547 research outputs found

    Remote sensing, numerical modelling and ground truthing for analysis of lake water quality and temperature

    Get PDF
    Freshwater accounts for just 2.5% of the earth’s water resources, and its quality and availability are becoming an issue of global concern in the 21st century. Growing human population, over-exploitation of water sources and pressures of global warming mean that both water quantity and quality are affected. In order to effectively manage water quality there is a need for increased monitoring and predictive modelling of freshwater resources. To address these concerns in New Zealand inland waters, an approach which integrates biological and physical sciences is needed. Remote sensing has the potential to allow this integration and vastly increase the temporal and spatial resolution of current monitoring techniques, which typically involve collecting grab-samples. In a complementary way, lake modelling has the potential to enable more effective management of water resources by testing the effectiveness of a range of possible management scenarios prior to implementation. Together, the combination of remote sensing and modelling data allows for improved model initialisation, calibration and validation, which ultimately aid in understanding of complex lake ecosystem processes. This study investigated the use of remote sensing using empirical and semi-analytical algorithms for the retrieval of chlorophyll a (chl a), tripton, suspended minerals (SM), total suspended sediment (SS) and water surface temperature. It demonstrated the use of spatially resolved statistical techniques for comparing satellite estimated and 3-D simulated water quality and temperature. An automated procedure was developed for retrieval of chl a from Landsat Enhanced Thematic Mapper (ETM+) imagery, using 106 satellite images captured from 1999 to 2011. Radiative transfer-based atmospheric correction was applied to images using the Second Simulation of the Satellite in the Solar Spectrum model (6sv). For the estimation of chl a over a time series of images, the use of symbolic regression resulted in a significant improvement in the precision of chl a hindcasts compared with traditional regression equations. Results from this investigation suggest that remote sensing provides a valuable tool to assess temporal and spatial distributions of chl a. Bio-optical models were applied to quantify the physical processes responsible for the relationship between chl a concentrations and subsurface irradiance reflectance used in regression algorithms, allowing the identification of possible sources of error in chl a estimation. While the symbolic regression model was more accurate than traditional empirical models, it was still susceptible to errors in optically complex waters such as Lake Rotorua, due to the effect of variations of SS and CDOM on reflectance. Atmospheric correction of Landsat 7 ETM+ thermal data was carried out for the purpose of retrieval of lake water surface temperature in Rotorua lakes, and Lake Taupo, North Island, New Zealand. Atmospheric correction was repeated using four sources of atmospheric profile data as input to a radiative transfer model, MODerate resolution atmospheric TRANsmission (MODTRAN) v.3.7. The retrieved water temperatures from 14 images between 2007 and 2009 were validated using a high-frequency temperature sensor deployed from a mid-lake monitoring buoy at the water surface of Lake Rotorua. The most accurate temperature estimation for Lake Rotorua was with radiosonde data as an input into MODTRAN, followed by Moderate Resolution Imaging Spectroradiometer (MODIS) Level 2, Atmospheric Infrared Sounder (AIRS) Level 3, and NASA data. Retrieved surface water temperature was used for assessing spatial heterogeneity of surface water temperature simulated with a three-dimensional (3-D) hydrodynamic model (ELCOM) of Lake Rotoehu, located approximately 20 km east of Lake Rotorua. This comparison demonstrated that simulations reproduced the dominant horizontal variations in surface water temperature in the lake. The transport and mixing of a geothermal inflow and basin-scale circulation patterns were inferred from thermal distributions from satellite and model estimations of surface water temperature and a spatially resolved statistical evaluation was used to validate simulations. This study has demonstrated the potential of accurate satellite-based thermal monitoring to validate water surface temperature simulated by 3-D hydrodynamic models. Semi-analytical and empirical algorithms were derived to determine spatial and temporal variations in SS in Lake Ellesmere, South Island, New Zealand, using MODIS band 1. The semi-analytical model and empirical model had a similar level of precision in SS estimation, however, the semi-analytical model has the advantage of being applicable to different satellite sensors, spatial locations, and SS concentration ranges. The estimations of SS concentration (and estimated SM concentration) from the semi-analytical model were used for a spatially resolved validation of simulations of SM derived from ELCOM-CAEDYM. Visual comparisons were compared with spatially-resolved statistical techniques. The spatial statistics derived from the Map Comparison Kit allowed a non-subjective and quantitative method to rank simulation performance on different dates. The visual and statistical comparison between satellite estimated and model simulated SM showed that the model did not perform well in reproducing both basin-scale and fine-scale spatial variation in SM derived from MODIS satellite imagery. Application of the semi-analytical model to estimate SS over the lifetime of the MODIS sensor will greatly extend its spatial and temporal coverage for historical monitoring purposes, and provide a tool to validate SM simulated by 1-D and 3-D models on a daily basis. A bio-optical model was developed to derive chl a, SS concentrations, and coloured dissolved organic matter /detritus absorption at 443 nm, from MODIS Aqua subsurface remote sensing reflectance of Lake Taupo, a large, deep, oligotrophic lake in North Island, New Zealand. The model was optimised using in situ inherent optical properties (IOPs) from the literature. Images were atmospherically corrected using the radiative transfer model 6sv. Application of the bio-optical model using a single chl a-specific absorption spectrum (a*ϕ(λ)) resulted in low correlation between estimated and observed values. Therefore, two different absorption curves were used, based on the seasonal dominance of phytoplankton phyla with differing absorption properties. The application of this model resulted in reasonable agreement between modelled and in situ chl a concentrations. Highest concentrations were observed during winter when Bacillariophytes (diatoms) dominated the phytoplankton assemblage. On 4 and 5 March 2004 an unusually large turbidity current was observed originating from the Tongariro River inflow in the south-east of the lake. In order to resolve fine details of the plume, empirical relationships were developed between MODIS band 1 reflectance (250 m resolution) and SS estimated from MODIS bio-optical features (1 km resolution) were used estimate SS at 250 m resolution. Complex lake circulation patterns were observed including a large clockwise gyre. With the development of this bio-optical model MODIS can potentially be used to remotely sense water quality in near real time, and the relationship developed for B1 SS allows for resolution of fine-scale features such turbidity currents

