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Abstract. Insulin stimulates glucose transport in mus- 
cle and adipose tissue by triggering the movement  of 
the glucose transporter  GLUT-4  from an intracellular 
compartment  to the cell surface. Fundamental  to this 
process is the intracellular sequestration of GLUT-4  in 
nonstimulated ceils. Two distinct targeting motifs in the 
amino and carboxy termini of GLUT-4  have been pre- 
viously identified by expressing chimeras comprised of 
portions of GLUT-4  and G L U T - l ,  a transporter iso- 
form that is constitutively targeted to the cell surface, in 
heterologous cells. These mot i fs -FQQI in the NH 2 ter- 
minus and LL in the C O O H  terminus-resemble en- 
docytic signals that have been described in other pro- 
teins. In the present study we have investigated the 
roles of these motifs in GLUT-4  targeting in insulin- 
sensitive cells. Epitope-tagged GLUT-4  constructs en- 
gineered to differentiate between endogenous and 
transfected GLUT-4  were stably expressed in 3T3-L1 
adipocytes. Targeting was assessed in cells incubated in 

the presence or absence of insulin by subcellular frac- 
tionation. The targeting of epitope-tagged GLUT-4  was 
indistinguishable from endogenous GLUT-4.  Mutation 
of the FQQI  motif  (F 5 to A 5) caused GLUT-4  to consti- 
tutively accumulate at the cell surface regardless of ex- 
pression level. Mutation of the dileucine motif (t489L 490 
to A489A 49°) caused an increase in cell surface distribu- 
tion only at higher levels of expression, but the overall 
cell surface distribution of this mutant was less than 
that of the amino-terminal mutants. Both NH2- and 
COOH-terminal  mutants retained insulin-dependent 
movement  from an intracellular to a cell surface locale, 
suggesting that neither of these motifs is involved in the 
insulin-dependent redistribution of GLUT-4.  We con- 
clude that the phenylalanine-based NH2-terminal and 
the dileucine-based COOH-terminal  motifs play im- 
portant and distinct roles in GLUT-4 targeting in 3T3- 
L1 adipocytes. 

T 
HE mammalian facilitative glucose transporter fam- 
ily consists of six isoforms, referred to as GLUTs 1, 
which are highly homologous in both primary 

amino acid sequence and predicted secondary topology. 
Heterology between isoforms occurs mainly within the cy- 
toplasmic amino and carboxy termini (Bell et al., 1990; re- 
viewed in James et al., 1993). GLUT-4 is expressed exclu- 
sively in cardiac and skeletal muscle, and adipose tissue 
(James et al., 1988, 1989; Birnbaum, 1989; Charron et al., 
1989; Fukumoto et al., 1989). Insulin stimulates the uptake 
of glucose in these tissues to maintain blood glucose ho- 

In an accompanying manuscript, Verhey et al. also present the results of 
GLUT-4 targeting in 3T3-L1 adipocytes. This study reached similar con- 
clusions to those found in our own study. 
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1. Abbreviat ions  used in this paper: ECL, enhanced chemiluminescence; 
GLUT, glucose transporter protein isoform; HDM, high-density mi- 
crosomes; KRP, Krebs-Ringer phosphate; LDM, low-density microsomes; 
M/N, mitochondria/nuclei; PM, plasma membrane; TGR, trans-Golgi 
reticulum. 

meostasis under normal physiological conditions. This 
process is largely facilitated by the rapid translocation of 
GLUT-4 from an intracellular compartment to the plasma 
membrane in response to the binding of insulin to its cell 
surface receptor, and is associated with a 10-30-fold in- 
crease in glucose uptake (Cushman and Wardzala, 1980; 
Suzuki and Kono, 1980). Immunogold labeling and EM 
analysis of rat cardiac myocytes and adipocytes has shown 
that in the absence of insulin, GLUT-4 is sequestered pre- 
dominantly within tubulo-vesicular structures clustered ei- 
ther in the trans-Golgi reticulum (TGR) or in the cyto- 
plasm (Slot et al., 1991a, b). With insulin treatment, a 
marked increase in cell surface GLUT-4 labeling (~42% 
of the total) was observed with a corresponding decrease 
in labeling within intracellular structures (Slot et al., 
1991a,b). 

The intracellular sequestration of GLUT-4 is unique, as 
other isoforms, such as GLUT-l ,  have a high cell surface 
distribution in the absence of insulin (Calderhead et al., 
1990; Piper et al., 1991; Haney et al., 1991; Hudson et al., 
1992). GLUT-4 is sequestered within intracellular tubulo- 
vesicular structures when expressed in heterologous cell 
types such as fibroblasts, HepG2 hepatoma and CHO cells 
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(Haney et al., 1991; Asano et al., 1992; Hudson et al., 
1992). However, the insulin-dependent movement of 
GLUT-4 to the cell surface is minimal in these cells (Haney 
et al., 1991; Robinson et al., 1992; Verhey et al., 1993). This 
strongly suggests that the subcellular targeting of these 
glucose transporters reflects their heterologous amino acid 
sequences and that factors that regulate their intracellular 
targeting are both shared by many cell types and separate 
from those factors that may be specific to muscle and adi- 
pose cells and that regulate insulin-dependent transloca- 
tion to the plasma membrane. 

In an attempt to define the relevant targeting domains 
that direct the intracellular sequestration of GLUT-4, chi- 
meric studies have been performed in fibroblasts in which 
reciprocal domains were exchanged between GLUT-4 and 
GLUT-1. These studies identified functional domains in 
both the amino and carboxy termini, and in transmem- 
brane regions 7 and 8 (Asano et al., 1992; Piper et al., 1992; 
Czech et al., 1993; Marshall et al., 1993; Verhey et al., 
1993). Site-directed mutagenesis has revealed that phenyl- 
alanine at position 5 in GLUT-4 is a critical component of 
an NH2-terminal targeting motif comprising residues 2-8 
(PSGFQQI) that is "both necessary and sufficient for in- 
tracellular sequestration" when substituted onto the H1 
subunit of the asialoglycoprotein receptor (Piper et al., 
1993). A dileucine motif at positions 489 and 490 was addi- 
tionally identified as a critical component of the COOH- 
terminal signal for both endocytosis and intracellular se- 
questration of GLUT-4 (Corvera et al., 1994; Verhey and 
Birnbaum, 1994). 

