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Abstract 

Freshwater accounts for just 2.5% of the earth’s water resources, and its quality 

and availability are becoming an issue of global concern in the 21st century. 

Growing human population, over-exploitation of water sources and pressures of 

global warming mean that both water quantity and quality are affected. In order to 

effectively manage water quality there is a need for increased monitoring and 

predictive modelling of freshwater resources. To address these concerns in New 

Zealand inland waters, an approach which integrates biological and physical 

sciences is needed. Remote sensing has the potential to allow this integration and 

vastly increase the temporal and spatial resolution of current monitoring 

techniques, which typically involve collecting grab-samples. In a complementary 

way, lake modelling has the potential to enable more effective management of 

water resources by testing the effectiveness of a range of possible management 

scenarios prior to implementation. Together, the combination of remote sensing 

and modelling data allows for improved model initialisation, calibration and 

validation, which ultimately aid in understanding of complex lake ecosystem 

processes. 

 

This study investigated the use of remote sensing using empirical and semi-

analytical algorithms for the retrieval of chlorophyll a (chl a), tripton, suspended 

minerals (SM), total suspended sediment (SS) and water surface temperature. It 

demonstrated the use of spatially resolved statistical techniques for comparing 

satellite estimated and 3-D simulated water quality and temperature.  

 

An automated procedure was developed for retrieval of chl a from Landsat 

Enhanced Thematic Mapper (ETM+) imagery, using 106 satellite images captured 

from 1999 to 2011. Radiative transfer-based atmospheric correction was applied 

to images using the Second Simulation of the Satellite in the Solar Spectrum 

model (6sv). For the estimation of chl a over a time series of images, the use of 

symbolic regression resulted in a significant improvement in the precision of chl a 
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hindcasts compared with traditional regression equations. Results from this 

investigation suggest that remote sensing provides a valuable tool to assess 

temporal and spatial distributions of chl a. Bio-optical models were applied to 

quantify the physical processes responsible for the relationship between chl a 

concentrations and subsurface irradiance reflectance used in regression 

algorithms, allowing the identification of possible sources of error in chl a 

estimation. While the symbolic regression model was more accurate than 

traditional empirical models, it was still susceptible to errors in optically complex 

waters such as Lake Rotorua, due to the effect of variations of SS and CDOM on 

reflectance. 

 

Atmospheric correction of Landsat 7 ETM+ thermal data was carried out for the 

purpose of retrieval of lake water surface temperature in Rotorua lakes, and Lake 

Taupo, North Island, New Zealand. Atmospheric correction was repeated using 

four sources of atmospheric profile data as input to a radiative transfer model, 

MODerate resolution atmospheric TRANsmission (MODTRAN) v.3.7. The 

retrieved water temperatures from 14 images between 2007 and 2009 were 

validated using a high-frequency temperature sensor deployed from a mid-lake 

monitoring buoy at the water surface of Lake Rotorua. The most accurate 

temperature estimation for Lake Rotorua was with radiosonde data as an input 

into MODTRAN, followed by Moderate Resolution Imaging Spectroradiometer 

(MODIS) Level 2, Atmospheric Infrared Sounder (AIRS) Level 3, and NASA 

data. Retrieved surface water temperature was used for assessing spatial 

heterogeneity of surface water temperature simulated with a three-dimensional (3-

D) hydrodynamic model (ELCOM) of Lake Rotoehu, located approximately 20 

km east of Lake Rotorua. This comparison demonstrated that simulations 

reproduced the dominant horizontal variations in surface water temperature in the 

lake. The transport and mixing of a geothermal inflow and basin-scale circulation 

patterns were inferred from thermal distributions from satellite and model 

estimations of surface water temperature and a spatially resolved statistical 

evaluation was used to validate simulations. This study has demonstrated the 

potential of accurate satellite-based thermal monitoring to validate water surface 

temperature simulated by 3-D hydrodynamic models. 
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Semi-analytical and empirical algorithms were derived to determine spatial and 

temporal variations in SS in Lake Ellesmere, South Island, New Zealand, using 

MODIS band 1. The semi-analytical model and empirical model had a similar 

level of precision in SS estimation, however, the semi-analytical model has the 

advantage of being applicable to different satellite sensors, spatial locations, and 

SS concentration ranges. The estimations of SS concentration (and estimated SM 

concentration) from the semi-analytical model were used for a spatially resolved 

validation of simulations of SM derived from ELCOM-CAEDYM. Visual 

comparisons were compared with spatially-resolved statistical techniques. The 

spatial statistics derived from the Map Comparison Kit allowed a non-subjective 

and quantitative method to rank simulation performance on different dates. The 

visual and statistical comparison between satellite estimated and model simulated 

SM showed that the model did not perform well in reproducing both basin-scale 

and fine-scale spatial variation in SM derived from MODIS satellite imagery. 

Application of the semi-analytical model to estimate SS over the lifetime of the 

MODIS sensor will greatly extend its spatial and temporal coverage for historical 

monitoring purposes, and provide a tool to validate SM simulated by 1-D and 3-D 

models on a daily basis. 

 

A bio-optical model was developed to derive chl a, SS concentrations, and 

coloured dissolved organic matter /detritus absorption at 443 nm, from MODIS 

Aqua subsurface remote sensing reflectance of Lake Taupo, a large, deep, 

oligotrophic lake in North Island, New Zealand. The model was optimised using 

in situ inherent optical properties (IOPs) from the literature. Images were 

atmospherically corrected using the radiative transfer model 6sv. Application of 

the bio-optical model using a single chl a-specific absorption spectrum (a*ϕ(λ)) 

resulted in low correlation between estimated and observed values. Therefore, two 

different absorption curves were used, based on the seasonal dominance of 

phytoplankton phyla with differing absorption properties. The application of this 

model resulted in reasonable agreement between modelled and in situ chl a 

concentrations. Highest concentrations were observed during winter when 

Bacillariophytes (diatoms) dominated the phytoplankton assemblage. On 4 and 5 
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March 2004 an unusually large turbidity current was observed originating from 

the Tongariro River inflow in the south-east of the lake. In order to resolve fine 

details of the plume, empirical relationships were developed between MODIS 

band 1 reflectance (250 m resolution) and SS estimated from MODIS bio-optical 

features (1 km resolution) were used estimate SS at 250 m resolution. Complex 

lake circulation patterns were observed including a large clockwise gyre. With the 

development of this bio-optical model MODIS can potentially be used to remotely 

sense water quality in near real time, and the relationship developed for B1 SS 

allows for resolution of fine-scale features such turbidity currents. 
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aCDOMD(λ) CDOM and detritus absorption coefficient (m−1) 

aw(λ) Pure water absorption coefficient (m−1) 

b(λ) Spectral scattering coefficient (m−1) 

b*
SS(λ) Specific scattering coefficient of SS (m2 g −1) 

b*
TR(λ) Specific scattering coefficient of tripton (m2 g −1) 
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ϕ(λ) Specific scattering coefficient of phytoplankton (m2 mg −1) 

bb(λ) Spectral backscattering coefficient (m−1) 

BbSS Backscattering ratio of suspended sediment 

BbTR Backscattering ratio of tripton 

bbw(λ) Backscattering coefficient of pure water (m−1) 

Bbϕ Backscattering ratio of phytoplankton 
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CSM Concentration of suspended minerals (mg L-1) 
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E(λ) Irradiance (W m−2 nm−1) 

Ed(λ) Downwelling irradiance (W m−2 nm−1) 

Eu(λ) Upwelling  irradiance (W m−2 nm−1) 
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Gr Landsat rescaled gain (W m-2 sr-1 µm-1/DN) 

L(λ) Spectral radiance (W m−2 nm−1 sr−1) 
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Atmospheric or upwelling radiance emitted/scattered by the 

 atmosphere (W m-2 sr-1 µm-1) 

Lr(λ)  
Radiance due to multiple scattering by air molecules (Rayleigh) 

 (W m−2 nm−1 sr−1) 

Lt(λ) At-sensor radiance (W m-2 sr-1 µm-1) 

Ls(λ)  Surface leaving radiance (W m−2 nm−1 sr−1) 
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Lsky 

Downwelling or sky radiance reflected from the surface  

(W m-2 sr-1 µm-1) 

Lu(λ,z), Lw(λ) Upwelling radiance (W m−2 nm−1 sr−1) 

Lw(λ) Water leaving radiance (W m−2 nm−1 sr−1) 

n Scattering exponent of tripton or SS 

ᴕ Elevation angle (o) 

ơL Fresnel reflectance  (sr−1) 

ⱷ Azimuth angle (o) 

R(0-)(λ) Subsurface irradiance reflectance 

R(0+)(λ) Above water surface irradiance reflectance 

Rrs(λ), rrs(λ) Above, below water surface remote sensing reflectance (sr−1) 

Rv gas constant for moist air = 461.5 J kg-1 

S Spectral slope coefficient of CDOM (nm-1) 

τ(λ)  Atmospheric transmittance  

z Depth (m) 

β(θ) volume scattering function (m−1 sr-1) 

β(θ) 
Volume scattering function (m-1 sr-1), where θ is forward  

scattering angle 

ε Emissivity of the water surface 

θ Zenith angle (o) 

θ forward scattering angle (o) 

λ, λ0 Wavelength, reference wavelength (nm) 

Q The amount of energy held by a photon (J) 

h Plank’s constant (J s-1) 

v Frequency (Hz) 

τ atm(λ) Atmospheric transmittance from water to sensor 
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1 General introduction 

1.1 Motivation 

Eutrophication 

Eutrophication is generally defined as an increase in nutrients such as phosphorus 

and nitrogen which enhance algal growth (Wetzel 2001), leading to a decrease in 

water quality. It is a natural process whereby with age lakes gradually infill with 

sediment, nutrients, and organic matter. Human induced changes within catchments 

can speed up this natural process, which is then termed cultural eutrophication. 

Cultural eutrophication can result in decreased water clarity, harmful algal blooms, 

increased suspended sediment, hypoxia and anoxia, losses or increased growth of 

submerged macrophytes and lake biota, and, ultimately, risks to human health 

(Williamson et al. 2008). Lakes can be thought of as integrators of environmental 

change which has occurred within their catchments (Williamson et al. 2008).  

Remote sensing and modelling solutions 

Methods to assess water quality may be categorised into three main types; in situ 

sampling, numerical modelling and remote sensing (Dekker et al. 1996). In situ 

methods using grab-samples are generally suited to monitoring at low temporal 

resolution. By contrast autonomous water quality sensors allow for monitoring at 

high frequency and potentially in real time. However, neither of these methods is 

well suited to effectively capturing horizontal heterogeneity of water quality and 

temperature. 

 

Remote sensing can provide synoptic monitoring of optically active water 

constituents (e.g., Kloiber et al. 2002) and may therefore allow monitoring of 
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temperature and optically active water quality variables at high spatial resolution 

(e.g., Dekker et al. 2002; Binding et al. 2007). Furthermore it can be accomplished at 

near real time in cases where satellite overpasses occur daily. 

 

Three-dimensional (3-D) and one-dimensional (1-D) hydrodynamic and 

thermodynamic modelling of lake water temperature offers an opportunity to 

interpolate temporal gaps in data derived from satellite and traditional monitoring of 

water quality and temperature, and to extend the analysis to the vertical domain 

(Hedger et al. 2002). When coupled to ecological models, this modelling may also 

provide insights into the spatial variability of biogeochemical processes (Jorgensen 

2008).  

 

The synthesis of data derived from remote sensing, modelling and in situ sampling 

provides an unparalleled opportunity for understanding ecosystem structure and 

function. Horizontal validation of 3-D models with traditional point-based 

monitoring is often limited by the synoptic coverage and quantity of field data. 

Remote sensing therefore has the potential to provide a cost effective method for 

synoptic validation. Modelling provides an opportunity for interpretation of remotely 

sensed imagery through the quantification of the physical and biological fluxes that 

redistribute variables and lead to the spatial distributions observed through remote 

sensing. 

 

However, there are some inherent limitations of remote sensing. Use of visible and 

infrared (IR) radiation of from lakes is not possible during periods of cloud cover, 

which is a frequent occurrence in New Zealand. Remote sensing is unable to derive 

estimates of non-optically active water constituents, such as nutrient concentrations. 

