17 research outputs found

    Platinum Nanoparticle Decorated SiO 2 Microfibers as Catalysts for Micro Unmanned Underwater Vehicle Propulsion

    Get PDF
    Micro unmanned underwater vehicles (UUVs) need to house propulsion mechanisms that are small in size but sufficiently powerful to deliver on-demand acceleration for tight radius turns, burst-driven docking maneuvers, and low-speed course corrections. Recently, small-scale hydrogen peroxide (H2O2) propulsion mechanisms have shown great promise in delivering pulsatile thrust for such acceleration needs. However, the need for robust, high surface area nanocatalysts that can be manufactured on a large scale for integration into micro UUV reaction chambers is still needed. In this report a thermal/electrical insulator, silicon oxide (SiO2) microfibers, are used as a support for platinum nanoparticle (PtNP) catalysts. The mercapto-silanization of the SiO2 microfibers enables strong covalent attachment with PtNPs and the resultant PtNP-SiO2 fibers act as a robust, high surface area catalyst for H2O2 decomposition. The PtNP-SiO2 catalysts are fitted inside a micro UUV reaction chamber for vehicular propulsion; the catalysts can propel a micro UUV for 5.9 meters at a velocity of 1.18 m/s with 50 mL of 50% (w/w) H2O2.The concomitance of facile fabrication, economic and scalable processing, and high performance —including a reduction in H2O2 decomposition activation energy of 40-50% over conventional material catalysts—paves the way for using these nanostructured microfibers in modern, small-scale underwater vehicle propulsion systems

    Increasing the activity of immobilized enzymes with nanoparticle conjugation

    Get PDF
    The efficiency and selectivity of enzymatic catalysis is useful to a plethora of industrial and manufacturing processes. Many of these processes require the immobilization of enzymes onto surfaces, which has traditionally reduced enzyme activity. However, recent research has shown that the integration of nanoparticles into enzyme carrier schemes has maintained or even enhanced immobilized enzyme performance. The nanoparticle size and surface chemistry as well as the orientation and density of immobilized enzymes all contribute to the enhanced performance of enzyme–nanoparticle conjugates. These improvements are noted in specific nanoparticles including those comprising carbon (e.g., graphene and carbon nanotubes), metal/metal oxides and polymeric nanomaterials, as well as semiconductor nanocrystals or quantum dots.This is a manuscript of an article from Current Opinion in Biotechnology 34 (2015): 242, doi:10.1016/j.copbio.2015.04.005. </p

    The impact of waterfowl herbivory on plant standing crop: a meta-analysis

    Get PDF
    Waterfowl can cause substantial reductions in plant standing crop, which may have ecological and economic consequences. However, what determines the magnitude of these reductions is not well understood. Using data from published studies, we derived the relationship between waterfowl density and reduction in plant standing crop. When waterfowl density was estimated as individuals ha−1 no significant relationship with reduction in plant standing crop was detected. However, when waterfowl density was estimated as kg ha−1 a significant, positive, linear relationship with reduction in plant standing crop was found. Whilst many previous studies have considered waterfowl species as homologous, despite large differences in body mass, our results suggest that species body mass is a key determinant of waterfowl impact on plant standing crop. To examine relative impacts of waterfowl groups based on species body mass, a measure of plant biomass reduction (Rs) per bird per hectare was calculated for each group. Comparison of Rs values indicated some differences in impact between different waterfowl groups, with swans having a greater per capita impact than smaller-bodied waterfowl groups. We present evidence that this difference is linked to disparities in individual body size and associated differences in intake rates, diet composition and energy requirements. Future research priorities are proposed, particularly the need for experiments that quantify the importance of factors that determine the magnitude of waterfowl impacts on plant standing crop

    Patterns of transcription factor programs and immune pathway activation define four major subtypes of SCLC with distinct therapeutic vulnerabilities.

    No full text
    Despite molecular and clinical heterogeneity, small cell lung cancer (SCLC) is treated as a single entity with predictably poor results. Using tumor expression data and non-negative matrix factorization, we identify four SCLC subtypes defined largely by differential expression of transcription factors ASCL1, NEUROD1, and POU2F3 or low expression of all three transcription factor signatures accompanied by an Inflamed gene signature (SCLC-A, N, P, and I, respectively). SCLC-I experiences the greatest benefit from the addition of immunotherapy to chemotherapy, while the other subtypes each have distinct vulnerabilities, including to inhibitors of PARP, Aurora kinases, or BCL-2. Cisplatin treatment of SCLC-A patient-derived xenografts induces intratumoral shifts toward SCLC-I, supporting subtype switching as a mechanism of acquired platinum resistance. We propose that matching baseline tumor subtype to therapy, as well as manipulating subtype switching on therapy, may enhance depth and duration of response for SCLC patients
    corecore