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We analyze, in both plane and cylindrical geometries, a collisionless plasma consisting of an inner

region where generation occurs by UV illumination, and an un-illuminated outer region with no

generation. Ions generated in the inner region flow outwards through the outer region and into a

wall. We solve for this system’s steady state, first in the quasi-neutral regime (where the Debye

length kD vanishes and analytic solutions exist) and then in the general case, which we solve

numerically. In the general case, a double layer forms where the illuminated and un-illuminated

regions meet, and an approximately quasi-neutral plasma connects the double layer to the wall

sheath; in plane geometry, the ions coast through the quasi-neutral section at slightly more than the

Bohm speed cs. The system, although simple, therefore has two novel features: a double layer that

does not require counter-streaming ions and electrons, and a quasi-neutral plasma where ions travel

in straight lines with at least the Bohm speed. We close with a pr�ecis of our asymptotic solutions of

this system, and suggest how our theoretical conclusions might be extended and tested in the

laboratory. VC 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4848715]

I. INTRODUCTION

This paper is concerned to give a description of plasmas

where the generation is by photo-ionization rather than elec-

tron impact.

An experimental and theoretical treatment of the situa-

tion we have in mind was given by Johnson, Cooke, and

Allen1 who in cylindrical geometry passed the output of a

mercury discharge through a vessel containing mercury

vapour, both vessels joined by a quartz window so passing

UV. In their situation, the ionization was associative caused

by the excited states 63P0 and 6P3
1 interacting according to

the scheme Hg(63P0)þHg(63P1) ! Hgþ2 þ e, to produce a

molecular ion Hgþ2 in the R state. The relevant term diagram

was given in Forrest and Franklin,2 with earlier measure-

ments having been carried out by Tan and von Engel.3

Here, we will treat cases where the radiation is sufficiently

energetic that ionization occurs directly and the scheme

h�þA! Aþþ e applies, that is, direct photo-ionization.

For simplicity, we will assume the plasma to be collision-

less and we will cover both plane and cylindrical geometries.

We begin with the plasma approximation, where results

not very different from the positive column are expected.

We then consider in detail partial illumination with a maxi-

mum in the centre where the most interesting case is that of

a sharp cutoff and it turns out that it is necessary to introduce

Poisson’s equation to obtain closure. We then summarize the

use of matched asymptotic approximations to explore the

double layer that forms in the partially illuminated case in

plane geometry. Finally, we point up ways in which this

work could be extended and applied.

II. THEORETICAL MODEL

We show in Figure 1 a schematic diagram of the experi-

mental situation we envisage when the plasma is generated

by end illumination. Other geometries are possible.

Four equations describe the system at equilibrium. Two

are steady-state fluid equations, namely the continuity

equation

r � ðnivÞ ¼ G (1)

and the ion momentum equation

Mniðv � rÞvþMvG ¼ �nierV (2)

while the other two equations are Poisson’s equation

r2V ¼ e

e0

ðne � niÞ (3)

and the Boltzmann relation

ne ¼ n0 exp
eV

kTe

� �
; (4)

where ni and ne are the ion and electron densities, respec-

tively, v is the ion velocity, G the generation rate, M the

ion mass, V the electric potential, Te the electron tempera-

ture, and n0 the electron density at the system’s central

axis. The equations are the same in both regions, but G is

zero in the un-illuminated region II. We use G rather than

Z in Eq. (1) because the equation with electron impact ioni-

zation reads r � ðnivÞ ¼ Zn and is not simply integrable

(although it can be solved analytically in the quasi-neutral

case).a)Electronic mail: raoulnf1935@gmail.com
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Introducing the normalized quantities U�v=cs, N�n=n0,

X� x=Lion� x=ðn0cs=GÞ, and U¼�eV=ðkBTeÞ, we rewrite

the above equations in normalized form

~r � ðNiUÞ ¼ 1; (5)

U

Ni
þ ðU � ~rÞU ¼ ~rU; (6)

~r2
U ¼ Ni � Ne

K2
; (7)

Ne ¼ expð�UÞ (8)

in region I, where K � kD=Lion and ~r is a normalized gradi-

ent operator (the spatial derivative when distance is normal-

ized by Lion). In region II, Eq. (5) reduces to ~r � ðNiUÞ ¼ 0

and Eq. (6) reduces to (U � ~rÞU ¼ ~rU.

III. QUASI-NEUTRAL SOLUTION IN PLANE
GEOMETRY

We first consider region I in plane geometry under the

plasma approximation, which leads to a quasi-neutral solution.