Measurements of total radiance from satellites may comprise up to 90% atmospheric 

path radiance, making it difficult to quantify radiance from optically active 

constituents (OACs) of water (Vidot and Santer 2005), therefore atmospheric 

correction is essential for the standardisation of a time series of images. In optically 

complex Case 2 waters found in lakes, at least three optically active constituents 

influence reflectance, and these constituents can vary independently from each other 

(Bukata et al. 1995). The retrieval of water constituent concentrations from Case 2 
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waters is therefore more demanding in terms of algorithm complexity and the 

required level of satellite sensor spectral resolution (Matthews 2011). 

Water quality monitoring in New Zealand 

Of the 3820 lakes larger than one hectare in New Zealand, only 3% (117) are 

monitored as part of a long-term programme. Forty-four percent of the monitored 

lakes were recently found to be eutrophic and 33% oligotrophic (Verburg et al. 

2010). In past and present monitoring programmes, lake trophic state is reported for 

134 lakes (Hamill 2006). Water quality monitoring in New Zealand currently uses 

traditional monitoring techniques involving collection of a water grab-sample from 

one site in a lake or occasionally from multiple sites in larger lakes, and subsequent 

laboratory analysis. Other measurements may be made in situ, such as Secchi depth 

and profiles of temperature, turbidity, light or dissolved oxygen. Laboratory 

sampling methods are time-consuming and expensive, with results often not 

available for considerable time periods after the sample is taken. The small 

percentage of lakes monitored in New Zealand is indicative of the high cost 

associated with traditional point sample collection and subsequent analysis. 

Remote sensing theory 

Remote sensing is the science of obtaining information about an object using a 

device that is not in contact with that object (Bukata et al. 1995). According to this 

definition, remote sensing was practiced by the pioneers of astronomy such as 

Galileo and Copernicus. Modern environmental remote sensing has its roots in the 

military reconnaissance of World War I (Bukata et al. 1995). Remote sensing has 

subsequently benefited from technological advances emerging from space 

exploration programs (Bukata et al. 1995). 

 

Passive remote sensing involves sensors that record electromagnetic (EM) energy 

reflected or emitted by the earth. The energy can be modelled either as a wave or as a 

particle which travels at the speed of light. The most important characteristic of EM 

for the purpose of remote sensing is the wavelength (λ). Longer wavelengths are 
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associated with lower frequency and energy according to Equation 1.1 which defines 

Q, the amount of energy held by a photon (measured in joules), as: 

 

𝑄 = ℎ 𝑣 = ℎ 
𝑐

λ
     (1.1) 

 

where h is Planck’s constant, v is frequency, and c = 2.998 × 108 m s-1.  

 

Remote sensors record EM in the form of radiance, L(θ, φ, λ), which is defined as the 

radiant flux per unit solid angle per unit area at right angles to the direction of EM 

propagation (W m-2 sr-1), with a specified azimuth (θ) and zenith (φ) angle. Radiance 

is a subset of irradiance E(λ), which is defined as the total radiative flux incident 

upon a point on a surface from all directions above the surface. The geometry 

associated with a remote sensing instrument is shown in Figure 1.2.  

 

 

 

Figure 1.1. Satellite and solar geometry. θ is azimuth angle, ᴕ is elevation angle and φ is zenith 

angle, which can be apply to either solar or sensor (view) geometry. 
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The simplified radiance recorded by a remote sensor can be expressed as (assuming 

no adjacency effects or bottom reflection): 

 

Lt(θv, φv, θs, λ) = Lr(θv, φv, θs, λ) + La(θv, φv, θs, λ) + Tatm(θv, θs, λ)Ls(θv, φv, θs, λ)

 (1.2) 

where: 

 

Lr(λ) = radiance due to multiple scattering by air molecules (Rayleigh scattering) 

La(λ) = radiance from multiple scattering of aerosols 

Tatm(λ) = atmospheric transmittance from water to sensor 

Ls(λ) = surface leaving radiance 

λ = wavelength 

θv = view or observation zenith angle 

φv = view azimuth angle 

θs = solar zenith angle 

 

Adjacency effects are caused by reflection from a non-target area (e.g. land) being 

scattered into the field of view by the atmosphere. If the non-target area is brighter 

than the target, there will be an increase in the apparent brightness of the target area, 

and a reduction of image contrast (Santer and Schmechtig 2000). 

 

Surface-leaving radiance, Ls(θv, φv, θs, λ),  is estimated through applying an 

atmospheric correction, described below. Water-leaving radiance is estimated from 

(Kallio 2012): 

 

Lw(θv, φv, θs, λ) = Ls(θv, φv, θs, λ) - ơLLsky(θv, φv, θs, λ)   (1.3) 

 

where: 

Lsky(θv, φv, θs, λ) = sky specular reflectance at sensor 

ơL = Fresnel reflectance  

 

Water surface remote sensing reflectance (sr-1) is given as: 
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where Ed is downwelling irradiance immediately above the water surface. 

Subsurface remotely sensed reflectance rrs(λ) can be estimated from Rrs(λ) by 

correcting for air-water interface effects, assuming a nadir viewing sensor and 

optically deep waters (Lee et al. 2002): 
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The general term reflectance used in this thesis refers to rrs(λ). Subsurface irradiance 

reflectance R(0-)(λ) is given as (depth=0, spectrally dependant): 

 

 
u

d

E

E
=R 0      (1.6) 

 

where Eu is upwelling radiance.  

Atmospheric correction of remote sensing data 

Atmospheric correction is a crucial step in any time series analysis of satellite 

imagery as a satellite only captures a fraction of radiation coming from a target. 

Radiance recorded by remote sensing can be comprised of greater than 90% path 

radiance, which originates from scattering of solar radiation by air molecules and 

aerosols (suspended liquid and particles such as salt, dust, ash, pollen and sulphuric 

acid) (Vidot and Santer 2005). These molecules and particles can also attenuate 

radiation through absorption. Scattering can occur multiple times and there is 

variability of aerosol particulate distributions (Bukata et al. 1995), resulting in 

complex photon paths. 

 

There are various methods of atmospheric correction, including radiative transfer 

modelling correction, image based correction and vicarious calibration correction. 
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Vicarious calibration involves measuring solar irradiance and reflectance 

concurrently with satellite overpass. The most common image-based atmospheric 

correction to estimate Ls involves dark object subtraction (DOS), in which the 

darkest pixel in each band is used as an estimate of path radiance, and is subtracted 

from radiance at the top of the atmosphere (Chavez 1996). 

 

The application of radiative transfer models offers the flexibility to address the 

complexities of atmospheric correction over inland waters (e.g., Campbell et al. 

2011). Such complexities include variations in elevation, which affect molecular 

calculations due to changes in air pressure, and adjacency effects. In addition, 

heterogeneous concentrations of aerosols and aerosol content at coastal and inland 

locations needs to be considered, although it is often assumed that aerosol optical 

depth (AOD) is homogenous at spatial scales of 50 to 100 km (Vidot and Santer 

2005). There is also interaction of absorption and scattering, and the radiative 

transfer model must provide a complete description to provide accurate simulation. 

Gaseous absorption is therefore calculated for each scattering path whilst absorption 

is computed as a simple multiplicative factor. The principal absorbing gases are 

oxygen, ozone, water vapour, carbon dioxide, methane, and nitrous oxide, of which 

ozone and water vapour are assumed to vary most in time and space (Kotchenova et 

al. 2008). The calculation of scattering is much more complex, and includes 

contributions from Rayleigh and aerosols. Second Simulation of a Satellite Signal in 

the Solar Spectrum (6sv) (Kotchenova et al. 2008) is a radiative transfer atmospheric 

correction code accounting for radiation polarization, which enables accurate 

simulations of satellite and airborne observations, accounting for a molecular and 

aerosol mixed atmosphere. 

 

An alternative approach to atmospheric correction of ocean colour data is the use of 

the SeaDAS range of atmospheric correction procedures (Ruddick et al. 2000; Wang 

et al. 2009; Bailey et al. 2010), which preserve the near infra-red (NIR) reflectance 

peak (Odermatt et al. 2012a). However, this procedure can return negative 

reflectance at blue wavelengths over turbid or inland waters (Goyens et al. 2013). A 

promising alternative, which obviates negative reflectance, is a neural network (NN) 

based inversion approach (Schroeder et al. 2007), which has been shown to 
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outperform SeaDAS atmospheric correction algorithms over turbid waters (Goyens 

et al. 2013). 

Water colour theory 

The colour and clarity of water depend on its optical character, and relate to the bulk 

optical processes of absorption and scattering (Davies-Colley et al. 1993). 

Absorption and scattering characteristics of water are determined by inherent optical 

properties (IOPs). Absorption refers to the transfer of light energy into another form 

of energy (e.g., heat) and is quantified by the spectral absorption coefficient, a(λ) (m-

1), which is the fraction of incident light absorbed divided by the thickness of the 

layer. Scattering is defined as deflection of light photons from their original path 

(Davies-Colley et al. 1993), and can be quantified by the spectral scattering 

coefficient, b(λ) (m-1), which is the fraction of the incident light which is scattered 

divided by the thickness of the layer (Kirk 2010). Light scattering is also quantified 

by the volume scattering function (β(θ)), where θ is the forward scattering angle 

(Mobley 1994). The integral of β(θ) for angles from 0 to π yields b:  

 




db )(sin)(2
0

      (1.7) 

 

The backscattering coefficient is a subset of the angle used to define b: 

 






dbb )(sin)(2
2/

     (1.8) 

 

The backscattering ratio Bb  is defined as bb (λ)/b(λ). 

 

Apparent optical properties (AOPs) are determined by the combined effects of the 

geometric structure of the light field and water constituents (Kirk 2010). They are 

therefore partly determined by the solar zenith angle and local atmospheric 

conditions (Bukata et al. 1995). The underwater vertical attenuation coefficient, 

Secchi depth and irradiance reflectance are considered to be AOPs (Preisendorfer 
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1976; Mobley 1994). In contrast IOPs are affected only be the medium, and radiative 

transfer theory describes the connection of IOPs and AOPs (Mobley 1994). The 

IOPs of a water body are completely quantified by the β(θ) and a(λ) (Mobley 1994). 

 

Clear water in natural ecosystems contains low concentrations of optically active 

constituents. Consequently the spectral reflectance is low and the spectral shape is 

similar to that for pure water molecules. It shows an exponential increase in 

absorption towards longer wavelengths and an increase in scattering at shorter 

wavelengths of the visible range of the electromagnetic spectrum (Rudorff et al. 

2006).  

 

Algae-laden water exhibits a reflectance peak in the green region, which represents 

an aggregate chl absorption minimum, and another reflectance peak at 700 nm. 

Absorption troughs occur in the blue and red/ IR wavelength range (Han 1997), with 

the exact location and width of these troughs dependent on phytoplankton species’ 

assemblages and their physiological state (Kirk 2010). Fluorescence is an optical 

process which involves the absorption of part of the energy of a photon and re-

radiation of a lower energy photon in an arbitrary direction, which can sometimes 

influence the colour of natural waters (Davies-Colley et al. 1993). Phytoplankton 

displays a fluorescence peak centred at 685 nm, meaning concentrations can be 

measured using fluorometers when photoreaction centres are not saturated (Yentsch 

and Yentsch 1979).  

 

Tripton includes sand, silt, clay and other inorganic material such as atmospheric 

dust (Koponen 2006), as well as non-living organic matter. The optical properties of 

tripton are affected by the shape and size distribution of particles, which have a 

major effect on their absorption and scattering properties (Bukata et al. 1995). In 

clear water, increasing concentrations of tripton result in a linear increase in 

reflectance in the IR, with a coefficient of variation near to one. In this area of the 

electromagnetic spectrum the effect of chlorophyll (chl) a is negligible (Han 1997). 

In algae-laden water, additive effects of tripton on reflectance occur at all 

wavelengths (Bukata et al. 1995).  
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The absorption spectrum of coloured dissolved organic matter (CDOM) increases 

exponentially at shorter wavelengths of the visible spectrum and there is little 

absorption above 700 nm (Bricaud et al. 2009). The effect of CDOM on light 

scattering is minimal and can be ignored (Koponen 2006). 