A potential problem with the above studies is that they 
have been performed in cell types that are not considered 
to be bona-fide insulin-sensitive cells, and are therefore 
unlikely to contain the cell-specific factors that facilitate 
the insulin-regulated translocation of GLUT-4 to the 
plasma membrane. It has remained unclear whether these 
domains function to regulate GLUT-4 targeting in the 
context of an appropriate insulin-responsive cellular envi- 
ronment. In addition, contradictory reports between labo- 
ratories with respect to the targeting of analogous GLUT- 
1/GLUT-4 chimeras suggest that differences in the level of 
chimera expression may influence the resultant targeting 
of these proteins (reviewed in James and Piper, 1994). 

To address these problems we have stably expressed 
GLUT-4 mutants in 3T3-L1 adipocytes, a cell type that ex- 
hibits insulin-regulatable glucose transport. Because these 
cells express GLUT-4, an epitope tag has been used to distin- 
guish recombinant GLUT-4 from the endogenous GLUT-4. 
We show that the epitope-tagged GLUT-4 construct be- 
haves indistinguishably from endogenous GLUT-4, and 
we further show that mutation of either phenylalanine 5 in 
the NH2-terminal or leucine489-1eucine 49° in the COOH- 
terminal domains results in impaired targeting of GLUT-4 
in 3T3-L1 adipocytes. 

Materials and Methods 

Cell Culture 
Murine fibroblasts obtained from the American Type Culture Collection 
(Rockville, MD) were cultured in DME containing high glucose, L-gluta- 

mine and sodium pyruvate supplemented with 10% bovine calf serum 
(CSL, Parkville, Australia). Cells were maintained and passaged as precon- 
fluent cultures at 37°C in a 5% CO2 humidified incubator before differen- 
tiation. All experiments utilized adipocytes 10-14 d after initiation of dif- 
ferentiation. 3T3-L1 fibroblasts were induced to differentiate 3 d after 
reaching confluence by the addition of DME containing 5% heat-inacti- 
vated FCS (CSL), 4 ~g/ml insulin, 0.25 mM dexamethasone, 0.5 mM 3-iso- 
butyl-l-methylxanthine and 100 ng/ml d-biotin. After 72 h, induction me- 
dium was replaced with fresh FCS/DME containing 4 izg/ml insulin and 
100 ng/ml d-biotin. 

Construction of  Human GLUT-3 Epitope-tagged 
Transporter cDNAs 
Wild-type rat GLUT-4 cDNA cloned into pBluescript (pIRGT) (Piper et 
al., 1993) was epitope-tagged at the COOH terminus by the addition of 
amino acids 485-496 from human GLUT-3. This construct was generated 
by PCR using the vector T7 primer and an oligonucleotide encompassing 
a XhoI restriction site, the GLUT-3 sequence and the overlapping se- 
quence of the GLUT-4 cDNA. The PCR conditions used were identical to 
those described previously (Piper et al., 1993). The PCR product contain- 
ing the GLUT-3 epitope was digested with BglII-XhoI, and the ~140 bp 
fragment was subcloned into the BglII-XhoI sites of pIRGT to generate 
pTAG. The pFAG construct was generated by removing the XbaI-SacII 
fragment containing the NHz terminus from the F 5 to A 5 mutant described 
previously (Piper et al., 1993) and ligating into the pTAG backbone. The 
L4SgL 49° to A489A 49° mutant in pIRGT was constructed using a PCR tech- 
nique described previously (Aim and Mattick, 1995). This mutant was 
then used as the template DNA in a PCR reaction identical to that em- 
ployed to generate the pTAG construct. Finally, the COOH terminus con- 
taining the GLUT-3 epitope and the L489L 49° to A489A4~ mutation were 
subcloned into the BgllI-Xhol sites of plRGT to generate pLAG. All re- 
gions of the cDNA constructs produced by PCR were entirely sequenced. 

To facilitate insertion of these cDNA constructs into the pMEXneo ex- 
pression vector (kindly provided by Dr. E. Santos, National Institutes of 
Health, Bethesda, MD) (Benito et al., 1991) for stable transfection, they 
were all removed as XbaLXhoI fragments into a shuttle vector that was 
essentially pBluescript with a modified multiple cloning site region such 
that the XbaI and XhoI restriction sites were flanked by BamHI and KpnI 
restriction sites, respectively. Once subcloned into this shuttle vector, the 
cDNA constructs could be removed as BamHI-KpnI fragments and then 
inserted directionally into the pMEXneo vector under the control of the 
MSV-LTR promoter. 

Stable Transfection of  cDNA Transporter Constructs 
into 3T3-LI Fibroblasts 
Recombinant GLUT-4 cDNA constructs subcloned into the BamHI and 
KpnI sites of the mammalian expression vector pMEXneo were trans- 
fected into subconfluent 3T3-L1 fibroblasts using the Lipofectamine re- 
agent, according to the manufacturer's protocol (GIBCO BRL, Gaithers- 
burg, MD). Individual neomycin-resistant colonies were selected in media 
containing 0.8 mg/ml G418 (GIBCO BRL) and isolated using glass clon- 
ing rings. Clones were screened as follows. 

lmmunofluorescence microscopy. To assess clonality of expression, fi- 
broblasts cultured on ethanol-washed glass coverslips were fixed in 2% 
paraformaldehyde, permeabilized, and immunolabeled with antibodies 
specific for either GLUT-4 or the human GLUT-3 epitope tag as de- 
scribed previously (Piper et al., 1991, 1992). Primary antibodies were de- 
tected with FITC-conjugated sheep anti-rabbit secondary antibody (25 
ixg/ml) (The Binding Site, Birmingham, UK). Coverslips were mounted 
on glass slides as previously described (Piper et al., 1991) and were visual- 
ized with a 63×/1.40 Zeiss oil immersion lens using a Zeiss Axioskop fluo- 
rescence microscope (Carl Zeiss, Germany) equipped with a Bio-Rad 
MRC-600 laser confocal imaging system. Images were collected directly 
using identical photomultiplier tube, numerical aperture and gain settings. 

Differentiation. Fibroblasts were grown to confluence in 60-mm plates 
and induced to differentiate as described above. Clones in which >90% of 
fibroblasts successfully differentiated into mature adipocytes in culture 
were maintained and subjected to further analysis. 