    Remote Sensing of Water Quality in Rotorua and Waikato Lakes

    Get PDF
    Remote sensing has the potential to monitor spatial variation in water quality over large areas. While ocean colour work has developed analytical bio-optical water quality retrieval algorithms for medium spatial resolution platforms, remote sensing of lake water is often limited to high spatial resolution satellites such as Landsat, which have limited spectral resolution. This thesis presents the results of an investigation into satellite monitoring of lake water quality. The aim of this investigation was to ascertain the feasibility of estimating water quality and its spatial distribution using Landsat 7 ETM+ imagery combined with in situ data from Rotorua and Waikato lakes. For the comparatively deep Rotorua lakes, r² values of 0.91 (January 2002) and 0.83 (March 2002) were found between in situ chlorophyll (chl) a and the Band1/Band3 ratio. This technique proved useful for analysing the spatial distribution of phytoplankton, especially in lakes Rotoiti and Rotoehu. For the more bio-optically complex shallow lakes of the Waikato, a linear spectral unmixing (LSU) approach was investigated where the water surface reflectance spectrum is defined by the contribution from pure pixels or endmembers. The model estimates the percentage of the endmember within the pixel, which is then used in a final regression with in situ data to map water quality in all pixels. This approach was used to estimate the concentration of chl a (r² = 0.84). Total suspended solid (TSS) concentration was mapped using the traditional Band 3 regression with in situ data, which combined atmospherically corrected reflectance for both images into a single relationship (r² = 0.98). The time difference between in situ data collection and satellite data capture is a potential source of error. Other potential sources of error include sample location accuracy, the influence of dissolved organic matter, and masking of chl a signatures by high concentrations of TSS. The results from this investigation suggest that remote sensing of water quality provides meaningful and useful information with a range of applications and could provide information on temporal spatial variability in water quality