Methods of remote sensing of water quality 

In Case 1 waters where variation in rrs(λ) is primarily due to phytoplankton, simple 

empirical band ratio models can be used to determine chl a (Gordon and Morel 

1983). Case 2 waters are optically complex and rrs(λ) varies with differing IOPs and 

concentrations of optically active constituents, namely chl a, tripton and CDOM.  

 

There are three general approaches of retrieving water quality parameters via remote 

sensing, including empirical, and analytical methods, with the term semi-

empirical/analytical applied to approaches somewhere between the two (Carder et al. 

1999). Empirical methods use statistical techniques to directly relate in situ samples 

to concurrently acquired satellite data. These models offer a simpler approach but 

have limited spatio-temporal applicability. Analytical methods are based on bio-

optical models which use radiative transfer modelling or simplifications of radiative 

transfer models. Bio-optical models can be developed independently of in situ data, 

however, they require knowledge of, or assumptions about inherent optical 

properties. The spatio-temporal applicability of empirical and analytical models 

depends on variations in IOPs of the target water, and how these affect the water 

quality retrieval of the parameter of interest.  

Bio-optical models and IOPs 

Bio-optical models are generally used in two forms: complex radiative transfer 

models such as Hydrolight (Mobley 1994), and simplifications such as the analytical 

model of Gordon et al. (1988). In the latter model rrs(λ) is given by: 

 

 210 )()()(  ugug=rrs      (1.9) 
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where: 
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b

b
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=u


     (1.10) 

 

bb(m
-1) is the total backscattering coefficient, a(m-1) is the total absorption 

coefficient and go and g1 are empirical constants that depend on the anisotropy of the 

downwelling light field and scattering processes within the water.  

 

The model of Gordon et al. (1988) was successfully applied to eutrophic inland 

waters (Dekker et al. 1997) as (spectral dependence not shown): 

 

  









a+b

b
r=R

b

b
10      (1.11) 

 

where R(0-) is subsurface irradiance reflectance and r1 depends on the anisotropy of 

the downwelling light field and scattering processes within the water. 

 

The absorption and backscattering coefficients comprise the sum of individual 

optically active components; 

 

bb(λ) = bbw(λ) + BbTR b
*

TR (λ) CTR + Bbϕ b
*

ϕ(λ) Cϕ  (1.12) 

 

a(λ) = aw(λ) + a*ϕ(λ) Cϕ + a*TR(λ) CTR + aCDOM(λ)  (1.13) 

 

aCDOM(λ) = aCDOM(λ0) exp[-S(λ-λ0)]    (1.14) 

 

n

*

TR

*

TR bb 











0

0 )()(



      (1.15) 

 

where: 

(λ) = wavelength 

(λ0) = reference wavelength 
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bbw(λ) = backscattering coefficient of water 

BpTR = backscattering ratio of tripton  

b*
TR(λ) = specific scattering coefficient of tripton 

CTR = concentration of tripton 

Bpϕ= backscattering ratio of phytoplankton 

b*
ϕ(λ) = specific scattering coefficient of phytoplankton 

aw(λ) = absorption coefficient of pure water 

Cϕ = concentration of chl a 

a*ϕ(λ) = specific absorption coefficient of phytoplankton 

a*TR = specific absorption coefficient of tripton 

aCDOM(λ) = absorption by coloured dissolved organic matter (CDOM)  

S = the spectral slope coefficient for aCDOM(λ) 

n = the exponent for tripton scattering 

 

Inherent optical properties vary temporally and spatially (Kostadinov et al. 2010; 

Moisan et al. 2011; Devred et al. 2011), which presents a potential source of error 

when inverting bio-optical models in the estimation of optically active constituent 

concentrations. Variance in the phytoplankton pigment specific absorption 

coefficient (a*ϕ(λ)) is a result of several factors such as phytoplankton pigment 

composition, cell size, packaging effect, light accumulation and nutrient limitation 

(Babin et al. 1993; Babin 2003; Bricaud 2004; Blondeau-Patissier et al. 2009). 

Variation of a*ϕ(λ) causes non-linearity between light absorption and chl a 

concentration (Bricaud and Morel 1981). 

 

The backscattering ratio Bpϕ and the specific scattering coefficient b*
ϕ(λ) of 

phytoplankton are determined by the size, physical structure, and the outer coating of 

cells (Stramski et al. 2004). With increasing phytoplankton biomass there is greater 

cell wall surface area which causes increased scattering (Yacobi et al. 1995). The 

presence of gas vacuoles in some cyanobacteria has been found to substantially 

increase the value of b*
ϕ(λ) (Dubelaar et al. 1987; Volten et al. 1998).  

 

The specific scattering coefficient of tripton, b*
TR(λ), varies in time and space, 

mostly due to variations in particle size distribution and the bulk refractive index of 
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the particles (Tzortziou et al. 2006). The refractive index of inorganic tripton is 

generally higher than that of organic particles (including phytoplankton) due to the 

high water content of organic material (Twardowski et al. 2001). The slope of the 

tripton backscattering coefficient is related to the particle size distribution and, in 

combination with angular scattering, can be used to estimate the refractive index of 

particles (Twardowski et al. 2001).  

 

The spectral slope coefficient of CDOM, S, is known to vary with the proportion of 

fulvic and humic acids (Carder et al. 1989). Autochthonous sources of CDOM 

include decay products from phytoplankton, for example, which can lead to 

covariance of CDOM with chl a in open ocean waters (Carder et al. 1989). 

Allochthonous sources include decaying organic matter such as that derived from 

leaf litter, and are often associated with river inputs.  

 

Bio-optical models have generally been applied to satellite imagery with high 

spectral resolution, and to hyperspectral data, both of which can be used to derive 

precise measurement of spectral slopes of reflectance. Various methods of solving 

(or inverting) these models are used including Monte Carlo simulation (Gordon & 

Brown 1973; Morel & Prieur 1977; Kirk 1981), invariant embedding (Preisendorfer 

1976; Mobley 1994), matrix operator method (Fischer and Grassl 1984; Fell and 

Fischer 2001), and finite-element method (Kisselev et al. 1995; Bulgarelli et al. 

1999). Bio-optical models have also been inverted efficiently using the Levenberg-

Marquardt nonlinear least squares procedure (Maritorena et al. 2002; van der Woerd 

and Pasterkamp 2008) and neural networks (Doerffer and Schiller 2007). 

Spaceborne earth observation sensors 

There are three general categories of sensors for spaceborne remote sensing, 

including hyperspectral sensors such as Hyperion, broadband high spatial resolution 

terrestrial remote sensing sensors such as Landsat’s Enhanced Thematic Mapper 

(ETM+), and narrow band medium saptial resolution satellite sensors such as 

MOderate Resolution Imaging Spectroradiometer (MODIS) and MEdium Resolution 

Imaging Spectrometer (MERIS). Satellite Sensors vary in temporal, spatial, 
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radiometric and spectral resolution. The spatial resolution will determine the 

minimum lake size that can be monitored via remote sensing, while the radiometric 

and spectral resolution will determine the complexity of any derived algorithms and 

the ability of the sensor to differentiate optically active constituents (Matthews 

2011). 

 

The MODIS sensor developed by NASA has been fitted to the Terra (data available 

from February 2000) and Aqua (data available from July 2002) satellite platforms, 

and enables twice-daily global coverage. NASA now has a policy of full and open 

sharing of imagery for Earth observing satellites spanning more than 40 years. This 

policy has contributed to increased use of remote sensing for many applications 

including monitoring quality of inland waters. The high spatial resolution of NASA 

Landsat series of sensors, and free availability of the data archive has in the past 

made Landsat the sensor of choice for monitoring inland water quality in small 

lakes. The Landsat satellite sensor has relatively high spatial resolution (30 m) 

compared with ocean colour sensors such as MODIS (250 - 1000 m resolution), and 

is therefore able to resolve finer-scale features within lakes, as well as to record data 

from small lakes where there would otherwise be inadequate resolution. Landsat 

Multispectral Scanner (MSS) imagery is available from 1972 to 1981, Landsat 5 

Thematic Mapper (TM) was launched in 1984 and is still operating, and Landsat 7 

ETM+ was launched in 1999. The repeat cycle of image capture is 16 days, and each 

scene is 185 km wide and 120 km high.  

Ocean colour applications of remote sensing for optically active constituent retrieval 

of Case 2 waters 

Remote sensing of Case 2 waters using ocean colour sensors has been applied using 

various algorithms to estimate optically active constituents, including traditional 

ocean colour band ratios, and empirical, semi-analytical, and analytical algorithms 

(Odermatt et al. 2012a). There has been a large body of research on remote sensing 

of the Laurentian Great Lakes (e.g., Budd et al. 2004, Binding et al. 2007; Witter et 

al. 2009; Binding et al. 2011; Mouw et al. 2013), and comparisons can be drawn 

with remote sensing of other environments. The trophic status of the Great Lakes 
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ranges from oligotrophic in Lake Superior, to eutrophic (and higher) in the western 

basin of Lake Erie. In a recent review of satellite ocean colour algorithms applied to 

the Great Lakes (Lesht et al. 2011), it was shown that no single retrieval method 

produced consistent results due to the unpredictable nature of the IOPs. The review 

by Lesht et al. (2011) highlighted the complexities of remote sensing of Case 2 

waters, and demonstrated the complicated and often conflicting information that has 

been presented in the literature. As with the Great lakes, universally applicable 

algorithms for the remote sensing of optically active constituents have not yet been 

established (Odermatt et al. 2012a). Band ratio ocean colour algorithms have been 

applied with various degrees of success. In some instances, there are strong linear 

relationships between retrieved and in situ chl a, however, the slope of the 

relationships often deviates significantly from one, requiring some regional 

parameterisation. Budd and Warrington (2004) applied the OC2-V2 algorithm in 

oligotrophic Lake Superior, and found strong co-variance between estimated chl a 

with in situ samples, but there was a three-fold overestimate of chl a concentration. 

Witter et al. (2009) compared 12 empirical ocean colour algorithms for assessment 

of chl a concentration in Lake Erie, and found reasonable relationships between in 

situ and satellite-derived chl a, but with significant bias at high and low chl a 

concentrations. These authors then developed a regional empirical algorithm specific 

to the western, eastern and central basins of Lake Erie and concluded that the eastern 

and central basin algorithms produced promising results, however, regional 

algorithms were not applicable to the western basin.  

 

Empirical ocean colour algorithms have been applied assuming Case 1 conditions in 

inland waters (e.g., Heim 2005; Horion et al. 2010), however, in a review paper of 

remote sensing of Case 2 waters, inaccuracies in chl a retrieval were considered to 

result from independently varying CDOM concentrations, especially at short 

wavelengths (Odermatt et al. 2012a). Using a bio-optical model based on that of 

Bukata et al. (1985), Lesht et al. (2011) demonstrated that traditional empirical and 

band ratio algorithms for chl a retrieval are susceptible to error due to varying 

concentrations of CDOM and tripton. Modifications have been applied to ocean 

colour algorithms in order to minimise the influence of CDOM using MERIS data, 

with some success in oligotrophic waters of Lake Superior (Gons et al 2008). 
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However, their retrieval approached an asymptote at chl a concentrations above 2.7 

µg L-1, and is therefore not applicable to meso and eutrophic waters.  

 

Fluorescence line height (FLH) algorithms use a relative measure of reflectance at 

chlorophyll fluorescence emission wavelengths (which is not necessarily derived 

solely from fluorescence). Gons et al (2008) demonstrated that FLH algorithms were 

promising at estimating chl a in oligotrophic waters but in practice produced noisy 

retrievals of chl a, likely due to the low chl a (0.4-0.8 µg L-1).  

 

Semi-analytical algorithms have been applied to remote sensing of optically active 

constituents in the Great Lakes. They can be used to estimations total suspended 

sediment (SS) by inversion of field-measured subsurface irradiance reflectance 

(Bukata et al. 1985); and inversion of MODIS volume reflectance (Binding et al. 

2010) and CDOM (Bukata et al. 1985; Mouw et al. 2013). The success of bio-optical 

models for the estimation of chl a ranged from complete failure (e.g., Bukata et al. 

