51,783 research outputs found
Remote Detection of Saline Intrusion in a Coastal Aquifer Using Borehole Measurements of Self-Potential
Funded by NERC CASE studentship . Grant Number: NE/I018417/1Peer reviewedPublisher PD
A uniform metallicity in the outskirts of massive, nearby galaxy clusters
Suzaku measurements of a homogeneous metal distribution of Solar
in the outskirts of the nearby Perseus cluster suggest that chemical elements
were deposited and mixed into the intergalactic medium before clusters formed,
likely over 10 billion years ago. A key prediction of this early enrichment
scenario is that the intracluster medium in all massive clusters should be
uniformly enriched to a similar level. Here, we confirm this prediction by
determining the iron abundances in the outskirts () of a sample
of ten other nearby galaxy clusters observed with Suzaku for which robust
measurements based on the Fe-K lines can be made. Across our sample the iron
abundances are consistent with a constant value,
Solar ( for 25 degrees of freedom). This is remarkably similar to
the measurements for the Perseus cluster of Solar,
using the Solar abundance scale of Asplund et al. (2009).Comment: accepted for publication in MNRA
Witnessing the Growth of the Nearest Galaxy Cluster: Thermodynamics of the Virgo Cluster Outskirts
We present results from Suzaku Key Project observations of the Virgo Cluster,
the nearest galaxy cluster to us, mapping its X-ray properties along four long
`arms' extending beyond the virial radius. The entropy profiles along all four
azimuths increase with radius, then level out beyond , while the
average pressure at large radii exceeds Planck Sunyaev-Zel'dovich measurements.
These results can be explained by enhanced gas density fluctuations (clumping)
in the cluster's outskirts. Using a standard Navarro, Frenk and White (1997)
model, we estimate a virial mass, radius, and concentration parameter of
M, kpc, and , respectively. The inferred cumulative baryon fraction exceeds
the cosmic mean at along the major axis, suggesting enhanced
gas clumping possibly sourced by a candidate large-scale structure filament
along the north-south direction. The Suzaku data reveal a large-scale sloshing
pattern, with two new cold fronts detected at radii of 233 kpc and 280 kpc
along the western and southern arms, respectively. Two high-temperature regions
are also identified 1 Mpc towards the south and 605 kpc towards the west of
M87, likely representing shocks associated with the ongoing cluster growth.
Although systematic uncertainties in measuring the metallicity for low
temperature plasma remain, the data at large radii appear consistent with a
uniform metal distribution on scales of kpc and larger,
providing additional support for the early chemical enrichment scenario driven
by galactic winds at redshifts of 2-3.Comment: submitted to MNRA
Euclidean Thermal Green Functions of Photons in Generalized Euclidean Rindler Spaces for any Feynman-like Gauge
The thermal Euclidean Green functions for Photons propagating in the Rindler
wedge are computed employing an Euclidean approach within any covariant
Feynman-like gauge. This is done by generalizing a formula which holds in the
Minkowskian case. The coincidence of the found (\be=2\pi)-Green functions and
the corresponding Minkowskian vacuum Green functions is discussed in relation
to the remaining static gauge ambiguity already found in previous papers.
Further generalizations to more complicated manifolds are discussed. Ward
identities are verified in the general case.Comment: 12 pages, standard latex, no figures, some signs changed, more
comments added, final version to appear on Int. J. Mod. Phys.
Analysis and application of digital spectral warping in analog and mixed-signal testing
Spectral warping is a digital signal processing transform which shifts the frequencies contained within a signal along the frequency axis. The Fourier transform coefficients of a warped signal correspond to frequency-domain 'samples' of the original signal which are unevenly spaced along the frequency axis. This property allows the technique to be efficiently used for DSP-based analog and mixed-signal testing. The analysis and application of spectral warping for test signal generation, response analysis, filter design, frequency response evaluation, etc. are discussed in this paper along with examples of the software and hardware implementation
Thermal decomposition of a honeycomb-network sheet - A Molecular Dynamics simulation study
The thermal degradation of a graphene-like two-dimensional triangular
membrane with bonds undergoing temperature-induced scission is studied by means
of Molecular Dynamics simulation using Langevin thermostat. We demonstrate that
the probability distribution of breaking bonds is highly peaked at the rim of
the membrane sheet at lower temperature whereas at higher temperature bonds
break at random anywhere in the hexagonal flake. The mean breakage time
is found to decrease with the total number of network nodes by a power law
and reveals an Arrhenian dependence on temperature .
Scission times are themselves exponentially distributed. The fragmentation
kinetics of the average number of clusters can be described by first-order
chemical reactions between network nodes of different coordination. The
distribution of fragments sizes evolves with time elapsed from a
-function through a bimodal one into a single-peaked again at late
times. Our simulation results are complemented by a set of -order
kinetic differential equations for which can be solved exactly and
compared to data derived from the computer experiment, providing deeper insight
into the thermolysis mechanism.Comment: 21pages, 9 figures, LaTeX, revised versio
Plasmas generated by ultra-violet light rather than electron impact
We analyze, in both plane and cylindrical geometries, a collisionless plasma
consisting of an inner region where generation occurs by UV illumination, and
an un-illuminated outer region with no generation. Ions generated in the inner
region flow outwards through the outer region and into a wall. We solve for
this system's steady state, first in the quasi-neutral regime (where the Debye
length vanishes and analytic solutions exist) and then in the
general case, which we solve numerically. In the general case a double layer
forms where the illuminated and un-illuminated regions meet, and an
approximately quasi-neutral plasma connects the double layer to the wall
sheath; in plane geometry the ions coast through the quasi-neutral section at
slightly more than the Bohm speed . The system, although simple, therefore
has two novel features: a double layer that does not require counter-streaming
ions and electrons, and a quasi-neutral plasma where ions travel in straight
lines with at least the Bohm speed. We close with a pr\'{e}cis of our
asymptotic solutions of this system, and suggest how our theoretical
conclusions might be extended and tested in the laboratory.Comment: 10 pages, 3 figures, accepted by Physics of Plasma
Vortex reconnections in atomic condensates at finite temperature
The study of vortex reconnections is an essential ingredient of understanding
superfluid turbulence, a phenomenon recently also reported in trapped atomic
Bose-Einstein condensates. In this work we show that, despite the established
dependence of vortex motion on temperature in such systems, vortex
reconnections are actually temperature independent on the typical length/time
scales of atomic condensates. Our work is based on a dissipative
Gross-Pitaevskii equation for the condensate, coupled to a semiclassical
Boltzmann equation for the thermal cloud (the Zaremba-Nikuni-Griffin
formalism). Comparison to vortex reconnections in homogeneous condensates
further show reconnections to be insensitive to the inhomogeneity in the
background density.Comment: 6 pages, 4 figure
- âŠ