390 research outputs found

    Degrees of the finite model property: the antidichotomy theorem

    Full text link
    A classic result in modal logic, known as the Blok Dichotomy Theorem, states that the degree of incompleteness of a normal extension of the basic modal logic K\sf K is 11 or 2ℵ02^{\aleph_0}. It is a long-standing open problem whether Blok Dichotomy holds for normal extensions of other prominent modal logics (such as S4\sf S4 or K4\sf K4) or for extensions of the intuitionistic propositional calculus IPC\mathsf{IPC}. In this paper, we introduce the notion of the degree of finite model property (fmp), which is a natural variation of the degree of incompleteness. It is a consequence of Blok Dichotomy Theorem that the degree of fmp of a normal extension of K\sf K remains 11 or 2ℵ02^{\aleph_0}. In contrast, our main result establishes the following Antidichotomy Theorem for the degree of fmp for extensions of IPC\mathsf{IPC}: each nonzero cardinal κ\kappa such that κ≤ℵ0\kappa \leq \aleph_0 or κ=2ℵ0\kappa = 2^{\aleph_0} is realized as the degree of fmp of some extension of IPC\mathsf{IPC}. We then use the Blok-Esakia theorem to establish the same Antidichotomy Theorem for normal extensions of S4\sf S4 and K4\sf K4

    Canonical formulas for k-potent commutative, integral, residuated lattices

    Full text link
    Canonical formulas are a powerful tool for studying intuitionistic and modal logics. Actually, they provide a uniform and semantic way to axiomatise all extensions of intuitionistic logic and all modal logics above K4. Although the method originally hinged on the relational semantics of those logics, recently it has been completely recast in algebraic terms. In this new perspective canonical formulas are built from a finite subdirectly irreducible algebra by describing completely the behaviour of some operations and only partially the behaviour of some others. In this paper we export the machinery of canonical formulas to substructural logics by introducing canonical formulas for kk-potent, commutative, integral, residuated lattices (kk-CIRL\mathsf{CIRL}). We show that any subvariety of kk-CIRL\mathsf{CIRL} is axiomatised by canonical formulas. The paper ends with some applications and examples.Comment: Some typo corrected and additional comments adde

    Games for topological fixpoint logic

    Get PDF
    Topological fixpoint logics are a family of logics that admits topological models and where the fixpoint operators are defined with respect to the topological interpretations. Here we consider a topological fixpoint logic for relational structures based on Stone spaces, where the fixpoint operators are interpreted via clopen sets. We develop a game-theoretic semantics for this logic. First we introduce games characterising clopen fixpoints of monotone operators on Stone spaces. These fixpoint games allow us to characterise the semantics for our topological fixpoint logic using a two-player graph game. Adequacy of this game is the main result of our paper. Finally, we define bisimulations for the topological structures under consideration and use our game semantics to prove that the truth of a formula of our topological fixpoint logic is bisimulation-invariant

    The Kuznetsov-GerÄŤiu and Rieger-Nishimura logics

    Get PDF
    We give a systematic method of constructing extensions of the Kuznetsov-Gerčiu logic KG without the finite model property (fmp for short), and show that there are continuum many such. We also introduce a new technique of gluing of cyclic intuitionistic descriptive frames and give a new simple proof of Gerčiu’s result [9, 8] that all extensions of the Rieger-Nishimura logic RN have the fmp. Moreover, we show that each extension of RN has the poly-size model property, thus improving on [9]. Furthermore, for each function f: \omega -> \omega, we construct an extension Lf of KG such that Lf has the fmp, but does not have the f-size model property. We also give a new simple proof of another result of Gerčiu [9] characterizing the only extension of KG that bounds the fmp for extensions of KG. We conclude the paper by proving that RN.KC = RN + (¬p \vee ¬¬p) is the only pre-locally tabular extension of KG, introduce the internal depth of an extension L of RN, and show that L is locally tabular if and only if the internal depth of L is finite

    Coalgebraic Geometric Logic: Basic Theory

    Get PDF
    Using the theory of coalgebra, we introduce a uniform framework for adding modalities to the language of propositional geometric logic. Models for this logic are based on coalgebras for an endofunctor on some full subcategory of the category of topological spaces and continuous functions. We investigate derivation systems, soundness and completeness for such geometric modal logics, and we we specify a method of lifting an endofunctor on Set, accompanied by a collection of predicate liftings, to an endofunctor on the category of topological spaces, again accompanied by a collection of (open) predicate liftings. Furthermore, we compare the notions of modal equivalence, behavioural equivalence and bisimulation on the resulting class of models, and we provide a final object for the corresponding category

    A New Game Equivalence and its Modal Logic

    Get PDF
    We revisit the crucial issue of natural game equivalences, and semantics of game logics based on these. We present reasons for investigating finer concepts of game equivalence than equality of standard powers, though staying short of modal bisimulation. Concretely, we propose a more finegrained notion of equality of "basic powers" which record what players can force plus what they leave to others to do, a crucial feature of interaction. This notion is closer to game-theoretic strategic form, as we explain in detail, while remaining amenable to logical analysis. We determine the properties of basic powers via a new representation theorem, find a matching "instantial neighborhood game logic", and show how our analysis can be extended to a new game algebra and dynamic game logic.Comment: In Proceedings TARK 2017, arXiv:1707.0825
    • …
    corecore