1985; Mouw et al. 2013) to algorithms with poor accuracy (e.g. Li et al. 2004; 

Shuchman et al. 2006). Mouw et al. (2013) attributed the failure of the bio-optical 

algorithm in retrieving chl a in Lake Superior to the dominant influence of CDOM 

on the absorption budget. Bukata et al. (1985) attributed the chl a retrieval failure to 

varying IOPs, and the dominance of non-algal particles (NAP) and CDOM on 

reflection. Shuchman et al. (2006) applied a version of the Bukata et al. (1985) 

algorithm using updated IOPs from Bukata et al (1991), however, chl a retrievals 

were underestimated by an order of magnitude (Lesht et al. 2006). 

 

In addition to the complexities of remote sensing of water quality caused by 

independently varying concentrations of optically active constituents in Case 2 

waters, there may be atmospheric correction errors resulting from incorrect 

assumptions such as the use of fixed aerosol models (Odermatt et al. 2008). Accurate 

atmospheric correction is critical for remote sensing of oligotrophic lakes, as the 

reflectance of surface water is small compared to the atmospheric path radiance 

(Guanter et al. 2010). Adjacency effects also tend to be more pronounced for 

oligotrophic waters with low reflectivity (Odermatt et al. 2008). 
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For the estimation of chl a concentrations for oligotrophic inland waters, it has been 

suggested that more complex, physically based inversion models are needed 

(Odermatt et al. 2010). The Modular Inversion and Processing System (MIP) is a set 

of processing tools for the retrieval of water and atmosphere (look up table 

approach) constituents from hyperspectral and multispectral satellite data (Heege and 

Fischer 2004). Odermatt et al. (2008) used MIP for the retrieval of chl a from 

MERIS imagery in oligotrophic to mesotrophic Lake Constance, Germany. The 

authors stated that the correlation between retrieved and in situ chl a was “sufficient” 

considering that the time differences between in situ and satellite image acquisition 

were up to three days (and in some instances longer). Odermatt et al. (2008) 

considered that atmospheric correction was the greatest potential source of error 

(including adjacency effects) but did not state the level of error, however, the method 

may not provide sufficient resolution for determining small changes in chl a (c. 1 µg 

L-1) in oligotrophic waters.  

 

While remote sensing of water quality by NASA has been focused on coastal and 

oceanic waters, the European Space Agency (ESA) has also funded research on 

development of Case 2 coastal water quality algorithms (including the MERIS 

algal_2 product), and MERIS lake water quality algorithms including Case-2 

Regional (C2R), Boreal Lakes and Eutrophic Lakes water quality retrieval 

algorithms (Doerffer and Schiller 2007, 2008). The MERIS Case 2 water quality 

algorithm uses a neural network (NN) inversion technique to retrieve chl a, SS and 

aCDOM (λ). The NN construction is based on 550 000 simulated entries from a 

forward model built using HYDROLIGHT radiative transfer code and a bio-optical 

model which relates IOPs to optically active constituent concentrations (Doerffer 

and Schiller 2007). The Case 2 Boreal processor NN was trained using IOPs from 

Finnish lakes, and the Eutrophic Lakes was trained using IOPs from Spanish lakes 

(Doerffer and Schiller 2008). 

 

Odermatt et al. (2010) used the MERIS C2R processor for the retrieval of chl a in six 

perialpine lakes (including Lake Constance). It was shown that the C2R processer 

was applicable to oligotrophic and mesotrophic lakes, however, the RMSE of 

derived chl a in oligotrophic waters was similar in magnitude to the in situ chl a 
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during oligotrophic periods. The authors concluded that the MERIS C2R chl a 

product did not possess the level of accuracy needed to replace traditional in situ 

monitoring, but rather was a compliment to it. Of particular note was that the authors 

found that remotely sensed estimates of chl a compared better to depth resolved in 

situ chl a (0-5 m) than to vertically integrated chl a (0-20 m) in Lake Constance, 

although visual comparison of Figures 6 and 10 in Odermatt et al. (2010) does not 

offer strong support for this statement. 

 

While the MERIS C2R algorithms are applicable to chl a estimation in oligotrophic 

(with limitations discussed above) and mesotrophic lakes (Odermatt et al 2010), 

application to lakes with very high chl a concentrations associated with 

cyanobacteria blooms has been less successful (e.g., Matthews et al. 2010; Binding 

et al. 2011). For example, Matthews et al. (2010) found MERIS Eutrophic Lake and 

the standard Level 2 Case 2 coastal water quality retrieval algorithm estimations of 

chl a did not compare well with in situ chl a in a small hypertrophic lake . This 

failure was attributed to errors in atmospheric correction and the fact that the MERIS 

NN was not trained with comparable IOPs and concentration ranges to those of the 

lake in question. However, Matthews et al. (2010) showed strong empirical 

relationships between satellite data and in situ chl a and SS (particularly the 708/664 

nm reflectance ratio), although these relationships had limited ability to separate 

reflectance contributions from co-varying constituents. 

 

Odermatt et al. (2012b) evaluated MERIS C2R, Eutrophic Lakes, and the WeW 

(Schroeder et al. 2007) algorithms for the observation of phytoplankton blooms in a 

stratified eutrophic lake. Estimated chl a showed better comparison to in situ chl a 

than those in the study of Matthews et al. (2010), however, in situ chl a was much 

lower in their study. The authors suggested that with some regional calibration for 

the specific absorption coefficient of phytoplankton, the MERIS algorithms had 

good potential for monitoring chl a in eutrophic lakes. Using vertical measurements 

of chlorophyll fluorescence, however, Odermatt et al. (2012b) demonstrated that 

remote sensing estimates of chl a are constrained by inability to resolve vertical 

variations in chl a. For monitoring both vertical and horizontal distributions of 
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phytoplankton, the authors recommended complementing remote sensing of chl a 

with vertical measurements of chl fluorescence. 

 

For remote sensing of chl a in turbid eutrophic waters, red and NIR bands have 

proved to be effective. Gons et al. (2008) demonstrated that MERIS data combined 

with semi-analytical algorithm using red to NIR ratios and an apparent backscatter 

coefficient, worked well in the estimation of chl a in eutrophic Green Bay, Lake 

Michigan. Gitelson et al. (2008) developed a simple semi-analytical model for 

estimation of chl a in turbid waters, applicable to three bands of MERIS and two 

bands of MODIS sensors, using red and NIR bands. Their algorithm has application 

in waters with chl a ranging from 10-200 µg L-1, however, in oligotrophic lakes the 

NIR reflectance peak required by the algorithm is not present (Giardino et al. 2007; 

Odermatt et al. 2008). More recently Gurlin et al. (2011) showed that simple two-

band red-NIR models outperform more complex red-NIR algorithms for retrieving 

chl a using MERIS and MODIS applications to turbid productive waters. While 

these red-NIR based algorithms were applicable for estimation of chl a in turbid 

waters, they could not differentiate signals from covariant optically active 

constituents. 

 

In order to obviate or minimise errors in optically active constituent retrieval which 

occur where multiple constituents contribute significantly to rrs(λ), there has been 

increased focus on analytical spectral inversion algorithms to estimate concentrations 

of chl a, CDOM and tripton/SS simultaneously (Matthews 2011, Odermatt et al. 

2012a). For example, Campbell et al. (2011) applied a bio-optical model to retrieve 

chl a, CDOM and SS from a freshwater impoundment in Australia, using the MERIS 

satellite platform. They concluded that significant improvements in model accuracy 

could be achieved using differentially weighted and over-determined equation 

systems.  

 

As demonstrated from the literature above, universally applicable algorithms for the 

remote sensing of optically active constituents have not yet been established, 

primarily due to spatio-temporal variation in OAC-specific IOPs. Algorithms that 

return IOPs (as opposed to retrieving OACs) in Case 2 waters have greater flexibility 
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(e.g., Pinkerton et al. 2006; van der Woerd and Pasterkamp 2008), allowing for the 

total absorption and scattering to be decomposed into OACs in separate calculations. 

The current best-practice in models accounts for optically complex waters where 

temporal and spatial variation of OAC IOPs occurs (e.g., Doerffer and Schiller 2007, 

Brando et al. 2012). Of particular note, is the adaptive implementation of the linear 

matrix inversion method developed by Brando et al. (2012), which was demonstrated 

on a simulated MODIS data set for the retrieval of IOPs, OAC concentrations and 

CDOM absorption. The authors concluded that the adaptive implementation of linear 

matrix inversion resulted in greater accuracy of OAC and IOP retrievals, particularly 

for phytoplankton IOPs, and chl a concentrations. 

Broadband applications of remote sensing for water quality retrieval 

In a recent review of empirical algorithms (including some bio-optical algorithms) 

for the remote sensing of inland and coastal water quality (Matthews 2011), 27 

studies were identified which used broadband Landsat ETM or TM satellite data to 

retrieve chl a, turbidity, SS, or Secchi depth. The review showed that these water 

quality parameters can in some instances be obtained with high coefficients of 

determination with satellite reflectance (e.g., r2 = 0.99 for the retrieval of SS (Dekker 

et al. 2002), and r2 = 0.99 for the retrieval of chl a (Giardino et al. 2001)). Despite 

the potential of the Landsat satellite to estimate water quality, there are only a small 

number of examples of remote sensing of inland water quality over landscape scales 

(e.g., Lillesand et al. 1983; Dekker et al. 2001; Koponen 2006), and even fewer 

applications over a time series of images (e.g., Dekker et al. 2001; Olmanson et al. 

2008).  

 

Of the Landsat studies cited above, only a few examine the underlying physical basis 

for the development of statistical algorithms (e.g., Dekker and Peters 1993; Gitelson 

et al. 1996; Brivio et al. 1997; Dekker et al. 2002). The study of Allan et al. (2011) is 

typical of many empirically based Landsat studies of remote sensing of water 

quality, and while useful for determining spatial distributions of chl a at landscape 

scape, any derived algorithms have limited applicability in time beyond the spatial 

domain used in calibration. 



Chapter 1: General introduction 

 

21 

 

 

More complex empirical algorithms such as linear mixture modelling (LMM) (Tyler 

et al. 2006) attempt to differentiate OACs. Linear mixture modelling (Tyler et al 

2006) and spectral decomposition algorithms (Oyama et al. 2007, 2009) applied to 

Landsat have shown considerable promise in differentiating SS or tripton, and chl a, 

and it surprising that there have been few other applications of this method, possibly 

due to difficulty in reproducing the methodology. 

 

Broadband remote sensing instruments such as Landsat can simultaneously record 

average spectral slopes of both positive and negative radiance values, as opposed to 

hyperspectal data (Bukata et al. 1995), but there have also been successful 

applications of bio-optical models for single water quality parameter retrieval using 

broadband sensors where the optically active constituent of interest dominates 

reflectance. For example bio-optical models have been used to map horizontal 

distributions of SS concentrations in lakes using Landsat and Spot satellite data 

(Dekker et al. 2002). The advantage of bio-optical models is that in situ data are not 

needed at the time of image capture, allowing for multi-site, and multi-sensor 

comparisons over time. Dekker et al. (2002), for example, found that semi-analytical 

algorithms for SS were more reliable and temporally robust than empirical 

algorithms.  

Hydrodynamic and ecological modelling and validation using remote sensing 

Hydrodynamic and ecological models of lakes can help to understand the complex 

dynamics of abiotic and biotic interactions that affect water quality. Models can be 

used to forecast water quality at some future point in time and can provide a valuable 

tool for water quality managers to estimate the effect of future perturbation in 

environmental factors, including catchment land use and climate (Trolle et al. 2011). 

Only a small number of studies have attempted to synoptically quantify the validity 

of the modelled water quality or temperature in the horizontal direction using grab-

samples (e.g., Huang et al. 2012; Leon et al. 2011), possibly owing to the difficulties 

and cost of acquisition of a large number of samples within a short time interval in 

aquatic systems of sufficient size to be suitable for remote sensing and examination 
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of spatial variability. Remote sensing can provide synoptic data for this type of 

validation, although most studies have undertaken a qualitative (as opposed to 

quantitative) comparison between modelled and remotely sensed water quality or 

temperature (e.g., Spillman et al. (2007) for surface water temperature and chl a 

retrieval in the Northern Adriatic Sea, and Hedger et al. (2002) for chl a retrieval in 

Loch Leven).  