Immunoblotting of total cellular membranes. Fibroblasts or adipocytes cul- 
tured in 60-mm plates were scraped in Hepes buffer (20 mM, pH 7.4) con- 
taining 1 mM EDTA and 250 mM sucrose (HES), lysed using a 1-ml sy- 
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ringe and 27-gauge needle and centrifuged at 208,000 g for 30 rain in a 
TLA-100.3 rotor (Beckman, Palo Alto, CA, USA) to pellet total cellular 
membranes. Membrane pellets were resuspended in 1% SDS in HES 
buffer and subjected to SDS-PAGE and immunoblotting using antibodies 
specific for either the COOH terminus of GLUT-4 or human GLUT-3. 
This procedure provided an assessment of the relative expression levels of 
each clone. 

Subcellular Distribution of Transporter Constructs in 
3T3-L1 Adipocytes 
Two separate methods were employed to assess the subcellular distribu- 
tion of recombinant GLUT-4 transporters in 3T3-L1 adipocytes. 

Differential Centrifugation. Subcellular membrane fractions were pre- 
pared by differential centrifugation from transfected adipocytes in basal 
and insulin-stimulated states using a method described in detail previously 
(Piper et al., 1991). Briefly, adipocytes grown in 100-mm plates were 
washed three times with sterile, prewarmed PBS and incubated for 2 h at 
37°C in 10 ml of Krebs-Ringer phosphate (KRP) buffer containing 2% 
BSA and 2.5 mM glucose. Cells were then further incubated for 30 min at 
37°C in either KRP containing 4 Ixg/ml insulin (insulin-stimulated) or in 
KRP with no additions (basal) (2 × 100-mm plates were used per condi- 
tion). 

All subsequent steps were carried out at 0~°C. The cells were washed 
three times with 5 ml HES buffer and scraped from the plate with a rubber 
policeman in HES containing PMSF (50/~g/ml) and aprotinin (10 ~g/ml) 
(2 ml/plate). Cells were homogenized by 10-12 passages through a Balch 
homogenizer containing a stainless steel ball bearing (diameter 0.2510") 
(Balch et al., 1984). The homogenate was subjected to differential centrif- 
ugation using a previously described protocol (Piper et al., 1991) to gener- 
ate four membrane fractions designated as high-density microsomes 
(HDM), low-density microsomes (LDM), plasma membranes (PM), and 
mitochondria/nuclei (M/N). Most of our studies were performed using the 
PM and LDM fractions because these fractions are enriched in cell surface 
membrane and membranes encompassing the intracellular GLUT-4 com- 
partment, respectively (Piper et al., 1991). Membranes were resuspended 
in HES buffer and stored at -20°C. The protein yields for each of the four 
subcellular membrane fractions recovered from 3T3-L1 adipocytes by dif- 
ferential centrifugation were not significantly different from those de- 
scribed previously (Piper et al., 1991). Furthermore, we did not observe  
significant variance in these protein yields between individual clonal cell 
lines. 

Plasma Membrane Lawn Assay. The subceUular distribution of recombi- 
nant transporters was also assessed by immunofluorescence labeling of 
plasma membrane fragments prepared from basal and insulin-stimulated 
adipocytes as described previously (Robinson and James, 1992; Robinson 
et al., 1992). Briefly, adipocytes were grown on glass coverslips and soni- 
cated using a probe sonicator (Kontes, Vineland, NJ) to generate a lawn 
of PM fragments that remained attached to the glass. These fragments 
were then immunolabeled with either polyclonal antibodies specific for ei- 
ther GLUT-4 or the human GLUT-3 epitope-tag. Coverslips were visual- 
ized and imaged using a confocal laser scanning immunofluorescence mi- 
croscope as described above. 

Electrophoresis and Immunoblotting 
Equivalent amounts of protein from total cellular membranes (20 p~g) or 
subceUular membrane fractions (10 }xg) were subjected to SDS-PAGE us- 
ing 10 or 12% polyacrylamide resolving gels. Proteins were electrophoret- 
ically transferred to supported nitrocellulose membranes (Amersham, Lit- 
tle Chalfont, Buckinghamshire, UK) and immunoblotted with polyclonal 
antibodies specific for the COOH termini of GLUT-4 (R820), GLUT-1 
(R493), and human GLUT-3 (R1697), respectively. The anti-peptide poly- 
clonal antibodies specific for the COOH terminus of GLUT-1 (R493), 
GLUT-4 (R820) and the 12 carboxy-terminal residues of human GLUT-3 
(R1697) have been characterized and described previously (James et al., 
1989; Piper et al., 1991; Harris et al., 1992). R493 and R1697 were affinity- 
purified against peptide antigen covalently coupled to a Sulfolink Cou- 
pling Gel column according to the manufacturer 's instructions (Pierce 
Chem. Co., Rockford, IL). Primary antibodies were detected by probing 
with HRP-conjugated donkey anti-rabbit secondary antibody diluted 1: 
10,000 and blots developed using the technique of enhanced chemilumi- 
nescence (ECL) according to the manufacturer 's instructions (Amer- 
sham). Autoradiograms were quantitated using a Model GS-670 Imaging 
Densitometer (Bio-Rad Labs., Richmond, CA). The level of recombinant 

GLUT-4 at the PM with insulin was nominally assigned a value of 1 in 
these studies to normalize between individual determinations and be- 
tween recombinant constructs expressed by different clones. 

Protein Assays 
The protein concentrations of total cellular membranes and subcellular 
membrane fractions prepared as above were determined using the bicin- 
choninic acid assay (Pierce Chem. Co.) according to the manufacturer's 
instructions. 

Results 

Targeting of Epitope-tagged GLUT-4 

The constructs analyzed in this study are summarized in 
Fig. 1. To assess the contribution of phenylalanine at posi- 
tion 5 or the leucine pair at positions 489 and 490 to 
GLUT-4 targeting in 3T3-L1 adipocytes, it was necessary 
to include a foreign epitope in the GLUT-4 eDNA. Rather 
than introduce a foreign sequence at an intervening loca- 
tion within GLUT-4, an epitope tag was introduced at the 
extreme carboxy terminus in an attempt to preserve the 
overall structure of the protein. This protein reacted with 
both monoclonal (1F8, data not shown) and polyclonal 
(R820) anti-GLUT-4 COOH-terminal antibodies, and could 
be uniquely distinguished from endogenous wild-type 
GLUT-4 with a polyclonal anti-human GLUT-3 antibody 
(R1697) (see below). Several criteria were used to show 
that the inclusion of this epitope did not disrupt the native 
targeting of GLUT-4. The targeting of the recombinant 
epitope-tagged GLUT-4 protein, referred to here as TAG,  
was indistinguishable from wild-type GLUT-4 expressed 
in 3T3-L1 fibroblasts by stable transfection (Haney et al., 
1991). Confocal laser immunofluorescence microscopy of 

