4 research outputs found

    Design and Development of an In-Space Deployable Sun Shield for the Atlas Centaur

    Get PDF
    The Centaur, by virtue of its use of high specific-impulse (Isp) LO2/LH2 propellants, has initial mass-to-orbit launch requirements less than half of those upper stages using storable propellants. That is, for Earth escape or GSO missions the Centaur is half the launch weight of a storable propellant upper stage. A drawback to the use of Liquid oxygen and liquid hydrogen, at 90 K and 20 K respectively, over storable propellants is the necessity of efficient cryogen storage techniques that minimize boil-off from thermal radiation in space. Thermal blankets have been used successfully to shield both the Atlas Centaur and Titan Centaur. These blankets are protected from atmospheric air loads during launch by virtue of the fact that the Centaur is enclosed within the payload fairing. The smaller Atlas V vehicle, the Atlas 400, has the Centaur exposed to the atmosphere during launch, and therefore, to date has not flown with thermal blankets shielding the Centaur. A design and development effort is underway to fly a thermal shield on the Atlas V 400 vehicle that is not put in place until after the payload fairing jettisons. This can be accomplished by the use of an inflatable and deployable thermal blanket referred to as the Centaur Sun Shield (CSS). The CSS design is also scalable for use on a Delta upper stage, and the technology potentially could be used for telescope shades, re-entry shields, solar sails and propellant depots. A Phase I effort took place during 2007 in a partnership between ULA and ILC Dover which resulted in a deployable proof-of-concept Sun Shield being demonstrated at a test facility in Denver. A Phase H effort is underway during 2008 with a partnership between ULA, ILC, NASA Glenn Research Center (GRC) and NASA Kennedy Space Center (KSC) to define requirements, determine materials and fabrication techniques, and to test components in a vacuum chamber at cold temperatures. This paper describes the Sun Shield development work to date, and the future plans leading up to a flight test in the 2011 time frame

    A Semantic Hierarchy for Intuitionistic Logic

    No full text
    Brouwer's views on the foundations of mathematics have inspired the study of intuitionistic logic, including the study of the intuitionistic propositional calculus and its extensions. The theory of these systems has become an independent branch of logic with connections to lattice theory, topology, modal logic and other areas. This paper aims to present a modern account of semantics for intuitionistic propositional systems. The guiding idea is that of a hierarchy of semantics, organized by increasing generality: from the least general Kripke semantics on through Beth semantics, topological semantics, Dragalin semantics, and finally to the most general algebraic semantics. While the Kripke, topological, and algebraic semantics have been extensively studied, the Beth and Dragalin semantics have received less attention. We bring Beth and Dragalin semantics to the fore, relating them to the concept of a nucleus from pointfree topology, which provides a unifying perspective on the semantic hierarchy
    corecore