 

Remote sensing derived water quality parameters can also be used to initialise 3-D 

models, and update simulated distributions. For example, Natvik & Evensen (2003) 

assimilated estimated chl a concentrations from SeaWiFS satellite imagery into a 

coupled 3-D hydrodynamic-ecological model, in order to improve the simulation of 

chl a spatial distributions. Similarly, Li (2007) assimilated reflectance derived from 

MODIS to provide a dynamic feedback mechanism to enable an improvement in the 

simulation of suspended sediment distributions in Lake Ontario. Landsat provides 

higher resolution data needed to validate fine scale features with lakes such as 

inflows. For example, Pahlevan et al. (2011) used thermal data derived from Landsat 

7 to calibrate a 3-D hydrodynamic model of a river inflow plume in Lake Ontario. 

Multiple scenarios of environmental conditions (including varying inflow volumes) 

were run, and an optimization procedure was used in order to match model 

simulations of water surface temperature with satellite estimations, based on 

minimizing pixel-based root mean squared error (RMSE).  

1.2 Major objectives 

The overarching objective of this thesis was to develop methods for the remote 

sensing-based estimation of surface water temperature and optically active 

constituents (OACs) in lakes. Study sites of varying optical complexity and lake size 

have been selected to ensure that the methods developed within this thesis were 

applicable to a range of lake trophic states and sizes, and satellite spectral and spatial 

resolutions. The study investigates empirical, semi-analytical and analytical 

algorithms for OACs retrieval, for the purpose of providing flexibility to match 

specific algorithms to the optical complexity of the system and the OACs of interest. 
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Bio-optical theory has been used to identify possible sources of constituent 

estimation error and determine the potential transferability of derived algorithms. 

Additionally, image processing methodology was developed using discreet 

automated routines which can be executed individually or subsequently with a view 

to initiating a process of automation of image processing based on a repeatable 

method within a flexible code development environment. 

 

A secondary overarching objective of this thesis was to combine remote sensing and 

3-D hydrodynamic-ecological modelling of temperature and suspended sediment 

concentrations in a lake. This component was used to demonstrate application of 

state of the art spatial statistical methods to quantitatively validate 3-D numerical 

model simulations of surface water temperature and suspended minerals against 

those estimated from satellite imagery.  

1.3 Thesis overview 

This thesis consists of four self-contained research chapters (Chapters 2-5) which 

have been prepared for, or submitted to, scientific journals. In the final chapter 

(Chapter 6), the research of the thesis is summarised and conclusions are drawn 

based on the results from chapters 2-5. 

 

In Chapter 2, empirical and semi-analytical algorithms were developed to estimate 

ch a in the Rotorua lakes, North Island, New Zealand. An automated image 

processing methodology was developed in order to process 106 atmospherically 

corrected Landsat satellite images. A bio-optical model was applied to examine the 

underlying physical mechanisms responsible for empirical relationships between 

Landsat subsurface irradiance reflectance and in situ chl a. 

 

In Chapter 3, atmospheric correction of Landsat thermal imagery was evaluated for 

surface water temperature retrieval in the Rotorua lakes. The retrieved water 

temperatures from 14 images between 2007 and 2009 were validated using data from 

a high-frequency temperature sensor deployed at the water surface of a mid-lake 
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monitoring buoy on one of the lakes, Rotorua. Within close proximity to Lake 

Rotorua, and within the same Landsat scene, is Lake Rotoehu for which a 3-D 

hydrodynamic model was run to assess spatial heterogeneity of surface water 

temperatures. Remotely sensed estimations of surface water temperature were then 

compared with simulated surface water temperature using statistics specific for 

spatially resolved data. 

 

In Chapter 4, remote sensing of total suspended sediments (SS) and suspended 

minerals (SM) was evaluated using empirical and semi-analytical algorithms applied 

to MODIS B1 data. The study site was Lake Ellesmere (South Island, New Zealand), 

a large, highly turbid, shallow coastal lagoon which has undergone eutrophication. 

Remote sensing-derived estimations of SM concentrations were compared with 

simulations of SM derived from 1-D and 3-D hydrodynamic models, using multiple 

state of the art spatial statistic metrics. 

 

In Chapter 5, a bio-optical model was used to derive chl a concentration, SS 

concentration and CDOM /detritus absorption at 443 nm in Lake Taupo, using 

MODIS imagery. The purpose of model development was to enable future near real 

time monitoring of water quality in a highly oligotrophic lake. The model was 

optimised using in situ IOPs from the literature and images were atmospherically 

corrected using a radiative transfer model. A seasonally varying specific 

phytoplankton absorption coefficient was applied, which resulted in a significant 

improvement in accuracy of chl a retrieval, as opposed to using a model with a fixed 

specific phytoplankton absorption coefficient. Use of empirical relationships 

between bio-optical-estimated SS and B1 subsurface remote sensing reflectance will 

allow increased temporal resolution of monitoring, and enable both basin-scale and 

fine-scale circulation features could be resolved. 
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2 Remote sensing of chlorophyll a concentrations in 

Rotorua lakes of New Zealand 

2.1 Introduction 

Scientists and resource managers need to characterise lake water quality at 

increasingly fine temporal and spatial scales to provide information to lake users and 

to monitor water quality in relation to water quality targets. Historically, managers 

have relied on manual sampling which can be time consuming and costly, however, 

more recently satellite remote sensing has been adopted to provide cost effective high 

spatial resolution monitoring (e.g., Olmanson et al. 2008). The theoretical basis of 

remote sensing of water quality is that the inherent optical properties (IOPs) and 

concentrations of optically active constituents (OACs) found in water determine the 

reflected light emitted by water bodies. The main optically active constituents in lake 

water are phytoplankton, non-living suspended organic particles and minerals 

(collectively termed tripton), and coloured dissolved organic matter (CDOM) 

(Dekker et al. 2002a). Suspended sediment (SS) refers to the totality of suspended 

tripton and living seston. 

 

While remote sensing can only contribute direct information on optically active water 

quality parameters, it has the advantage of greatly increasing spatial resolution of 

monitoring, compared with traditional in situ methods. In the past, Landsat has been 

the sensor of choice for monitoring inland water quality in small lakes, due to its high 

spatial resolution, and the freely available archive of data spanning more than 40 

years. The Landsat 7 satellite has the Enhanced Thematic Mapper (ETM+) sensor 

with 30 m spatial resolution which compares favourably with ocean colour sensors 

(250 - 1000 m resolution), and provides sufficient resolution to monitor spatial 

variations in small lakes.  
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Whilst Landsat remote sensing provides high spatial resolution, spectral resolution is 

low, which can result in individual bands containing spectrally opposing absorption 

and scattering features of optically active constituents (Bukata et al. 1995). The low 

spectral resolution and low signal to noise ratio (SNR) limit the complexity of any 

derived algorithms and reduce the ability to discriminate between chl a and tripton 

(Dekker and Peters 1993; Matthews 2011).  

 

Measurements of total radiance over water from satellite sensors may comprise up to 

90% atmospheric path radiance, making it difficult to quantify radiance from 

optically active constituents of water (Vidot and Santer 2005). Atmospheric 

correction is therefore essential for the standardisation of a time series of images. 

Atmospheric path radiance originates from scattering of solar radiation by air 

molecules and aerosols, which can also attenuate radiation through absorption. The 

complexity of aerosol particulate distributions presents a major challenge for 

atmospheric correction (Bukata et al. 1995). Atmospheric correction through 

accurate numerical radiative transfer modelling of the atmosphere requires data on 

atmospheric conditions at the time of image capture (e.g., water vapour, aerosol 

optical depth (AOD), and ozone) and has become increasingly commonplace with 

the operation of satellites such as MODIS Terra and Aqua which can be used to 

derive atmospheric conditions on a daily basis.  

 

In a recent review of algorithms for the remote sensing of OACs (Matthews, 2011), 

27 studies were identified which used Landsat ETM+ or Thematic Mapper (TM) 

satellite data to retrieve chl a, turbidity, SS, or Secchi depth spatial distributions. The 

review showed that in some instances some of these constituents had high 

coefficients of determination with satellite reflectance (e.g., r2 = 0.99 for the retrieval 

of both SS (Dekker et al. 2002), and chl a (Giardino et al. 2001)). Only a small 

number of examples exist, however, of remote sensing of inland water quality at 

landscape scales (e.g., Lillesand et al. 1983; Dekker et al. 2001; Kloiber et al. 2002; 

Koponen 2006), and even fewer applications have considered time series of images 

to attempt to determine temporal changes in water quality (e.g., Dekker et al. 2001; 

Olmanson et al. 2008). A major barrier to time series analysis of Landsat imagery is 

the time required to process large numbers of images. Automation of image 
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processing could result in higher productivity, minimize user error, and potentially 

enable near real-time image processing. 

 

Of the Landsat studies cited above, only a few examine the underlying physical basis 

for the development of statistical algorithms (e.g., Dekker and Peters 1993; Gitelson 

et al. 1996; Brivio et al. 1997; Dekker et al. 2002). The study of Allan et al. (2011) is 

typical of many empirically-based Landsat studies of remote sensing of water 

quality, and while useful for determining spatial distributions of chl a, any derived 

algorithms have limited applicability beyond the spatial and temporal domain that 

was used in calibration within in situ samples, especially in more optically complex 

environments. 

 

Bio-optical modelling algorithms have potential to more clearly differentiate OACs. 

Bio-optical models have generally been applied to high spectral resolution satellite 

imagery, such as that from MODIS, and to hyperspectral data, both of which allow 

precise measurement of spectral slopes. However, successful applications of 

simplified bio-optical models for single water quality parameter retrieval exist using 

broadband sensors where the optically active constituent dominates the absorption 

and scattering budget. For example semi-analytical models have been used to map 

SS concentrations using Landsat and Spot satellite data (Dekker et al. 2002). The 

advantage of bio-optical models is that in situ data are not needed at the time of 

image capture, allowing for multi-site and multi-sensor comparisons through time. 

Dekker et al. (2002) found that bio-optical algorithms for SS were more reliable and 

temporally robust than empirical algorithms. Their study also found that random 

point samples within the synoptic estimations for SS were on average within a mean 

value of ±20-30% of in situ grab-samples, however, in the worst case scenario values 

they deviated by as much as 4000%.  

 

The Rotorua lakes (North Island, New Zealand) include a number of lakes within a 

relatively small geographical area, which are subject to a regular programme of 

water quality monitoring (Burns et al. 2005). They provide an ideal location to 

investigate remote sensing of water quality within and between lakes. In order to 

construct robust algorithms for chl a estimation, algorithms must be validated both 
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temporally and spatially over a time series of images. For algorithms to be robust, 

some knowledge of the physical mechanisms underpinning algorithms function is 

needed, especially in terms of identifying potential sources of error. The objectives 

of this study were to (1) determine the underlying physical mechanisms by which 

Landsat may be used to distinguish changes in chl a using a bio-optical model, (2) 

determine the accuracy of different remote sensing models in estimating chl a over a 

wide range of concentrations within and between lakes, and (3) develop an 

automated image processing methodology to enable the processing of large numbers 

of images. A radiative transfer-based atmospheric correction was used with 

empirical and semi-analytical modelling for chl a retrieval. The results from this 

study allowed a synoptic representation of chl a in the Rotorua lakes, both spatially 

and temporally.  

2.2 Methods 

Study site  

The Rotorua lakes (Figure 2.1(a)) have a wide range of trophic states and mixing 

regimes (Burns et al. 2009). These include eutrophic and monomictic (Okaro), 

mesotrophic and monomictic (Okareka, Tikitapu, Rotoiti, Rotokakahi and Okataina), 

oligotrophic and monomictic (Tarawera, Rotoma, and Rotomahana) and meso to 

eutrophic and polymictic (Rotorua, Rotoehu, and Rerewhakaaitu) (Hamilton 2003) 

(Table 2.1). Many of the lakes have nutrient-enriched geothermal inputs (Hoellein et 

al. 2012), including Rotorua, Rotoiti, Rotoehu, Rotomahana and Tarawera. A 

geothermal stream enters Lake Rotoehu in the south-west corner of the lake (Figure 

2.1). 