Exploiting symmetry, we reduce Eqs. (5)–(8) to scalar equa-

tions, and using the plasma approximation ðNi ¼ Ne ¼ NÞ,
Poisson’s equation is dispensed with. There are then three

equations to solve

dðNUÞ
dX

¼ 1; (9)

U

N
þ U

dU

dX
¼ dU

dX
; (10)

N ¼ expð�UÞ: (11)

It is readily found that the equations are singular where

U¼ 1, i.e., the Bohm criterion applies. Applying the bound-

ary condition that U¼ 0 at X¼ 0, Eq. (9) implies NU ¼ X
and we obtain the analytic solution

X ¼ U

1þ U2
; N ¼ 1

1þ U2
; U ¼ ln 1þ U2ð Þ (12)

which implies U ¼ 1, X ¼ 0:5, N ¼ 0:5, U ¼ ln 2 at the

singularity. The corresponding values for electron impact

ionization, previously given by Franklin,4 are X ¼ 0:571,

N ¼ 0:5, U ¼ ln2 ¼ 0:693.

In region II, the three equations to solve are more trivial

because there is no generation: NU is constant, U dU=dX
¼ dU=dX, and N ¼ expð�UÞ. Eliminating N and U,

U
dU

dX
¼ 1

U

dU

dX
(13)

and this apparently has two possible solutions, dU=dX ¼ 0

or U ¼ 1. In either case, the ions are “coasting,” and the

only satisfactory solution is to have the ions coasting at the

Bohm speed, but then the density is constant and region II is

apparently limitless in extent.

Thus, this outer region is an unusual type of plasma. It is

generationless, it has constant density, and, as at a sheath’s

edge, its ions travel at the Bohm speed, but unlike a sheath it

is not just a few Debye lengths long. Although unusual, it

does satisfy Langmuir’s definition of a plasma as a “region

containing balanced charges of ions and electrons.”5 We

might call it a quasi-plasma, but perhaps quiescent plasma is

a better description. At a certain time historically, there were

whole conferences given over to quiescent plasmas, the last

being that in Elsinore in 1971,6 which emphasized the differ-

ence then perceived between fusion plasmas and low temper-

ature, low pressure plasmas.

IV. FINITE DEBYE LENGTH SOLUTION IN PLANE
GEOMETRY

We now reintroduce Poisson’s equation

d2U
dX2
¼ Ni � Ne

K2
(14)

thus abandoning the plasma approximation. Then, the

problem is tractable only by employing computational

methods.

A natural consequence of introducing Poisson is that the

computational output gives the space charge difference

directly, and one finds that at the boundary between the two

regions of plasma, one active and the other quiescent, a dou-

ble layer forms.

Such structures have been known since the 1970s

between plasmas with different characteristics of density or

electron temperature due particularly to the work of

Andrews and Allen.7 The size of the double layer is a few

Debye lengths. It is commonly supposed that double layers

FIG. 1. The system to be analyzed, in plane geometry (upper) and cylindri-

cal geometry (lower). In both geometries, the system comprises two regions

of plasma: the central, uniformly illuminated region I and the outer, un-

illuminated region II.
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are a feature of situations only with counter-streaming ions

and electrons, but that is not so in this case.

Thus, having a “plasma” in which the densities are not

exactly equal, one can integrate to a point where the electron

random flux equals the ion directed flux, and this is the

standard condition to determine the position of the wall.

We show in Figure 2 results for a specific case (M=me

¼ 736744, K ¼ 0:00497) that gives all of the relevant varia-

bles and also shows the existence of a double layer. Varying

the parameters produces results having the same features.

V. QUASI-NEUTRAL SOLUTION IN CYLINDRICAL
GEOMETRY

In cylindrical geometry, we have the continuity equation

dðNURÞ
dR

¼ 2R (15)

and the ion momentum equation

U

N
þ U

dU

dR
¼ dU

dR
(16)

with the Boltzmann relation remaining the same. The nor-

malization is the same but our spatial coordinate is now the

radial distance R � Gr=ð2n0csÞ.
Singularity occurs again where U¼ 1. In region I, we

have

R ¼ U

ð1þ 2U2Þ3=4
; N ¼ R

U
; U ¼ �ln N (17)

giving values at the boundary between regions I and II of

U ¼ 1, N ¼ 0:439, and U ¼ 0:824. These compare with

the electron impact values of U ¼ 1, N ¼ 0:420, and

U ¼ 0:869.

We next consider the un-illuminated region II, in the

light of what we have learned from the plane case, using the

plasma approximation, and there we now have dðNURÞ=
dR ¼ 0, i.e., NUR constant. With R increasing, NU is neces-

sarily decreasing, and on physical grounds N is decreasing

and U increasing. Going through the algebra of the equa-

tions, we find ðU � 1=UÞ dU=dR ¼ 1=R. U and R are both

positive definite functions of R and thus any solution requires

U � 1=U and so U � 1. It is worth reminding ourselves that

Bohm’s original statement8 of what became known as his

criterion was Mv2 � kBTe (in other words, U � 1) for a

sheath to form. Once again we have two different “plasmas”

adjoining, but in this case there is continuity of all of the var-

iables and their derivatives, and the fundamental wall-sheath

requirement obtains. This is because the equation above

allows the possibility that simultaneously dU=dR!1 and

ðU � 1=UÞ ! 0, at the illumination edge.