1 5 489 490 509 

NH2,  ~ [ ]  m,mm r~l-eOOH T A G  

1 S 489 49o 5o9 

NH2"I B ""- -  k~'COOH FAG 

1 5 4 ~  490 509 

NH2. I [ ]  .,lr.~ F~OOOH LAG 

Figure 1. S u m m a r y  of  the  r e c o m b i n a n t  G L U T - 4  cons t ruc t s  u sed  
in t he se  s tudies .  A fore ign  ep i tope  e n c o m p a s s i n g  the  carboxy- te r -  
mina l  1 2 - a m i n o  acid r e s idues  f rom h u m a n  G L U T - 3  (shaded) was 
e n g i n e e r e d  as an  addi t iona l  tag  at the  3'  end  of  the  ful l - length  
G L U T - 4  c D N A .  T h e  pos i t ions  at which  s i te -d i rec ted  m u t a g e n e -  
sis was  p e r f o r m e d  are  s h o w n  in black.  A m i n o  acid r e s idues  are  
r e p r e s e n t e d  us ing  the  single le t ter  code.  
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Figure 2. Localization of TAG in stably transfected 3T3-L1 cells. (A) Immunolocalization of TAG in stably-transfected 3T3-L1 fibro- 
blasts by confocal immunofluorescence microscopy. Cells were fixed, permeabilized, and labeled with an antibody specific for the 
COOH terminus of GLUT-4 (R820) and FITC-conjugated sheep anti-rabbit antibody. Shown are fibroblast clones TAG3B1 (left) and 
TAG2D5 (right). Images were collected, adjusted for brightness and contrast and printed using identical conditions. (B and C) Subcellu- 
lar distribution of wild-type GLUT-4 and epitope-tagged recombinant GLUT-4 (TAG) in basal ( - )  and insulin-stimulated (+) 3T3-L1 
adipocytes. In B, subcellular membrane fractions (10 Izg) were prepared by differential centrifugation and subjected to SDS-PAGE, 
electrophoretically transferred to nitrocellulose membranes and immunoblotted with antibodies specific for the COOH terminus of 
GLUT-4 (R820), the COOH terminus of GLUT-1 (R493), or for the human GLUT-3 epitope tag (R1697). Signals were detected by en- 
hanced chemiluminescence (ECL). (C) Immunofluorescence labeling of PM lawns prepared from naive (top) or TAG-transfected (bot- 
tom) 3T3-L1 adipocytes incubated in the absence (left) or presence (right) of insulin for 15 rain at 37°C. Plasma membrane fragments 
prepared from untransfected or TAG-transfected adipocytes were immunolabeled with either GLUT-4- or human GLUT-3-specific 
antibodies, respectively. Bars, 50 ~m. 

f ibroblasts  (Fig. 2 A)  and immuno-EM of adipocytes  (data  
not  shown) revealed that T A G  was localized to tubulo- 
vesicular e lements  that were ei ther  clustered in the T G R  
or  in the cytoplasm. 

Moreover ,  the targeting of  T A G  was indist inguishable 
from endogenous  GLUT-4  in 3T3-L1 adipocytes.  In the 
absence of insulin, T A G  was excluded from the PM frac- 
t ion and was located predominant ly  within a vesicle popu- 
lat ion designated L D M  fraction (Fig. 2 B), which has pre- 
viously been shown to be enriched in the intracellular  
GLUT-4  compar tmen t  in adipocytes  (Simpson et al., 1983; 
Piper  et al., 1991). Insulin t rea tment  resulted in a signifi- 
cant increase in T A G  levels in the PM fraction, with a cor- 

responding decrease in the levels of T A G  in the intracellu- 
lar LDM.  A more  accurate assessment of the magni tude of 
the insul in-dependent  movement  of both T A G  and endog- 
enous GLUT-4  to the cell surface was obta ined  using the 
PM lawn assay (Fig. 2 C). This procedure  generates  highly 
purif ied PM fragments a t tached to glass coverslips (Rob-  
inson et al., 1992) and provides a more  sensitive index of 
insulin action. PM fragments  isolated from basal cells ex- 
hibi ted very low levels of ei ther  T A G  or  endogenous  
GLUT-4  labeling (Fig. 2 C, left). A 5-10-fold increase in 
labeling for T A G  and GLUT-4  was evident  in PM frag- 
ments p repared  from insul in- treated adipocytes  (Fig. 2 C, 
right). 
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The distribution of T A G  was similar in different clonal 
cell lines despite marked differences in T A G  expression 
levels between different clones (see below). As an internal 
control for the integrity of the differential centrifugation 
procedure, all fractions were routinely immunoblotted 
with an anti-GLUT-1 antibody. Consistent with previous 
studies (Calderhead et al., 1990; Piper et al., 1991), GLUT-1 
had a high cell surface distribution in comparison to either 
T A G  or endogenous GLUT-4 in the absence of insulin 
(Fig. 2 B). 

Expression of GLUT-4 Targeting Mutants in 
3T3-L1 Cells 

Clones were selected for further study based upon the 
level of recombinant protein expressed and their ability to 
undergo differentiation from fibroblasts into adipocytes 
following transfection (Fig. 3). Total cellular membranes 
from each clone were immunoblotted with an antibody 
specific for the GLUT-4 carboxy terminus to quantify the 
total level of recombinant transporter plus endogenous 
GLUT-4 expressed (Fig. 3, top). Clones were classified 
into two broad categories: low expressors, in which total 
GLUT-4 expression was at a level comparable to that of 
endogenous GLUT-4 in untransfected adipocytes, and high 
expressors, where total expression was greater than four- 
fold higher than for wild-type GLUT-4 expressed by 3T3- 
L1 adipocytes. To quantify relative expression of the re- 
combinant transporters independently of endogenous 
GLUT-4, total cellular membranes were immunoblotted 
with the human GLUT-3 antibody (Fig. 3, bottom). 

In the case of TAG,  its intracellular sequestration in the 
absence of insulin was maintained, irrespective of expres- 
sion level. Despite a fourfold difference in expression level 
between T A G  clones 3B1 and 2D5, the intraceUular se- 
questration of T A G  in both of these clonal cell lines was 
similar to that observed for wild-type GLUT-4. In the ab- 
sence of insulin stimulation, PM fragments isolated from 
both T A G  clone adipocytes exhibited low levels of label- 
ing similar to that observed for wild-type GLUT-4 (Fig. 2 
C). Furthermore, the effect of insulin on the subcellular 
distribution of T A G  was similar over this range of expres- 
sion (Fig. 4). However, it is noteworthy that the labeling of 
PM fragments isolated from clone TAG2D5 adipocytes 
cultured in the presence of insulin was significantly lower 
than for insulin-treated TAG3B1 PM fragments (not shown). 