 

In August 2008, a diversion wall was constructed in Lake Rotoiti (Figure 2.1(b)). Its 

purpose was to divert nutrient rich water from Lake Rotorua, which enters Lake 

Rotoiti via the Ohau Channel inflow, away from the main body of Lake Rotoiti, and 

towards the main Katituna River outflow in the north-west region of the lake. This 
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study included images and in situ data captured before and after the construction of 

the diversion wall. 

Methods overview 

Cloud-free Landsat ETM+ images were processed using automated procedures, 

which included conversion from radiance to atmospherically corrected subsurface 

irradiance reflectance (R(0-)). Forward bio-optical models were applied to 

investigate the effect of increasing concentrations of chl a on Landsat R(0-), creating 

an semi-analytical algorithm to estimate chl a. Empirical relationships between 

Landsat R(0-) and in situ chl a were also investigated using statistical methods, with 

results used to inform empirical algorithm development for chl a estimation. 

Symbolic regression (Koza 1992) was also applied to create algorithms to estimate 

chl a. 

Satellite imagery and software 

A total of 106 Landsat 7 satellite images were captured from 1999 to 2011 from path 

72, rows 84 and 85. All image processing routines were automated using scripts 

written in Interactive Data Language (IDL), linked to ENVI routines when 

necessary. All images were downloaded from the GloVis website created by USGS 

(http://glovis.usgs.gov/).  

 

http://glovis.usgs.gov/
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Figure 2.1. (a) The Rotorua lakes’ study site showing in situ sampling locations and (b) the 

extent of expanded area represented with shading from (a), showing the location of the Ohau 

diversion wall, Lake Rotoiti. Each in situ sampling location corresponds to a 5 x 5 matrix (30-m 

pixels) average from Landsat ETM+ satellite images.  
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Table 2.1. Lake and catchment characteristics of the Rotorua lakes Source: (Scholes and 

Bloxham 2008; Scholes 2011). 

Lake name Lake area   

 
Maximum 

lake depth  

Mean 
lake 

depth 

Annual 

mean chl a  

Trophic 

state 

Catchment 

pasture 

Catchment 
indigenous 

forest/scrub 

Catchment 
exotic 

forest 

 
km² m m µg L-1 

 
%  % % 

Okareka 3.4 33.5 20.0 3.9 
Mesotrophic 

37.8 51.6 7.6 

Okaro 0.3 18.0 12.1 33.5 
Supertrophic 

90.6 2.1 6.3 

Okataina 10.8 78.5 39.4 2.1 
Oligotrophic 

10.7 84.1 7.8 

Rerewhakaaitu 5.3 15.8 7.0 2.9 
Mesotrophic 

75.3 7.2 15.2 

Rotoehu 8.0 13.5 8.2 10.6 
Eutrophic 

34.2 33.4 32.0 

Rotoiti 34.0 125.0 60.0 9.6 
Mesotrophic 

15.9 36.4 46.2 

Rotokakahi 4.4 32.0 17.5   
Eutrophic 

26.3 16.6 57.1 

Rotoma 11.1 83.0 36.9 1.3 
Oligotrophic 

23.4 46.0 26.7 

Rotomahana 9.0 125.0 60.0 4.2 
Mesotrophic 

43.2 39.7 16.3 

Rotorua 80.6 44.8 11.0 22.8 
Eutrophic 

51.8 25.1 14.3 

Tarawera 41.3 87.5 50.0 1.5 
Oligotrophic 

19.7 62.4 16.0 

Tikitapu 1.5 6.2 18.0 1.8 
Oligotrophic 

7.0 74.3 17.9 

 

In situ data 

Monthly in situ samples of chl a for the Rotorua lakes were obtained from Bay of 

Plenty Regional Council (Scholes 2011). Surface samples are depth integrated (0 to 

4-9 m depth in eutrophic lakes and 0 to 10-17 m in meso-oligotrophic lakes, Table 

2.1). Of all the satellite image capture dates, there were 27 in situ samples that were 

taken on the same date. In addition, all in situ samples corresponding to images from 

24 January 2002 (UTC) and 23 October 2002 (n=29) were included, for which 

samples were collected within three days of image capture, except for Lake 

Rerewhakaaitu (10 January 2002), Site R3 (18 January 2002), and Site R1/R3 (30 

October 2002). 

 

All Lake Rotoma samples (n=35) captured within one month of satellite overpass 

were included in the algorithm development in order to ensure any derived models 

were suitable for estimation of chl a in oligotrophic lakes. The average in situ chl a 

in Lake Rotoma over the study period was 1.4 µg L-1, with maximum concentration 

usually in winter or spring. There has been low variation in chl a concentrations in 
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this lake (Paul et al. 2012), and therefore we assumed that data from satellite 

overpass dates could be matched to the corresponding monthly in situ samples. 

 

Lake Rotorua is the most optically complex lake of the 12 Rotorua lakes and 

sediment resuspension has previously been observed in the past during high winds 

(Stephens et al. 2004. Suspended sediment was not routinely measured during the 

study period in Lake Rotorua, however a previous study (Vant and Davies-Colley 

1986) using monthly samples from July 1983 - October 1984 yielded mean 

concentration of 6.7 mg L-1, with range 2.4-15.9 mg L-1). Lake Rotoma is the most 

optically simple (the highest water clarity), and Lake Rotoehu exhibits the greatest 

spatial variability of chl a concentrations. These three lakes were chosen to assess 

the feasibility of developing time series analysis of chl a from remote sensing based 

on ground truthing with in situ data. 

Image processing 

Landsat images were first clipped to the Rotorua lakes area of interest (Appendix 2: 

batch_subset_via_roi_landsat_rot.pro) and an image of B4 (Appendix 2: 

landsat_tiff.pro) was created to enable visual inspection for cloud cover. Conversion 

from Landsat scaled radiance to spectral radiance at the sensor aperture (Lλ; W m-2 

sr-1 µm-1) used an IDL procedure (Appendix 2: landsat_rad_sixsin_gen.pro) which 

read the Landsat metadata file in order to apply gains and offsets in the radiance 

conversion calculation. In order to generate inputs to each band for 6sv (Second 

Simulation of a Satellite Signal in the Solar Spectrum) atmospheric correction 

(Kotchenova et al. 2008), this procedure also read the acquisition date and solar 

elevation angle from the Landsat metadata (to calculate solar zenith angle).  

 

In New Zealand, AOD is only measured at Lauder (860 km south-west of Lake 

Taupo, New Zealand). AOD records from this station are among the lowest recorded 

globally, ranging from about 0.01 to 0.08 (Liley and Forgan 2009). To account for 

variations in AOD between Lauder and Lake Rotorua, Giovanni Data and 

Information Services Center (NASA) was used to create time series outputs of AOD, 

water vapour (derived from MODIS Terra MOD08) and total column ozone (derived 
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from MODIS Atmospheric Infrared Sounder AIRS), for input to the radiative 

transfer atmospheric correction model 6sv. The global validation of MODIS AOD 

estimation error over land, ε, is given as: 

 

ε = ±0.03 + 0.05 AOD   (Remer et al. 2005)  (2.1) 

 

For instances when the MODIS Terra-retrieved AOD was negative, values were set 

to 0.05. Monthly mean values measured at Lauder range between 0.02 and 0.05 

(Liley and Forgan 2009). It was assumed AOD over the Rotorua lakes would likely 

be higher than at Lauder, therefore the value of 0.05 was chosen. 

 

Once the atmospheric correction parameters were derived, another IDL procedure 

was used to write input files for 6sv for each band of Landsat (Appendix 2: 

landsat_rad_sixsin_gen.pro). The 6sv input file also contained the lake elevation 

(300 m), sensor elevation (705 km), chosen spectral band, and chosen aerosol model 

(continental). The bidirectional reflectance distribution function was chosen along 

with a non-homogenous target. The radiative transfer model (6sv) was then run using 

the generated input files using a shell script loop function. The output files were then 

read (Appendix 2: sixsauto.pro) in order to convert radiance to water surface 

irradiance reflectance (R(0+)).  

 

Finally, a water-only image of R(0+) was created using a mask that intersected lake 

polygons and a classification of Landsat B5 (landsat_mask.pro), in which water was 

differentiated from land, based on absorption of electromagnetic radiation in B5. R 

(0+) was converted to subsurface irradiance reflectance (R(0-)) using an air-water 

interface parameter of 0.544 (Mobley 1994). 

 

In order to fill missing data in Landsat images caused by the failure of the Scan Line 

Corrector (SLC), the ENVI routine DEM_BAD_DATA_DOIT was used in an IDL 

procedure (Appendix 2: repalcebaddata.pro). Delany triangulation was used to fill 

reflectance values less than -0.000001. 



Chapter 2: Landsat remote sensing of chlorophyll a 

 

43 

 

Forward and inverse bio-optical modelling 

Forward bio-optical modelling was used to quantify the physical processes 

responsible for relationships between Landsat measured reflectance and chl a 

concentration. These relationships were used to estimate chl a using a semi-

analytical model of Landsat reflectance.  

 

Dekker et al. (1997) found the following bio-optical model to be suitable to estimate 

R(0-) from absorption and scattering for turbid waters: 

 

  









a+b

b
r=R

b

b
10      (2.2)

 

 

where r
1 depends on the anisotropy of the downwelling light field and scattering 

processes within the water, bb (m
-1) is the total backscattering and a (m-1) is total 

absorption. A value of r
1
 of 0.31 was used in this study (cf. Gordon et al. 1988). 

 

The absorption and backscattering coefficients are made up of the sum of individual 

optically active components: 

 

bb(λ) = bbw(λ) + BbTR b
*

TR(λ) CTR + Bbϕ b
*

ϕ(λ) Cϕ  (2.3) 

 

a(λ) = aw(λ) + Cϕ a*ϕ(λ) + CTR a*TR + aCDOM(λ)   (2.4) 

 

aCDOM(λ) = aCDOM(440) a*CDOM(λ)    (2.5) 

 

where: 

(λ) = wavelength 

bbw(λ) = backscattering coefficient of water 

BbTR(λ) = backscattering ratio of tripton  

b*
TR(λ) = specific scattering coefficient of tripton 

CTR = concentration of tripton 

Bbϕ(λ) = backscattering ratio of phytoplankton 
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b*
ϕ(λ) = specific scattering coefficient of phytoplankton 

aw(λ) = absorption coefficient of pure water 

Cϕ= concentration of chl a 

a*ϕ(λ) = specific absorption coefficient of phytoplankton 

a*TR(λ) = specific absorption coefficient of tripton 

aCDOM(440) = coloured dissolved organic matter (CDOM) absorption at 440 nm 

a*CDOM(λ) = specific absorption of CDOM 

 

Values of aw(λ) and bbw(λ) were assigned to literature values (Morel 1974; Pope and 

Fry 1997). The bio-optical model was implemented in BIOPTI (bio-optical model 

for inland waters (version 1.0)) (Dekker et al. 2001a) using IOPs of Dutch inland 

waters (Dekker et al. 1997). The bio-optical simulations were run by varying chl a 

concentration using 30 intervals: 0.5 µg L-1 - 9.5 µg L-1 using 1 µg L-1 intervals, 10 - 

30 µg L-1 using 2 µg L-1 intervals and 30 - 300 µg L-1 using 30 µg L-1 intervals. Over 

these simulations aCDOM (440) was fixed at 0.16 m-1 and tripton concentration was 

fixed at 0.5 mg L-1 (SS/tripton and CDOM were not measured over the study 

period). In Lake Rotorua aCDOM (440) has been measured previously (mean for 

consecutive months of 0.23 m-1, n=23) as well as for Lake Rotokakahi (mean over 

11 months between October 1983 and September 1984 of 0.09 m-1, n=29) and the 

average value for these two lakes (0.16 m-1) was assigned to the model (Davies-

Colley and Vant 1987). 

Statistical analysis 

For all the tested algorithms, root mean square error (RMSE) and coefficient of 

determination (r2) were calculated between in situ-observed and model-estimated chl 

a. The RMSE combines residuals from differences of estimated and observed values 

into a single measure of predictive power. It is defined as: 

 

𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝑖−𝑥𝑖)2𝑛

𝑖=1

𝑛
     (2.6) 
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where yi is the observed value and xi is the modelled value corresponding to a given 

time and location i.  

