nucleons (in spin and isospin spaces). In the SS pairing channel nucleons are paired with nonzero orbital angular momentum. Such two-gap states can arise as a result of branching from the one-gap solution of the self-consistent equations, describing SS or TS pairing of nucleons, that depends on the relationship between SS and TS coupling constants at the branching point. The density/temperature dependence of the order parameters and the critical temperature for transition to the anisotropic two-gap state are determined in a model with the SkP effective interaction. It is shown that the anisotropic SS-TS superfluid phase corresponds to a metastable state in nuclear matter.Comment: Prepared with RevTeX4, 7p., 5 fi

    Exact Solution of the Munoz-Eaton Model for Protein Folding

    Full text link
    A transfer-matrix formalism is introduced to evaluate exactly the partition function of the Munoz-Eaton model, relating the folding kinetics of proteins of known structure to their thermodynamics and topology. This technique can be used for a generic protein, for any choice of the energy and entropy parameters, and in principle allows the model to be used as a first tool to characterize the dynamics of a protein of known native state and equilibrium population. Applications to a β\beta-hairpin and to protein CI-2, with comparisons to previous results, are also shown.Comment: 4 pages, 5 figures, RevTeX 4. To be published in Phys. Rev. Let

    Four-particle condensate in strongly coupled fermion systems

    Full text link
    Four-particle correlations in fermion systems at finite temperatures are investigated with special attention to the formation of a condensate. Instead of the instability of the normal state with respect to the onset of pairing described by the Gorkov equation, a new equation is obtained which describes the onset of quartetting. Within a model calculation for symmetric nuclear matter, we find that below a critical density, the four-particle condensation (alpha-like quartetting) is favored over deuteron condensation (triplet pairing). This pairing-quartetting competition is expected to be a general feature of interacting fermion systems, such as the excition-biexciton system in excited semiconductors. Possible experimental consequences are pointed out.Comment: LaTeX, 11 pages, 2 figures, uses psfig.sty (included), to be published in Phys. Rev. Lett., tentatively scheduled for 13 April 1998 (Volume 80, Number 15

    The Nucleon Spectral Function at Finite Temperature and the Onset of Superfluidity in Nuclear Matter

    Get PDF
    Nucleon selfenergies and spectral functions are calculated at the saturation density of symmetric nuclear matter at finite temperatures. In particular, the behaviour of these quantities at temperatures above and close to the critical temperature for the superfluid phase transition in nuclear matter is discussed. It is shown how the singularity in the thermodynamic T-matrix at the critical temperature for superfluidity (Thouless criterion) reflects in the selfenergy and correspondingly in the spectral function. The real part of the on-shell selfenergy (optical potential) shows an anomalous behaviour for momenta near the Fermi momentum and temperatures close to the critical temperature related to the pairing singularity in the imaginary part. For comparison the selfenergy derived from the K-matrix of Brueckner theory is also calculated. It is found, that there is no pairing singularity in the imaginary part of the selfenergy in this case, which is due to the neglect of hole-hole scattering in the K-matrix. From the selfenergy the spectral function and the occupation numbers for finite temperatures are calculated.Comment: LaTex, 23 pages, 21 PostScript figures included (uuencoded), uses prc.sty, aps.sty, revtex.sty, psfig.sty (last included

    Monte Carlo simulation of a mammographic test phantom

    Get PDF
    A test phantom, including a wide range of mammographic tissue equivalent materials and test details, was imaged on a digital mammographic system. In order to quantify the effect of scatter on the contrast obtained for the test details, calculations of the scatter-to-primary ratio (S/P) have been made using a Monte Carlo simulation of the digital mammographic imaging chain, grid and test phantom. The results show that the S/P values corresponding to the imaging conditions used were in the range 0.084-0.126. Calculated and measured pixel values in different regions of the image were compared as a validation of the model and showed excellent agreement. The results indicate the potential of Monte Carlo methods in the image quality-patient dose process optimisation, especially in the assessment of imaging conditions not available on standard mammographic unit

    Thermodynamics of nn-pp condensate in asymmetric nuclear matter

    Get PDF
    We study the neutron-proton pairing in nuclear matter as a function of isospin asymmetry at finite temperatures and the saturation density using realistic nuclear forces and Brueckner-renormalized single particle spectra. Our computation of the thermodynamic quantities shows that while the difference of the entropies of the superconducting and normal phases anomalously changes its sign as a function of temperature for arbitrary asymmetry, the grand canonical potential does not; the superconducting state is found to be stable in the whole temperature-asymmetry plane. The pairing gap completely disappears for density-asymmetries exceeding αc=(nnnp)/n0.11\alpha_c= (n_n-n_p)/n \simeq 0.11.Comment: 7 pages, including 3 figures, uses revte

    Pairing properties of nucleonic matter employing dressed nucleons

    Full text link
    A survey of pairing properties of nucleonic matter is presented that includes the off-shell propagation associated with short-range and tensor correlations. For this purpose, the gap equation has been solved in its most general form employing the complete energy and momentum dependence of the normal self-energy contributions. The latter correlations include the self-consistent calculation of the nucleon self-energy that is generated by the summation of ladder diagrams. This treatment preserves the conservation of particle number unlike approaches in which the self-energy is based on the Brueckner-Hartree-Fock approximation. A huge reduction in the strength as well as temperature and density range of 3S1{}^3S_1-3D1{}^3D_1 pairing is obtained for nuclear matter as compared to the standard BCS treatment. Similar dramatic results pertain to 1S0{}^1S_0 pairing of neutrons in neutron matter.Comment: 15 pages, 10 figure

    Phi-values in protein folding kinetics have energetic and structural components

    Full text link
    Phi-values are experimental measures of how the kinetics of protein folding is changed by single-site mutations. Phi-values measure energetic quantities, but are often interpreted in terms of the structures of the transition state ensemble. Here we describe a simple analytical model of the folding kinetics in terms of the formation of protein substructures. The model shows that Phi-values have both structural and energetic components. In addition, it provides a natural and general interpretation of "nonclassical" Phi-values (i.e., less than zero, or greater than one). The model reproduces the Phi-values for 20 single-residue mutations in the alpha-helix of the protein CI2, including several nonclassical Phi-values, in good agreement with experiments.Comment: 15 pages, 3 figures, 1 tabl
    corecore