Targeting of the Phe to Ala Mutant (FAG) 
in Adipocytes 

In agreement with previous studies (Piper et al., 1993), 
mutation of F 5 to A s within the amino terminus of epitope- 
tagged GLUT-4 (FAG) resulted in a marked increase in 
cell surface accumulation of the transporter. In 3T3-L1 fi- 
broblasts, an increase in cell surface staining was apparent 
for clone FAG1D1 (not shown) and FAG3C2 fibroblasts 
compared to cell lines expressing T A G  as determined by 
confocal immunofluorescence microscopy (Fig. 5 A). FAG 
was also immunolocalized to a perinuclear region similar 
to that observed for TAG in 3T3-L1 fibroblasts (Fig. 5 A). 
Despite a level of expression only marginally lower than 
FAG3C2, we were unable to visualize cell surface labeling 
of FAG2C5 fibroblasts using immunofiuorescence micros- 
copy. However, as previously described by Griffiths et al. 
(1993), this may reflect an artifact of this technique that 
arises because low labeling of diffuse surfaces such as the 
plasma membrane is much more difficult to detect than 
low but concentrated labeling of intracellular organelles. 

The subcellular distribution of FAG and GLUT-1 was 
assessed by immunoblotting subcellular membrane frac- 
tions prepared from the differentiated cell lines with anti- 

Figure 3. Relative expression levels of transfected GLUT-4 con- 
structs in 3T3-LI adipocyte clones. Total cellular membranes 
were isolated from individual 3T3-LI cell lines. Samples (20 Ixg of 
membrane protein) prepared from each clone were subjected to 
SDS-PAGE and immunoblotted using antibodies specific for 
C O O H  terminus of GLUT-4 (R820, top) or the human GLUT-3 
epitope-tag (R1697, bottom). Autoradiograms were quantitated 
by densitometry and the results expressed as arbitrary units to as- 
sess the relative levels of endogenous plus transfected GLUT-4 
and exogenous transporter alone expressed by each clone. Clones 
were classified into two broad categories based upon the total 
level of GLUT-4 expression relative to endogenous GLUT-4 
expressed by wild-type 3T3-L1 adipocytes. High expressor clones 
included TAG3B1, FAG1D1,  and LAG1A5. Adipocyte clones 
TAG2D5, FAG3C2, FAG2C5, LAGID3,  LAG1B6, and L A G I A 4  
were classified as low expressors. 
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Figure 4. Subcellular distribution of epitope-tagged recombinant 
GLUT-4 (TAG) expressed at low (TAG2D5) or high (TAG3B1) 
levels in basal ( - )  and insulin-stimulated (+) 3T3-L1 adipocytes. 
The combined results of multiple independent differential cen- 
trifugation experiments immunoblotted with an antibody to the 
human GLUT-3 epitope tag and quantitated by densitometry 
were plotted for basal ( - )  and insulin-stimulated (+) adipocytes. 
Values are the means +_ SEM (arbitrary units/ixg protein). 
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Figure 5. Localization of FAG in stably transfected 3T3-L1 cells. (A) Immunolocalization of FAG in stably transfected 3T3-L1 fibro- 
blasts by confocal immunofluorescence microscopy. Cells were fixed, permeabilized, and labeled with an antibody specific for the 
COOH terminus of GLUT-4 (R820) and FITC-conjugated sheep anti-rabbit antibody. Shown are fibroblast clones FAG3C2 (left) and 
FAG2C5 (right). Images were collected, adjusted for brightness and contrast and printed using identical conditions. (B-D): Subcellular 
distribution of epitope-tagged recombinant GLUT-4 (FAG) expressed at high (FAG1D1) or low (FAG3C2 and FAG2C5) levels in 
basal ( - )  and insulin-stimulated (+) 3T3-L1 adipocytes. (B) Subceltular membrane fractions (10 Ixg) prepared by differential centrifu- 
gation were subjected to SDS-PAGE, electrophoretically transferred to nitrocellulose membranes and immunoblotted with either an af- 
finity-purified antibody specific for the human GLUT-3 epitope tag (R1697, top) or an antibody specific for the COOH terminus of 
GLUT-1 (R493, bottom). Signals were detected by ECL. (C) The combined results of multiple independent differential centrifugation 
experiments were quantitated by densitometry and plotted for basal ( - )  and insulin-stimulated (+) adipocytes. Values are the means --+- 
SEM (arbitrary units/txg protein). (D) Immunofluorescence labeling of PM lawns prepared from FAG-transfected 3T3-L1 adipocytes 
incubated in the absence (left) or presence (right) of insulin for 15 min at 37°C. Plasma membrane fragments prepared from FAG-trans- 
fected adipocytes were immunolabeled with the human GLUT-3 antibody. Bars: (A and D) 50 ~xm. 

bodies specific for the human GLUT-3 epitope tag (top), 
or GLUT-1 (bottom) (Fig. 5 B). Irrespective of the cell 
line or the expression level of  recombinant  protein exam- 
ined, F A G  exhibited a substantial targeting defect in adi- 
pocytes. Both differential centrifugation (Fig. 5 B) and im- 
munolabeling of  PM lawns (Fig. 5 D) revealed a marked 
accumulation of F A G  in plasma membranes isolated from 
non-insulin-stimulated cells. The difference in the subcel- 
lular distribution of  F A G  and T A G  is clearly demon- 
strated by comparing the PM/LDM ratio for each protein, 
which provides an index of the intracellular sequestration 

of transporters (see Fig. 7). This ratio was extremely low 
for T A G  (0.33 ± 0.09), reflecting a high degree of  intracel- 
lular sequestration. In contrast, the PM/LDM ratio was 
seven- to eightfold higher for F A G  (2.46 -*- 0.38), reflect- 
ing the high level of F A G  at the plasma membrane  in com- 
parison to the intracellular vesicle pool. It is noteworthy 
that the subcellular distribution of GLUT-1 in F A G -  
expressing clones was not significantly different from that 
seen in TAG-expressing clones, providing a useful internal 
control for the differential centrifugation procedure. 