Symbolic regression 

Eureka Formulize is a scientific data mining software tool that detects mathematical 

patterns in experimental data. This software uses symbolic regression (Koza 1992) to 

search for equations that describe the mechanisms that produce the data. Symbolic 

regression uses evolutionary computation algorithms to search a space of 

mathematical expressions while minimising selected error metrics. Traditional linear 

and non-linear regressions fit parameters to a standard equation, whereas symbolic 

regression searches both the parameter space and the form of the equation 

simultaneously (Schmidt and Lipson 2009). 

 

Symbolic regression was used in this study in order to include all the visible bands of 

Landsat in algorithm development. We selected the following mathematical 

operators for use in a symbolic regression equation: constant, integer constant, 

addition, subtraction, multiplication, division, exponential, natural log, and power. 

The absolute error was used as the error metric to determine the suitability of derived 

models. The data were randomly shuffled, and split into training and validation data 

sets. 

2.3 Results 

Bio-optical modelling simulations of the influence of phytoplankton on R(0-) 

Subsurface irradiance reflectance (R(0-)) was modelled theoretically from the 

forward bio-optical model (Figure 2.2), varying chl a concentrations from 0 to 450 

µg L-1 in 10 equal steps (with fixed values of CDOM absorption of 0.16 m-1 and 

tripton concentrations of 0.5 mg L-1). Relative Landsat 7 spectral response functions 

ranging from 0 to 1 are shown for the B1, B2 and B3 bands. A water column with no 

chl a yields high R(0-) at blue wavelengths and minimal R(0-) at red wavelengths. 
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For Landsat B1, the bio-optical model estimates a reduction in R(0-) with increasing 

chl a concentration, due to phytoplankton pigment absorption. For B2 there is a peak 

in reflectance at 580 nm coinciding with an increasing influence of phytoplankton 

backscattering and decreasing phytoplankton absorption. Band 2 also includes a 

spectral pivot point at 530 nm, where subsurface irradiance reflectance is 

independent of chl concentration. Band 3 includes a local reflectance peak at 645 nm 

(due to locally decreased phytoplankton absorption) and a reflectance trough at 680 

nm caused by phytoplankton absorption. Above 680 nm the base of the reflectance 

peak at 706 nm is captured, which results from very low phytoplankton absorption 

and a local increase in phytoplankton backscattering. 

 

.  

Figure 2.2. Modelled subsurface reflectance (R(0-)) for varying chlorophyll a concentrations 

ranging from 0 to 450 µg L-1 with fixed CDOM absorption of 0.16 m-1 and tripton concentration 

of 0.5 mg L-1. The relative spectral response of Landsat bands B1, B2 and B3 is overlaid.  

 

The modelled R(0-) from the bio-optical model was averaged over Landsat 

bandwidths B2 and B3, allowing analytical determination of an relationship between 

chl a and R(0-) (Figure 2.3). An exponential relationship was then used to 

approximate the analytical relationship (r2 = 0.97 for B2 and 0.95 for B3).  
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Figure 2.3. The semi-analytical relationship between chlorophyll (chl) a concentrations and 

Landsat band-averaged subsurface irradiance reflectance R(0-) in B3 (open circles) and B2 

(open squares) based on individual analytical solutions. An exponential relationship (black line) 

is used to fit the analytical relationship with closeness of fit given by r2. This function was used 

to estimate chlorophyll a from R(0-). 

Statistical analysis and regression models 

In order to determine which Landsat parameters have potential use in modelling chl 

a, values of r2 were examined for relationships of in situ chl a to Landsat bands or 

band ratios (Table 2.2). Amongst the relationships of in situ chl a (and ln(chl a)) to 

Landsat bands R(0-) and R(0-) B1/B3, the highest r2 value was for ln(chl) vs. 

ln(B1/B3) (r2=0.55) followed by ln(chl) vs. B1/B3 (r2=0.48). The ln(B1/B3) ratio 

was subsequently used in the empirical model to estimate chl a. 
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Table 2.2. Coefficient of determination (r2) for regression relationships between in situ 

chlorophyll a and Landsat. * represents p>0.05  (n=87).  

  ln(Chl a) Chl a 

Parameter r2 r2 

B1 0.014* 0.002* 

B2 0.242 0.317 

B3 0.347 0.314 

B4 0.010 0.069 

B5 0.024* 0.003* 

B7 0.001 0.007 

B1/B3 0.483 0.198 

Ln(B1/B3) 0.553 0.277 

ln(B2) 0.240 0.202 

ln(B3) 0.352 0.211 

ln(B4) 0.189 0.138 

 

 

The symbolic regression algorithm was derived using the entire dataset of satellite 

R(0-) and corresponding in situ data as detailed above: 

 

Chl a = (4618 B2 – 20)/((B1/B3)2)   (2.7) 

 

with r2=0.68, RMSE=10.32 µg L-1, p<0.05, n=87 

 

Of the regression analysis results of in situ chl a and estimated chl a from the four 

models, the symbolic regression model showed the highest r2 (0.68), lowest RMSE 

(10.3 µg L-1), a slope of 0.88 and a constant of 1.52 µg L-1 (Figure 2.4). Based on 

these results, this model was selected to estimate chl a henceforth. 

 

The semi-analytical model was also applied to estimate chl a from B2 and B3, using 

the two fitted equations shown in Figure 2.3. These two models were deemed 

unsuitable for the estimation of chl a, due to either having a high constant (6.5 µg chl 

a L-1 for the B2 semi-analytical model) or low slope (0.65 µg chl a L-1 for the B3 

semi-analytical model). 
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Figure 2.4. Observed chlorophyll a (µg L-1) (y) versus estimated chlorophyll a (x) from the four 

different algorithms, plotted on a log-log scale. A 1:1 line (blue line), and r2 value are shown on 

each plot (n=87). (a) Symbolic regression algorithm equation: Chl a = (4618 B2 - 20)/((B1/B3)2) 

with r2=0.68 and RMSE=10.5 µg L-1. (b) Empirical algorithm equation: Chl a = exp(-

2.12*(ln(B1/B3)) + 3.17) with r2=0.36 and RMSE=15.7 µg L-1. (c) Semi-analytical model B2: Chl 

a = 0.0017e352.95 B2 with r2=0.58 and RMSE=13.8 µg L-1. (d) Semi-analytical model B3: Chl a = 

0.36e447.13 B3 with r2=0.58 and RMSE=14.1 µg L-1. 

Influence of CDOM and tripton on R(0-) 

Running the bio-optical model with a fixed absorption of CDOM absorbtion (0.16 m-

1) and concentration of chl a (20 µg L-1), and with tripton concentrations ranging 

from 0 to 9 mg L-1, revealed that increases in tripton concentration increase R(0-) 

over all visible wavelengths (Figure 2.5). 

 

(a) (b) 

(c) (d) 
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Figure 2.5. Modelled subsurface reflectance (R(0-)) for varying tripton concentrations ranging 

from 0 to 9 mg L-1, with fixed CDOM absorption of 0.16 m-1 and chl a concentration of 20 µg L-

1. The relative spectral response of Landsat bands B1, B2 and B3 is overlaid.  

 

Running the bio-optical model with fixed concentration of chl a (20 µg L-1) and 

tripton (0.5 mg L-1), and varying CDOM absorption from 0 to 1.8 m-1, revealed that 

increases in CDOM absorption decrease R(0-) below 680 nm (Figure 2.6). 

 

 

Figure 2.6. Modelled subsurface reflectance (R(0-)) for varying CDOM absorption ranging from 

0 to 1.8 m-1, with fixed tripton concentrations of 0.5 mg L-1 and chl a of 20 µg L-1. The relative 

spectral response of Landsat bands B1, B2 and B3 is overlaid.  
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Time series satellite estimation of chl a concentration 

In lakes Rotorua, Rotoehu and Rotoiti, monthly in situ chl a concentrations were 

compared to chl a derived from the symbolic regression algorithm. Although a direct 

comparison is not possible due to the time difference between in situ sample and 

satellite overpass, some general features can be identified. In Lake Rotoma satellite 

estimations were usually of a similar magnitude to observed values for each date of 

comparison, although it is likely that that the symbolic regression produced an 

underestimate for some periods. For example, on 15 August 2000 estimated chl a 

was only 0.12 µg L-1 (Figure 2.7 (a)) whereas the in situ measured chl a closest to 

the overpass was 2.2 µg L-1 (on 23 August 2000). The lowest in situ value over the 

study period was 0.3 µg L-1 in Lake Rotoma. From 2004 through 2010 there were 

eight instances when satellite-estimated chl a was greater than 3.0 µg L-1, however, 

over that period in situ chl a was greater than 3.0 µg L-1 only twice. Notably, towards 

the end of the study period, estimated chl a was consistently higher than in situ chl a. 

 

In Lake Rotoehu, chl a derived from the symbolic regression model on 5 February 

2000 (222 µg L-1), 6 January 2001 (169 µg L-1), and 25 February 2002 (81 µg L-1) 

was not only high in magnitude but also much higher than the corresponding in situ 

data (2.7 (b)). In this lake surface distributions of chl a derived from symbolic 

regression are highly heterogeneous (Figure 2.8) and appear to be influenced by 

wind speed and direction as high concentrations were estimated in the downwind 

direction in several cases (e.g., Figure 2.8 (d), (e) and (f)). Lake wide statistics 

(excluding a 100-m buffer zone from the shoreline) showed that the maximum-

estimated chl a of 838 µg L-1 occurred on 5 February 2000 (Figure 2.8 (a)), located 

in the southeast of the lake c. 500 m from the shoreline. This date also had the 

highest range of chl a values at 823 µg L-1. The highest chl a concentrations were 

observed when wind speed was less than 4 m s-1 (e.g., Figures 2.8 (a)-(f)). 
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Figure 2.7. Time series plots of estimated chlorophyll a (µg L-1) from the symbolic regression 

(closed circles) and from all in situ data (open circles) for Lake Rotoma (a), Lake Rotoehu (b), 

and Lake Rotorua (c). Note that in most cases dates of in situ and satellite sampling dates are 

not identical.  
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In Lake Rotorua, the estimated chl a derived from symbolic regression may have 

been erroneously affected by the presence of tripton (Figure 2.7 (c)). Lake Rotorua is 

a large shallow, wind-exposed lake which has potential for sediment resuspension. 

Figure 2.5 demonstrates that additions of tripton increase R(0-) at all visible 

wavelengths, which introduces the potential for error when using empirical 

algorithms. 

Spatial variation of estimated chl a concentration 

For chl a derived from the symbolic regression algorithm, there was large spatial 

variation both within and between lakes on 24 January 2002. Within-lake spatial 

variation was high in Rotoiti (3.2-136 µg L-1), Rotoehu (22.1-203 µg L-1), and 

Rotomahana (0.9-168 µg L-1) (Figure 2.9). In Lake Rotorua estimated chl a was 

elevated near the lake edge (affecting up to 10 pixels from the lake edge), possibly as 

a result of additions from bottom reflection or from elevated levels of suspended 

minerals in shallow areas. In other lakes, elevated chl a also often occurred near the 

lake edge in some locations, however, this generally only affected one or two pixels. 

