15,872 research outputs found

    Duration discrimination of brief visual stimuli

    Get PDF
    Visual flash duration discrimination and decision theory analysis of effects of temporal and brightness difference

    Gravitomagnetism, clocks and geometry

    Get PDF
    New techniques to evaluate the clock effect using light are described. These are based on the flatness of the cylindrical surface containing the world lines of the rays constrained to move on circular trajectories about a spinning mass. The effect of the angular momentum of the source is manifested in the fact that inertial observers must be replaced by local non rotating observers. Starting from this an exact formula for circular trajectories is found. Numerical estimates for the Earth environment show that light would be a better probe than actual clocks to evidence the angular momentum influence. The advantages of light in connection with some principle experiments are shortly reviewed.Comment: TCI Latex, 12 pages, 2 figures. To appear in European Journal of Physic

    Benchmarking of electro-optic monitors for femtosecond electron bunches

    Get PDF
    The longitudinal profiles of ultrashort relativistic electron bunches at the soft x-ray free-electron laser FLASH have been investigated using two single-shot detection schemes: an electro-optic (EO) detector measuring the Coulomb field of the bunch and a radio-frequency structure transforming the charge distribution into a transverse streak. A comparison permits an absolute calibration of the EO technique. EO signals as short as 60 fs (rms) have been observed, which is a new record in the EO detection of single electron bunches and close to the limit given by the EO material properties

    Single shot longitudinal bunch profile measurements by temporally resolved electro-optical detection

    Get PDF
    For the high gain operation of a SASE FEL, extremely short electron bunches are essential to generate sufficiently high peak currents. At the superconducting linac of FLASH at DESY, we have installed an electro- optic measurement system to probe the time structure of the electric field of single ~100 fs electron bunches. In this technique, the field induced birefringence in an electro-optic crystal is encoded on a chirped picosecond laser pulse. The longitudinal electric field profile of the electron bunch is then obtained from the encoded optical pulse by a single shot cross correlation with a 35 fs laser pulse using a second harmonic crystal (temporal decoding). An electro-optical signal exhibiting a feature with 118 fs FWHM was observed, and this is close to the limit of resolution due to the material properties of the particular electro-optic crystal used. The measured electro-optic signals are compared to bunch shapes simultaneously measured with a transverse deflecting cavity

    Duration discrimination of brief visual off-flashes

    Get PDF
    Visual flash duration discrimination and analysis of temporal and energy cue models, and memory effect

    Confirmation of previous ground-based Cepheid P-L zero-points using Hipparcos trigonometric parallaxes

    Get PDF
    Comparisons show agreement at the 0.1-mag level between the calibration of the Cepheid period-luminosity (P-L) relation by Feast & Catchpole (FC) using the early release of Hipparcos data and four previous ground-based calibrations, three of which are either largely or totally independent of the distance to the Large Magellanic Cloud (LMC). Each of the comparisons has the sense that the FC calibration is brighter, but only at the level of ≲ 0.1 mag. In contrast, FC argue that their Hipparcos recalibration leads to a 0.2-mag revision in the distance to the LMC, and thereby to a 10 per cent decrease in the Hubble constant. We argue differently. The comparison of the Hipparcos recalibration with others should be made using only local Galactic Cepheids, not based on Cepheids in the LMC that require a set of precepts that are not germane to the direct Hipparcos recalibration. The comparison made here, using only Galactic Cepheids, gives a correction of ∽ 4 per cent or less to our value of H0 based on Type Ia supernovae, keeping all other factors and precepts the same. A second success of the Hipparcos mission is the calibration of the position of the main sequence in the Hertzsprung—Russell diagram as a function of metallicity using local subdwarfs. These data have been used by Reid and by Gratton et al. to obtain, similarly to FC, a brighter absolute magnitude of RR Lyrae stars by ∽0.3 mag from that often currently adopted. These new calibrations confirm the earlier brighter calibrations by Walker, by Sandage, and by Mazzitelli, D'Antona & Caloi, thereby reducing the ages of globular clusters by ∽30 per cent. This removes most of the cosmological time-scale problem if H0∽55 km s−1 Mpc−1. A similar conclusion, based on pulsation theory and MACHO data, has been reached by Alcock et a

    Longtitudinal electron beam diagnostics via upconversion of THz to visible radiation

    Get PDF
    Longitudinal electro-optic electron bunch diagnostics has been successfully applied at several accelerators. The electro-optic effect can be seen as an upconversion of the Coulomb field of the relativistic electron bunch (THz radiation) to the visible spectral range, where a variety of standard diagnostic tools are available. Standard techniques to characterise femtosecond optical laser pulses (auto- and cross-correlators) have led to the schemes that can measure electron bunch profiles with femtosecond resolution. These techniques require, however, well synchronized femtosecond laser pulses, in order to obtain the desired temporal resolution. Currently, we are exploring other electro-optic variants which require less advanced laser systems and will be more amenable to beam based longitudinal feedback applications. The first results of one such new scheme will be presented in this paper

    Electro-optic techniques for longitudinal electron bunch diagnostics

    Get PDF
    Electro-optic techniques are becoming increasingly important in ultrafast electron bunch longitudinal diagnostics and have been successfully implemented at various accelerator laboratories. The longitudinal bunch shape is directly obtained from a single-shot, non-intrusive measurement of the temporal electric field profile of the bunch. Further- more, the same electro-optic techniques can be used to measure the temporal profile of terahertz / far-infrared opti- cal pulses generated by a CTR screen, at a bending magnet (CSR), or by an FEL. This contribution summarizes the re- sults obtained at FELIX and FLASH

    Single-shot longitudinal bunch profile measurements at FLASH using electro-optic detection:experiment, simulation, and validation

    Get PDF
    At the superconducting linac of FLASH at DESY, we have installed an electro-optic (EO) experiment for single- shot, non-destructive measurements of the longitudinal electric charge distribution of individual electron bunches. The time profile of the electric bunch field is electro- optically encoded onto a chirped titanium-sapphire laser pulse. In the decoding step, the profile is retrieved either from a cross-correlation of the encoded pulse with a 30 fs laser pulse, obtained from the same laser (electro- optic temporal decoding, EOTD), or from the spectral intensity of the transmitted probe pulse (electro-optic spectral decoding, EOSD). At FLASH, the longitudinally compressed electron bunches have been measured during FEL operation with a resolution of better than 50 fs. The electro-optic process in gallium phosphide was numerically simulated using as input data the bunch shapes determined with a transverse-deflecting RF structure. In this contribution, we present electro-optically measured bunch profiles and compare them with the simulation
    • …
    corecore