Despite the accumulation of F A G  at the cell surface, 
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FAG mutants still exhibited a small insulin-dependent 
movement out of the LDM and to the plasma membrane 
fractions, although this was much less than observed for ei- 
ther TAG or wild-type GLUT-4 (Figs. 5, B and C). No visi- 
ble staining of plasma membrane fragments in PM lawns 
prepared from either FAG3C2 or FAG2C5 was observed 
with the antibody specific for the epitope tag, due to the low 
levels of recombinant protein expressed by these clones. 

Targeting of the Dileucine Mutant (LAG) in Adipocytes 

Four clonal cell lines expressing L A G  were isolated and 
used for subsequent study. These clones were selected 
based upon the level of LAG expression, which varied 
over a similar range to that observed in the T A G  and 
FAG clones (see Fig. 3). In addition, the differentiation ef- 
ficiency of these clones was very high as determined by the 
high percentage (>90%) of cells that exhibited multiple 
lipid droplets at >4 d after differentiation. In the undiffer- 
entiated state, high cell surface staining was clearly evident 
in the LAG clone (LAG1A4) by immunofluorescence mi- 
croscopy (Fig. 6 A). However, as was the case for the 
lower expressing FAG clones, little if any detectable cell 
surface staining was evident in low expressing LAG fibro- 
blasts (LAGIB6)  (Fig. 6 A). All stably-transfected LAG- 
expressing fibroblasts exhibited a perinuclear pattern of 
staining similar to the pattern described for T A G  and 
FAG (Fig. 6 A). 

To further define the targeting of the dileucine mutant 
extensive experimentation was performed following dif- 
ferentiation of each of the clones into adipocytes. The sub- 
cellular distribution of LAG and GLUT-1 in a high ex- 
pressing LAG adipocyte clone (LAG1A5, i.e., LAGhigh), 
and in two adipocyte clones exhibiting low levels of ex- 
pression (LAGID3  and LAG1B6, i.e., LAG l°w) are shown 
in Fig. 6 B. The two distinct subcellular fractionation tech- 
niques, that of differential centrifugation (Fig. 6 B) and la- 
beling of PM lawns (Fig. 6 D), demonstrated that at low 
expression levels L A G  was segregated between the intra- 
cellular compartment and the plasma membrane, in unstim- 
ulated adipocytes, to the same extent as T A G  or wild-type 
GLUT-4 (Fig. 2, B and C). In contrast, LAG accumulated 
at the plasma membrane in the absence of insulin in done  
LAG1A5, in which the expression of LAG was higher 
than in any of the other three LAG clones studied. This 
targeting difference is most clearly evident by comparing 
the PM/LDM ratios that were quantified based on frac- 
tionation of non-insulin-stimulated cells. In the case of the 
low expressors (LAGID3 and LAGIB6)  the combined ra- 
tio (0.32 + 0.06) was not significantly different compared 
to T A G  (0.33 - 0.09). The ratio was significantly higher, 
however, in clone LAG1A5 (1.34 +- 0.17), indicating the 
high cell surface expression of LAG expressed by this 
clone. In addition, the PM/LDM ratio for L A G I A 5  is not 
dissimilar to the ratio observed for GLUT-1 (1.26 -+ 0.08). 
These data confirmed the staining patterns visualized in 
PM lawns prepared from basal adipocyte clones with ei- 
ther low-moderate (LAG1A4) or high (LAG1A5) levels 
of expression (Fig. 6 D). 

The distribution of LAG in adipocyte clones expressing 
LAG at lower levels (LAG1D3 and LAG1B6) following 
insulin stimulation was indistinguishable from T A G  or 

wild-type GLUT-4 (Fig. 6, B and C). In both cases there 
was a significant shift in the distribution of LAG from the 
LDM fraction to the plasma membrane. Whereas there 
was an accumulation of LAG at the cell surface in clone 
LAG1A5 in the absence of insulin, there was still a signifi- 
cant movement of L A G  from the LDM to the PM. How- 
ever, in view of the high cell surface distribution of LAG 
in this clone in the basal state, the net magnitude of the in- 
sulin effect at the PM was reduced. The insulin-stimulated 
increase in labeling observed in PM fragments isolated 
from clone LAG1A4 (Fig. 6 D, bottom right) was not sig- 
nificantly different from either wild-type GLUT-4 or 
TAG. PM lawns isolated from clones L A G I D 3  and 
LAGIB6  and immunolabeled with the antibody specific 
for the human GLUT-3 epitope tag could not be visual- 
ized. 

Discuss ion  

In this study, our goal was to characterize the role of two 
major GLUT-4 targeting motifs in insulin-sensitive cells. 
Epitope-tagged GLUT-4 constructs, in which mutations 
were made at either the phenylalanine residue at position 
5 (FAG) or the leucine residues at positions 489-490 
(LAG), were stably expressed in 3T3-L1 adipocytes. FAG 
accumulated at the plasma membrane in the absence of in- 
sulin, irrespective of its expression level, whereas LAG ac- 
cumulated at the plasma membrane only when the mutant 
was overexpressed at levels that were fourfold endoge- 
nous GLUT-4 levels. Despite these defects in basal target- 
ing, an insulin-dependent movement out of the intracellu- 
lar fraction was still evident for both LAG and FAG 
suggesting that neither the FQQI  nor the LL motifs play a 
direct role in the insulin-regulated movement of GLUT-4 
to the plasma membrane. These results suggest that both 
the NH2- and COOH-terminal targeting motifs play im- 
portant yet functionally distinct roles in GLUT-4 targeting 
in adipocytes. 