    Remote sensing of water quality – fact sheet

    Get PDF
    Evaluating water quality is a key tool in lake management. Typically water quality samples are restricted to a limited number of point samples collected in situ in the field, which can be time consuming and costly. Also, the few in situ points sampled fail to capture the spatial variability, e.g., for the large Lake Waikare (3,400 ha; Figure. 1)

    Light attenuation characteristics of glacially-fed lakes

    Get PDF
    Transparency is a fundamental characteristic of aquatic ecosystems and is highly responsive to changes in climate and land use. The transparency of glacially-fed lakes may be a particularly sensitive sentinel characteristic of these changes. However, little is known about the relative contributions of glacial flour versus other factors affecting light attenuation in these lakes. We sampled 18 glacially-fed lakes in Chile, New Zealand, and the U.S. and Canadian Rocky Mountains to characterize how dissolved absorption, algal biomass (approximated by chlorophyll a), water, and glacial flour contributed to attenuation of ultraviolet radiation (UVR) and photosynthetically active radiation (PAR, 400–700 nm). Variation in attenuation across lakes was related to turbidity, which we used as a proxy for the concentration of glacial flour. Turbidity-specific diffuse attenuation coefficients increased with decreasing wavelength and distance from glaciers. Regional differences in turbidity-specific diffuse attenuation coefficients were observed in short UVR wavelengths (305 and 320 nm) but not at longer UVR wavelengths (380 nm) or PAR. Dissolved absorption coefficients, which are closely correlated with diffuse attenuation coefficients in most non-glacially-fed lakes, represented only about one quarter of diffuse attenuation coefficients in study lakes here, whereas glacial flour contributed about two thirds across UVR and PAR. Understanding the optical characteristics of substances that regulate light attenuation in glacially-fed lakes will help elucidate the signals that these systems provide of broader environmental changes and forecast the effects of climate change on these aquatic ecosystems

    A coupled hydrodynamic-ecological model to test management options for restoration of lakes Onoke and Wairarapa

    Get PDF
    This report describes a modelling and remote sensing study of lakes Onoke and Wairarapa that seeks to determine water quality and ecological effects of specific management scenarios, and therefore inform the Ruamāhanga Whaitua Committee of potential water quality management options for lakes Onoke and Wairarapa. The study applied both one dimensional (1-D) and three dimensional (3-D) ecologically coupled hydrodynamic models to simulate current and scenario-based water quality variables. The Baseline model (calibration) simulates “current conditions” including management practices between 1992 and 2014. Business As Usual (BAU), SILVER and GOLD scenarios were all run using representative data catchment inflow and nutrients for mitigation taking effect in 2025, 2040 and 2080. Additional hydrodynamic scenarios were modelled (which also include catchment mitigations above). They were: deepening both lakes by 1 m, Ruamāhanga diversion back into Lake Wairarapa, and Lake Onoke summer outlet closed scenarios. These scenarios were provided by the Ruamāhanga Whaitua Committee. Within Lake Wairarapa, catchment mitigation-based scenarios showed considerable potential for the improvement of water quality. These mitigations simulated that the trophic state of the lake could change from the current supertrophic category, to the top of the eutrophic category (GOLD and SILVER mitigations). However, this still indicates poor water quality and high turbidity/low water clarity. In addition, these catchment mitigations did not move the lake from a NOF D category for total phosphorous (TP). Simulations indicated that larger reductions in TP (60%) (with SILVER2080 mitigations of other nutrients) could achieve a NOF C category for TP. Simulations that included the re-establishment of macrophytes also indicated NOF C category for TP (under SILVER2080), however only under a 1 m depth increase scenario, and under Ruamāhanga diversion scenario. These simulations indicated that the trophic status could move to the mid-eutrophic category. However, this is still indicative of poor water quality. Catchment scenarios had a greater influence on Lake Onoke trophic status compared to Wairarapa, due to the shorter residence time and low internal load (from the sediments) relative to external load. In effect, the composition of Onoke aligns closely with that of its inflows. Water quality in Lake Onoke is susceptible to changes in water quality in Lake Wairarapa, particularly in relation to chlorophyll a (chl a) and total suspended solids (TSS). High sediment resuspension events in Lake Wairarapa transport increased levels of suspended sediment to Lake Onoke. The very low residence time in Onoke does not allow adequate time for significant phytoplankton growth within the lake. However, 3-D simulations show higher phytoplankton concentrations at times in the western lake, relating to flushing and transport effects. The outlet-closed scenario in Lake Onoke simulated increased water quality in both 1-D and 3-D models However, we note that the risk of cyanobacteria blooms was low, but marginally increased. Also 1-D models suggested that the simulated TLI under SILVER2080 was almost identical to outlet closed SILVER2080. The 3-D model simulated lower chlorophyll concentrations and higher TSS under SILVER2080 outlet closed (compared to SILVER2080 and Baseline), largely due to changes in hydrodynamics and flushing. Therefore, these results show no conclusive evidence that water quality would be significantly increased or decreased in comparison to SILVER2080 under an outlet closed scenario. However, we note that in situ monitoring and expert opinion has indicated that under outlet closed conditions the lake is more susceptible to eutrophication