VI. FINITE DEBYE LENGTH SOLUTION IN
CYLINDRICAL GEOMETRY

As in plane geometry, one has to resort to computation

to provide a physically reliable solution to the finite Debye

length case, but that we have done. The relevant equations

are again (5)–(8), and as in the plane case one can flatten

them into scalar functions of R by exploiting symmetry. We

show as Figure 3 the results for M=me ¼ 73 6744 and

FIG. 2. Solutions of the model in plane

geometry. Dotted curves are the quasi-

neutral solution and solid curves the

numerical solution for Hgþ2 ions

(kD=xill ¼ 1=100 and M=me ¼ 736744;

the wall sheath depends quantitatively

on M=me). The normalized variables

plotted here are (a) electric potential;

(b) ion density; (c) ion speed; and (d)

net space charge density, demonstrating

the existence of a double layer (inset

in (d)).

123508-3 Franklin et al. Phys. Plasmas 20, 123508 (2013)



K ¼ 0:00758. Again, there is a double layer where regions I

and II meet.

VII. JOINING ILLUMINATED AND UN-ILLUMINATED
PLASMAS USING MATCHED ASYMPTOTIC
APPROXIMATIONS

The first treatment of transition from an active plasma

generated by electron impact to a collisionless near-wall

space-charge sheath by means of matched asymptotic expan-

sions in both the fluid model and the free-fall model was

given by Franklin and Ockendon.9 It was found that there

was a need for an intermediate layer or transition layer inter-

mediate in dimension between the Debye length and the

plasma dimension, adjacent to the wall.

The method of matched asymptotic approximations

involves expanding the variables in a series in a small parame-

ter, and here we take the illuminated and un-illuminated

regions to be of the same extent to reduce the number of pa-

rameters involved and designate e ¼ ðkD=xillÞ2. The matching

process requires much careful manipulation and so we omit

the details here, and one has to proceed order by order. A

first-order solution describing the illuminated plasma,

the double layer, and the un-illuminated plasma represents the

quasi-neutral solution found in Sec. III above for the plane

case and in Sec. V for the cylindrical case. We will elaborate

the full second-order solution in a subsequent paper, but in

summary: we find that the double layer scales as e2=5; the

second-order terms in expansions of the quantities U, Ni, Ne,

and U are of the order of e2=5 in the illuminated region, of the

order of e1=5 in the double layer, and of the orders of,

respectively, e1=5 and e2=5 in the un-illuminated region in the

plane and cylindrical cases. It is possible to go to higher orders

than the second but the algebra becomes increasingly tedious,

and it is more expedient to use computational methods.

VIII. EXTENSIONS AND CONCLUSIONS

It is readily possible to introduce collisions in the above

theoretical treatments, but this can only be done computa-

tionally and in the process the double layer will be smoothed

out, typically for ki < kD or cs=�i < kD.

We have given here only results for a sharp cut-off of

the illuminated region, but in our earlier exploratory work

we looked at situations where the illumination had a profile,

either Gaussian or approximating to a Heaviside function.

Those situations gave results consistent with the description

we have given but that then the double layer attenuated and

died in a characteristic parametric manner.

Any experimental test of our results would require a high

power UV source, a quite large cylindrical quartz vessel con-

taining the target gas, and ideally non-intrusive diagnostics of

the two plasma regions, e.g., Laser Induced Fluorescence.

There would need to be a “dump” for the UV that passed

through the target gas, but the theory could be readily modi-

fied if the attenuation length of the UV was greater than the

vessel length, for then the variation with the beam path would

be gradual, and not react back on the plasma overall.

Producing the situation in which plane geometry pre-

vailed would be more complicated, but not impossible, and

would generate the quiescent uniform plasma we have

revealed.

FIG. 3. Solutions of the model in cy-

lindrical geometry. Dotted curves are

the quasi-neutral solution and solid

curves the numerical solution for Hgþ2
ions (kD=rill ¼ 0:00859 and M=me

¼ 736744, where rill is the unnormal-

ized radius of the illuminated region I).

The same variables are plotted here as

in Figure 2. An inset detail of (d) again

highlights a double layer.
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We believe that we have found a new and interesting sit-

uation in what we have called the partially illuminated case

when there is an active plasma adjacent to a quiescent one

before a wall sheath develops. The physical situation is essen-

tially identical to that which obtains when an external electron

beam passes through a plasma, only the parameters are sym-

bolically different. But, a recent example producing similar

solutions was presented at ICPIG: an ion beam passing through

a plasma independently generated, with the same parent gas.10
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