The strategy employed in this study was designed to ad- 
dress some of the potential conflicts that have arisen from 
previous GLUT-4 targeting studies (reviewed in James 
and Piper, 1994). We have employed a stable expression 
plasmid, pMex, to express our constructs in 3T3-L1 cells 
(Benito et al., 1991). This cell line provides a useful model 
for these studies as it is possible to obtain stable transfec- 
tants that differentiate into highly insulin-responsive adi- 
pocytes. The pMex vector achieves a level of expression 
that approximates endogenous GLUT-4 levels expressed 
in 3T3-L1 adipocytes (Fig. 3). Such considerations are im- 
portant, as one of the major variables between previous 
GLUT-4 targeting studies was the level of expression ob- 
tained for recombinant transporters due to the use of dif- 
ferent expression systems (Asano et al., 1992; Piper et al., 
1992; Czech et al., 1993; Verhey et al., 1993). This may be 
critical as it has been shown that the overexpression of en- 
dosomal/TGR proteins may saturate intracellular reten- 
tion mechanisms in mammalian cells and thus severely 
complicate the interpretation of results (Wong and Hong, 
1993; Reaves and Banting, 1994). We have analyzed the 
targeting of recombinant proteins in several stably trans- 
fected clonal adipocytes to examine the effects of different 
expression levels (Fig. 3). Furthermore, we utilized two 
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Figure 6. Localization of LAG in stably-transfected 3T3-L1 cells. (A) Immunolocalization of LAG constructs in stably-transfected 3T3- 
L1 fibroblasts by confocal immunofluorescence microscopy. Cells were fixed, permeabilized, and labeled with an antibody specific for 
the COOH terminus of GLUT-4 (R820) and FITC-conjugated sheep anti-rabbit antibody. Shown are fibroblast clones LAG1A4 (left) 
and LAG1B6 (right). Images were collected, adjusted for brightness and contrast and printed using identical conditions. (B-D) Subcel- 
lular distribution of epitope-tagged recombinant GLUT-4 (LAG) expressed at low (LAG1D3, LAGIB6, LAG1A4) or high (LAGIA5) 
levels in basal ( - )  and insulin-stimulated (+) 3T3-L1 adipocytes. (B) Subcellular membrane fractions (10 Ixg) prepared by differential 
centrifugation were subjected to SDS-PAGE, electrophoretically transferred to nitrocellulose membranes and immunoblotted with ei- 
ther an affinity-purified antibody specific for the human GLUT-3 epitope tag (R1697, top) or an antibody specific for the COOH termi- 
nus of GLUT-1 (R493, bottom). Signals were detected by ECL. (C) The combined results of multiple independent differential centrifu- 
gation experiments were quantitated by densitometry and plotted for basal ( - )  and insulin-stimulated (+) adipocytes. Values are the 
means + SEM (arbitrary units/ixg protein). (D) Immunofluorescence labeling of PM lawns prepared from LAG-transfected 3T3-L1 ad- 
ipocytes incubated in the absence (left) or presence (right) of insulin for 15 rain at 37°C. Plasma membrane fragments prepared from 
LAG-transfected adipocytes were immunolabeled with the human GLUT-3 antibody. Shown are adipocyte clones LAGIA5 (top) and 
LAG1A4 (bottom). Bars: (A and D) 50 rLm. 

separate  subcellular  fract ionat ion schemes, that are well 
establ ished for these cells, and which enable  unambiguous 
analysis of glucose t ranspor ter  targeting. This was funda- 
mental  to these studies since the pr imary  method  used to 
assess GLUT-4  targeting by a variety of groups has been 
immunofluorescence microscopy (Czech et al., 1993; Ver- 

hey et al., 1993; Corvera  et al., 1994). Immunofluorescence 
localization of  our  constructs in s tably-transfected 3T3-L1 
fibroblasts failed to clearly resolve the intracellular  distri- 
but ion of  these recombinant  prote ins  (Figs. 2 A, 5 A,  and 6 
A). As  noted  by others  previously,  this technique is prone  
to artifact; similar ambiguous results have been  a t t r ibuted 
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Figure 7. The PM/LDM ra- 
tios of recombinant trans- 
porter constructs in basal ad- 
ipocytes were calculated 
from data obtained for all in- 
dividual clones over multiple 
separate experiments. Data 
from experiments with either 
TAG or FAG-transfected 
3T3-L1 adipocyte clones 
were pooled and considered 
as representative of a pheno- 
type distribution for TAG or 
FAG respectively, due to the 

consistency of results for individual clones irrespective of their 
levels of expression. TAG values were calculated from 10 sepa- 
rate determinations for clones TAG3B1 and TAG2D5. The re- 
sults of five separate determinations for clones FAG1D1, 
FAG3C2 and FAG2C5 are shown for FAG. Values presented as 
the LAG l°w phenotype were calculated from six separate deter- 
minations for clones LAG1D3 and LAG1B6. LAG high values 
were calculated from four separate determinations for clone 
LAG1A5. Values are shown as the means +_ SEM for a minimum 
of four independent determinations. 

to both differences in expression levels and to inadequate 
resolution using this technique (Asano et al., 1992; Hud- 
son et al., 1992; Griffiths et al., 1993; Verhey et al., 1993). 
The use of a nondisruptive epitope tag was preferred to 
undertaking a chimeric approach, as recombinant chime- 
ras may alter conformational determinants essential to 
proper GLUT-4 targeting. Our results indicate that the 
targeting of epitope-tagged GLUT-4 (TAG) over a wide 
range of expression levels was indistinguishable from that 
of wild-type GLUT-4, as reported here and in previous 
studies (Calderhead et al., 1990; Holman et al., 1990; Piper 
et al., 1991; Robinson and James, 1992). Similar results 
were obtained in several different clones expressing T A G  
at levels approximately two- to sixfold greater than endog- 
enous GLUT-4 (Fig. 2). 

Our assessment of the subcellular distribution of recom- 
binant GLUT-4 transporters clearly shows that both the 
NH2-terminal phenylalanine and COOH-terminal dileu- 
cine motifs function in the targeting of GLUT-4 in 3T3-L1 
adipocytes. Mutation of either of these motifs to alanine re- 
sulted in a marked accumulation of recombinant GLUT-4 
at the cell surface in an insulin-independent manner. This 
resulted in impaired insulin action by default because the 
index of this phenomenon involves accumulation of the 
protein at the plasma membrane. However, both FAG (F 5 
to A) and LAG (L489L 49° to AA) retained their insulin- 
dependent movement out of the intracellular LDM vesicle 
fraction suggesting that neither of these motifs directly reg- 
ulates the insulin-dependent translocation of GLUT-4 per 
se. Hence, we propose that the information that encodes 
the insulin regulatability of GLUT-4 must be located else- 
where in the protein. 