    Colour classification of 1486 lakes across a wide range of optical water types

    Get PDF
    Remote sensing by satellite-borne sensors presents a significant opportunity to enhance the spatio-temporal coverage of environmental monitoring programmes for lakes, but the estimation of classic water quality attributes from inland water bodies has not reached operational status due to the difficulty of discerning the spectral signatures of optically active water constituents. Determination of water colour, as perceived by the human eye, does not require knowledge of inherent optical properties and therefore represents a generally applicable remotely-sensed water quality attribute. In this paper, we implemented a recent algorithm for the retrieval of colour parameters (hue angle, dominant wavelength) and derived a new correction for colour purity to account for the spectral bandpass of the Landsat 8 Operational Land Imager (OLI). We used this algorithm to calculate water colour on almost 45,000 observations over four years from 1486 lakes from a diverse range of optical water types in New Zealand. We show that the most prevalent lake colours are yellow-orange and blue, respectively, while green observations are comparatively rare. About 40% of the study lakes show transitions between colours at a range of time scales, including seasonal. A preliminary exploratory analysis suggests that both geo-physical and anthropogenic factors, such as catchment land use, provide environmental control of lake colour and are promising avenues for future analysis

    Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis.

    Get PDF
    Multiple sclerosis is a common disease of the central nervous system in which the interplay between inflammatory and neurodegenerative processes typically results in intermittent neurological disturbance followed by progressive accumulation of disability. Epidemiological studies have shown that genetic factors are primarily responsible for the substantially increased frequency of the disease seen in the relatives of affected individuals, and systematic attempts to identify linkage in multiplex families have confirmed that variation within the major histocompatibility complex (MHC) exerts the greatest individual effect on risk. Modestly powered genome-wide association studies (GWAS) have enabled more than 20 additional risk loci to be identified and have shown that multiple variants exerting modest individual effects have a key role in disease susceptibility. Most of the genetic architecture underlying susceptibility to the disease remains to be defined and is anticipated to require the analysis of sample sizes that are beyond the numbers currently available to individual research groups. In a collaborative GWAS involving 9,772 cases of European descent collected by 23 research groups working in 15 different countries, we have replicated almost all of the previously suggested associations and identified at least a further 29 novel susceptibility loci. Within the MHC we have refined the identity of the HLA-DRB1 risk alleles and confirmed that variation in the HLA-A gene underlies the independent protective effect attributable to the class I region. Immunologically relevant genes are significantly overrepresented among those mapping close to the identified loci and particularly implicate T-helper-cell differentiation in the pathogenesis of multiple sclerosis

    A framework for ensemble modelling of climate change impacts on lakes worldwide : the ISIMIP Lake Sector

    Get PDF
    Empirical evidence demonstrates that lakes and reservoirs are warming across the globe. Consequently, there is an increased need to project future changes in lake thermal structure and resulting changes in lake biogeochemistry in order to plan for the likely impacts. Previous studies of the impacts of climate change on lakes have often relied on a single model forced with limited scenario-driven projections of future climate for a relatively small number of lakes. As a result, our understanding of the effects of climate change on lakes is fragmentary, based on scattered studies using different data sources and modelling protocols, and mainly focused on individual lakes or lake regions. This has precluded identification of the main impacts of climate change on lakes at global and regional scales and has likely contributed to the lack of lake water quality considerations in policy-relevant documents, such as the Assessment Reports of the Intergovernmental Panel on Climate Change (IPCC). Here, we describe a simulation protocol developed by the Lake Sector of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) for simulating climate change impacts on lakes using an ensemble of lake models and climate change scenarios for ISIMIP phases 2 and 3. The protocol prescribes lake simulations driven by climate forcing from gridded observations and different Earth system models under various representative greenhouse gas concentration pathways (RCPs), all consistently bias-corrected on a 0.5 degrees x 0.5 degrees global grid. In ISIMIP phase 2, 11 lake models were forced with these data to project the thermal structure of 62 well-studied lakes where data were available for calibration under historical conditions, and using uncalibrated models for 17 500 lakes defined for all global grid cells containing lakes. In ISIMIP phase 3, this approach was expanded to consider more lakes, more models, and more processes. The ISIMIP Lake Sector is the largest international effort to project future water temperature, thermal structure, and ice phenology of lakes at local and global scales and paves the way for future simulations of the impacts of climate change on water quality and biogeochemistry in lakes.Peer reviewe

    How are Australian higher education institutions contributing to change through innovative teaching and learning in virtual worlds?

    Get PDF
    Over the past decade, teaching and learning in virtual worlds has been at the forefront of many higher education institutions around the world. The DEHub Virtual Worlds Working Group (VWWG) consisting of Australian and New Zealand higher education academics was formed in 2009. These educators are investigating the role that virtual worlds play in the future of education and actively changing the direction of their own teaching practice and curricula. 47 academics reporting on 28 Australian higher education institutions present an overview of how they have changed directions through the effective use of virtual worlds for diverse teaching and learning activities such as business scenarios and virtual excursions, role-play simulations, experimentation and language development. The case studies offer insights into the ways in which institutions are continuing to change directions in their teaching to meet changing demands for innovative teaching, learning and research in virtual worlds. This paper highlights the ways in which the authors are using virtual worlds to create opportunities for rich, immersive and authentic activities that would be difficult or not possible to achieve through more traditional approaches

    Genomic epidemiology of COVID-19 in care homes in the east of England

    Get PDF
    Funder: National Institute for Health Research; FundRef: http://dx.doi.org/10.13039/501100000272COVID-19 poses a major challenge to care homes, as SARS-CoV-2 is readily transmitted and causes disproportionately severe disease in older people. Here, 1167 residents from 337 care homes were identified from a dataset of 6600 COVID-19 cases from the East of England. Older age and being a care home resident were associated with increased mortality. SARS-CoV-2 genomes were available for 700 residents from 292 care homes. By integrating genomic and temporal data, 409 viral clusters within the 292 homes were identified, indicating two different patterns – outbreaks among care home residents and independent introductions with limited onward transmission. Approximately 70% of residents in the genomic analysis were admitted to hospital during the study, providing extensive opportunities for transmission between care homes and hospitals. Limiting viral transmission within care homes should be a key target for infection control to reduce COVID-19 mortality in this population
    corecore