The observation that LAG accumulated at the cell sur- 
face only when overexpressed, whereas FAG accumulated 
at the cell surface irrespective of expression level, suggests 
that these two domains may regulate distinct targeting 
events. The fact that the LL mutant had a wild-type sub- 
cellular distribution at low expression suggests that under 
these conditions other targeting motifs must compensate 

for this mutation This could include either the NH2-termi- 
nal FQQI  motif or other motifs elsewhere in the protein. 
Alternatively, the dileucine residues may comprise only 
part of a larger motif, in which case mutation of these resi- 
dues to alanine might not greatly disrupt its overall ter- 
tiary structure. It is important to note that the dileucine 
signal is flanked by the phosphorylation site in GLUT-4 
(Lawrence et al., 1990), and it will be of interest to deter- 
mine if mutation of t489L 490 tO AA abrogates phosphoryla- 
tion of the transporter in an expression-dependent man- 
ner. It has been postulated previously that the relative 
affinities of aromatic- and dileucine-based motifs for ei- 
ther internalization or intracellular sorting functions could 
be altered either by phosphorylation-dephosphorylation, 
or by other posttranslational modifications (reviewed in 
Trowbridge et al., 1993). That FAG exhibited a high cell 
surface distribution irrespective of its expression level sug- 
gests that other motifs were unable to compensate for this 
defect. This implies that this motif may be intimately in- 
volved in regulating the movement of GLUT-4 between 
the cell surface and endosomes or vice versa. 

The dependence of LAG targeting upon expression 
level may account for our inability to detect a role for the 
GLUT-4 carboxy terminus on intracellular targeting in the 
past (Piper et al., 1992, 1993). Previously, we have used 
Sindbis virus to express chimeras comprised of portions of 
GLUT-1 and GLUT-4 in CHO cells. Only chimeras con- 
taining the NH2 terminus of GLUT-4 targeted in a manner 
similar to GLUT-4. These results are consistent with the 
present studies given a moderate level of expression of the 
chimeric constructs. However, it remains unclear why 
other groups have been unable to demonstrate an effect of 
the NH2 terminus on GLUT-4 targeting, particularly since 
we have observed this effect in a variety of different cell 
lines and using different modes of cDNA expression. 

What is the function of these targeting domains in the 
intracellular trafficking of GLUT-4? While we have not 
specifically addressed this question in the present studies, 
it is possible to speculate based on previous work. It is 
known, largely from EM studies, that GLUT-4 recycles 
between the cell surface and intracellular tubules and vesi- 
cles via the classical coated pit/endosomal pathway (Slot et 
al., 1991a, b; Robinson et al., 1992). In the absence of insu- 
lin, GLUT-4 appears to be withdrawn from this recycling 
system (Slot et al., 1991b) and this is consistent with the 
fact that GLUT-4 is actively retained within the cell (Hol- 
man et al., 1990). The nature of the intracellular compart- 
ment in which GLUT-4 is stored is poorly defined but it is 
thought to be somewhat specialized (reviewed in Birn- 
baum, 1992 and James and Piper, 1994), and so the target- 
ing of GLUT-4 to this compartment may confer its unique 
insulin regulation. The NH2- and COOH-terminal GLUT- 
4 targeting motifs were first identified by studying the dis- 
tribution of GLUT-I /GLUT-4  chimeras in fibroblasts 
(Piper et al., 1992; Czech et al., 1993; Marshall et al., 1993; 
Verhey et al., 1993). From these studies it was shown that 
when added to GLUT-1 either the NH2 or COOH termi- 
nus of GLUT-4 could, to a certain extent, recapitulate the 
unique intracellular sequestration of the entire GLUT-4 
protein. Both of these motifs have been reasonably well 
characterized in fibroblasts and CHO cells and have been 
shown to have the capacity to regulate internalization 
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(Corvera et al., 1994; Garippa et al., 1994). Garippa et al. 
(1994) demonstrated that the amino terminus of GLUT-4, 
when substituted for the transferrin receptor cytoplasmic 
domain, functions to promote the efficient internalization 
of the protein from the cell surface in a manner critically 
dependent upon the residue at position 5. In addition, mu- 
tation of F 5 to A caused a marked reduction in GLUT-4 
targeting to cell surface clathrin-coated pits in CHO cells 
(Piper et al., 1993). Furthermore, these motifs resemble 
motifs found in many other endosomal proteins. Thus, it is 
tempting to conclude that the predominant role of these 
domains is to regulate GLUT-4 internalization. While 
these domains may play a role in GLUT-4 internalization, 
kinetic analysis of different transporters in 3T3-L1 adipo- 
cytes indicate that there is not a significant difference in 
the internalization rates between GLUT-1 and GLUT-4 
(Yang and Holman, 1993). Thus, this suggests that these 
motifs must regulate additional functions in the intracellu- 
lar sorting of GLUT-4. This most likely involves either the 
retention of GLUT-4 in endosomes or its sorting into the 
specialized compartment that is withdrawn from the endo- 
somal system. Consistent with this type of model, it has 
been shown that aromatic residue-based motifs and dileu- 
cine motifs play distinct though functionally similar roles 
in other proteins. For instance, the cytoplasmic tail of the 
cation-independent mannose 6-phosphate/IGF II receptor 
(CI-MPR) contains an aromatic residue-based motif 
(YKYSKV) that primarily regulates internalization but 
contributes additionally, although not significantly, to in- 
tracellular Golgi sorting, and a dileucine based motif adja- 
cent to the aromatic motif that regulates cycling between 
the Golgi and late endosomes (Johnson and Kornfeld, 
1992). Disruption of the aromatic-based motif critically 
disrupts internalization of the receptor resulting in its ac- 
cumulation at the cell surface, whilst having only a slight 
effect upon intracellular sorting (Lobel et al., 1989; 
Johnson and Kornfeld, 1992). Conversely, mutation of the 
dileucine residues abrogates intracellular sorting without 
altering internalization of the receptor (Johnson and Korn- 
feld, 1992). 

Defects in GLUT-4 translocation are likely to occur in 
insulin-resistant disease states such as non-insulin-depen- 
dent diabetes mellitus (NIDDM).  The basis for such de- 
fects remain unknown, but patients with N I D D M  have 
been found to have levels of GLUT-4 similar to those of 
normal individuals (Kahn, 1992). We have shown that the 
phenylalanine-based NH2-terminal and the COOH-termi- 
nal dileucine motifs play important and distinct roles in 
GLUT-4 targeting in the insulin-responsive 3T3-L1 adipo- 
cyte cell line. These findings may help lead to the identifi- 
cation of the protein machinery that facilitates GLUT-4 
translocation and thus yield major insights into insulin ac- 
tion. Further studies of the molecular regulation of 
GLUT-4 targeting are thus essential to elucidate the pre- 
cise mechanisms by which the amino and carboxy-terminal 
motifs function to regulate the targeting of GLUT-4. Un- 
ravelling the exact nature of these regulatory processes 
may provide a useful model with which to study a number 
of other important proteins that recycle between the 
plasma membrane and intracellular loci, and to determine 
the extent to which signalling sequences may be conserved 
between such proteins. 
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