Surface chl a derived from symbolic regression was highest within lakes for 

Rotorua, Rotoiti, and Rotoehu. In contrast, nearby lakes Rotoma and Okataina had 

relatively low chl a concentrations on all dates. Figure 2.10 shows chl a derived 

using the symbolic regression model on selected dates when there was high spatial 

variation of chl a. On 5 February 2000 (Figure 2.10 (a)) estimated chl a 

concentrations were > 200 µg L-1 in lakes Rotorua and Rotoehu, while 

concentrations in Lake Rotoiti including Okawa Bay were < 40 µg L-1. On 6 January 

2001 (Figure 2.12 (b)), chl a concentrations were > 200 µg L-1 at Site R1 (Okawa 

Bay) in Lake Rotoiti and in Lake Rotoehu, while in the main body of Lake Rotorua 

concentrations were < 40 µg L-1. On 19 March 2004 (Figure 2.10 (c)) there was high 

spatial variation of chl a in Lake Rotorua, particularly on the western shore. On 19 

February 2011 (Figure 2.10 (d)), relatively high concentrations of chl a were 

observed at Rotoiti Site R1 compared with the main basin of Lake Rotoiti. 
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Figure 2.8. Chlorophyll a concentration (µg L-1) in Lake Rotoehu derived from the symbolic 

regression model.   
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Figure 2.9. Chlorophyll a (µg L-1) derived from the symbolic regression model on 24 January 

2002. White areas within lakes represent masked areas of cloud. 

 



Chapter 2: Landsat remote sensing of chlorophyll a 

 

56 

 

 

 

Figure 2.10. Chlorophyll a (µg L-1) derived from the symbolic regression model in north-

western Rotorua lakes on selected dates with high spatial variation. Note: some lakes were 

removed due to cloud cover. 
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2.4 Discussion 

In this study a symbolic regression algorithm was used to estimate chl a from 

Landsat ETM+ subsurface irradiance reflectance. Hindcast estimations of chl a 

concentration displayed large inter- and intra-lake variations that tended to be greater 

than those documented by water quality monitoring programs on the Rotorua lakes 

(Burns, 2009). My study demonstrated the ability of the derived symbolic regression 

model to estimate chl a over landscape scales and long time periods, potentially 

capturing greater variability, which opens up new possibilities for applying remote 

sensing to lakes with sparse or no monitoring history.  

 

The ability of symbolic regression to discover both model form (e.g., mathematical 

operators and constants) and parameters resulted in a novel algorithm. The use of 

combinations of spectral bands, while increasing correlation coefficient values for 

relationships with chl a, can produce results that are difficult to interpret based on 

bio-optical theory (Dekker et al. 1993). However, in the present chapter, the 

symbolic regression model used the commonly applied ratio of B1/B3. The 

underlying physical basis for the relationship of the ratio of B1 (450-515 

nm)/B3(630-690 nm) to chl a is well understood (Matthews 2011). Increasing 

concentrations of chl a are associated with a decrease in reflectance at blue 

wavelengths (B1) corresponding to a local chl a absorption maximum (Gitelson et al. 

1993, 1996; Han and Jordan 2005). The Landsat B3 wavelength range includes a 

local reflectance peak near 650 nm which is caused by a combination of decreasing 

chl b and phycocyanin absorption and relatively low chl a absorption (in comparison 

to chl a absorption maxima at 662 nm), and low absorption relative to scattering at 

these wavelengths (Dekker et al. 2002a). In addition, B3 captures the initial part of 

the reflectance peak centred at 690-720 nm (due to increased algal scattering). 

Chlorophyll fluorescence is often erroneously attributed to contributing to the 690-

720 nm peak in eutrophic waters, however, it was not simulated in the bio-optical 

model in this study, and it has previously been deemed insignificant compared with 

contribution from elastic scattering (Dekker et al. 2002a; Gilerson et al. 2007). The 

Landsat B3 wavelength range includes part of the reflectance trough centred at 624 

nm (caused by chl a and phycocyanin absorption) and the entire trough centred at 
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676 nm which is attributed to chl a absorption (Dekker et al. 2002a). Increasing chl a 

concentrations, however, still lead to increased reflectance at these troughs, although 

at 676 nm the sensitivity is minimal (Gitelson et al. 2000). The net result of these 

spectrally counteracting forces is that increasing concentrations of chl a are 

associated with increased subsurface irradiance reflectance in Landsat B3.  

 

The symbolic regression algorithm also includes Landsat B2 (520-600 nm). Bio-

optical modelling in the present study indicates that B2 is positively correlated with 

chl a concentrations. Band 2 contains a local reflectance peak at 570-600 nm 

corresponding to a chlorophyll a and b absorption minimum. The bio-optical model 

also simulated the existence of a spectral pivot point at 530 nm, where subsurface 

irradiance reflectance is independent of chl a concentration. This wavelength is 

somewhat higher than the value of 497 nm used by Bukata et al. (1995) for a three-

component bio-optical model with no CDOM or tripton present, but is closer to the 

spectral pivot point of 510 nm measured in situ by Schalles et al. (1997) during a 

tank enrichment/dilution experiment. Regardless of the pivot point, there is a 

positive correlation between reflectance and chl a concentration in Landsat B2. 

 

When applying the symbolic regression algorithm (and other empirical algorithms), 

there is potential for error in estimated chl a induced from independently varying 

concentrations of CDOM or tripton. From the limited data available on CDOM 

concentrations in Rotorua lakes, concentrations are relatively low in Lake Rotorua 

and Rotoiti (0.16 – 0.23 m-1). However, CDOM concentrations may be higher in 

Rotorua lakes with forest dominated catchments such as Lake Tikitapu. The 

symbolic regression blue-red band ratio could be perturbed in waters with high 

CDOM (Reinart and Kutser 2006). Further investigation is needed regarding the 

spectral slope and concentraion of CDOM found in the Rotorua lakes. Lakes with 

high CDOM would likely require the use of bands in the red and near infrared 

wavelengths, to avoid high CDOM absorption wavelengths (Gitelson et al. 2008). 

The presence of independently varying concentrations of tripton poses a greater 

potential for error in hindcasting chl a estimates. The bio-optical model shows that 

the addition of small amounts of tripton (e.g., c. 1 mg L-1) increases subsurface 
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irradiance reflectance in Landsat B1-B3, which leads to potential for errors in chl a 

hindcasts.  

 

A potential solution to the chl a hindcast errors induced from independently varying 

concentrations of optically active components is the use of bio-optical algorithms 

that allow simultaneous estimation of CDOM absorption and SS, and chl a 

concentrations. However, the Landsat series of satellite sensors possess spectrally 

broad bands which do not allow for a stable inversion with a bio-optical model. 

Further research will be critical to address shortcomings in broadband-based 

algorithms, however, inherent limitations of the Landsat sensor will ultimately limit 

the ability of component discrimination (Mathews 2011). A recent review of the 

literature (Matthews 2011) revealed that there is currently no operational algorithm 

for remote sensing of chl a in inland waters using Landsat. This shortcoming has 

also been attributed to sensor-specific limitations including a low signal to noise 

ratio (SNR) (Matthews 2011). The application of three-dimensional hydrodynamic-

ecological models to estimate CDOM and tripton concentrations may be able to 

identify locations and time periods when chl a estimation error is likely to occur 

using symbolic regression, while providing increased temporal and vertical 

resolution of analysis. 

 

While bio-optical modelling is not applicable to simultaneous determination of 

independently varying optically active constituent concentrations when applied to 

Landsat, it is useful in the simulation of the physical processes that results in varying 

subsurface irradiance reflectance with increasing chl a concentration. In particular, 

bio-optical modelling could be further developed to quantify potential sources of 

error when using empirical algorithms. In the Rotorua lakes, it is likely that there is 

both inter-lake and seasonal variability of phytoplankton specific absorption and 

scattering, based on the diverse assemblage of phytoplankton present (Paul et al. 

2012). Phytoplankton-specific absorption, a*
ϕ(λ), not only depends on cell size, but 

pigment composition and the packaging effect (Babin et al. 1993; Babin 2003; 

Bricaud 2004; Blondeau-Patissier et al. 2009).  
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Variations in the specific scattering coefficient of phytoplankton are known to 

produce up to two-fold differences in chl a concentrations retrieved from bio-optical 

models (Dierssen 2010). The backscattering ratio and the specific scattering 

coefficient of phytoplankton are determined by the size, physical structure, and the 

outer coating of cells (Stramski et al. 2004). With increasing phytoplankton biomass 

there is greater cell wall surface area, resulting in increased scattering (Yacobi et al. 

1995). In addition, gas vacuoles in some cyanobacteria have been found to be 

efficient at backscattering light (Dubelaar et al. 1987; Volten et al. 1998). 

Backscattering is inherently difficult to measure and there is considerable 

uncertainty in measured backscattering of phytoplankton (Stramski et al. 2004). 

Aquatic reflectance is determined by the ratio of backscattering to absorption 

(Gordon and Brown 1973), therefore variation in the backscattering ratio and the 

specific scattering coefficient of phytoplankton that is not accounted for in bio-

optical and empirical algorithms, has the potential to introduce error in estimates for 

chl a . 

 

While remote sensing can provide information on temporal and spatial variations in 

chl a in surface waters, it does not capture variations deeper in the water column. It 

has been shown that in a homogenous water body, 90% of reflectance emanating 

from beneath the water surface originates from water depths extending from 

immediately below the surface to the penetration depth where downwelling radiance 

decreases to 36.8% of its surface value (Gordon and McCluney 1975). This depth 

depends on the inherent optical properties of the optically active constituents and 

their concentrations, as well as the apparent optical properties of the ambient light 

field, and the layer from which the reflectance emanates can vary from as shallow as 

a few centimetres (Kutser 2004) to as deep as 60 m (Stramska and Stramski 2005). 

Similar to what has been shown with oceanic distributions of chl (e.g., Hill and 

Zimmerman 2010), lakes Rotoma, Rotoiti and Tarawera have a deep chlorophyll 

maximum (DCM) which occurs when the lakes are stratified, and is closely 

associated with the thermocline depth, but is even more closely associated with the 

depth where light is 1% of the surface value (i.e., the euphotic depth) (Hamilton et 

al. 2010). In Lake Rotoma, approximations of penetration depth of c. 5.5 m (PAR) 

from in situ measured light attenuation (Hamilton et al. 2010) have been recorded 
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within the present study period, whereas chl a sampling is a depth-integrated value 

from the surface to 17 m. Therefore, where chl a distributions are not homogenous 

over 0- 17 m, remote sensing will not be representative of the in situ sample and 

estimates of chl a will not capture the DCM which has been recorded at c. 35 m in 

Lake Rotoma. For lakes with DCMs, the increasing development and deployment of 

real time autonomous monitoring buoys with vertical chlorophyll fluorescence 

profiling capabilities is needed for effective monitoring of vertical chlorophyll 

distributions. 

 

The use of a single station to monitor in situ chl a has been found to both over- and 

underestimate concentrations compared with remotely-sensed chl a averaged over 

the lake area (Kallio et al. 2003; Kutser 2004). In Lake Rotorua, for example, 

complex spatial and temporal variations occur where the interaction of high 

cyanobacterial biomass can combine with diurnal stratification of the surface mixed 

layer so that positively buoyant cyanobacterial cells tend to aggregate at the water 

surface during calm conditions (Oliver et al. 2012). This is often disrupted on a daily 

basis, e.g. by afternoon wind (Hamilton 2004), which can cause highly temporally 

heterogeneous chl a distributions both vertically and horizontally. The 

representativeness of grab samples from lakes can therefore be compromised by 

these strong gradients of chl a (Kutser 2008). Remote sensing provides an 

opportunity to understand some of these horizontal complexities and, when 

combined with other tools such as three-dimensional hydrodynamic-ecological 

models (Chen et al. 2004; Chapter 4) and real time remote monitoring of chl a 

fluorescence or phytoplankton-related IOPs (Babin et al. 2005), provides vital 

information for a deeper understanding of variations in phytoplankton biomass in all 

spatial and temporal domains. 

 

Variations in nutrients may be an important driver of intra-lake spatial variation of 

chl a in the Rotorua lakes, in addition to phytoplankton cell buoyancy, stratification 

and wind. For example, the high concentrations of chl a on the eastern shore of Lake 

Rotorua indicated in the image on 19 March 2004 may be associated with increased 

phytoplankton biomass associated with elevated nutrient concentrations in 

geothermal inflows (Hoellein et al. 2012). While a dilution zone effect 
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corresponding to relatively low chl a concentrations near stream inflows has been 

observed in Lake Rotorua (Abell 2013) and elsewhere (Mackey et al. 2011), 

localised “hot spots” of increased fluorescence have been observed in stream inflow 

transition zones in Lake Rotorua (Abell 2013). Any localised increases in chl a 

concentration will depend on the relative time scales of phytoplankton growth 

compared to phytoplankton mixing and transport processes (Hillmer and Imberger 

2007).  

 

Variations in inflow volume and lake morphometry, in conjunction with variations in 

nutrient concentrations, also contribute to intra-lake variability (Håkanson 2005). For 

example higher chl a concentrations observed in the western basin relative to the 

eastern basin of Lake Rotoiti (before the creation of the diversion wall) were found 

to be driven by the gradient in nutrients generated by inflowing water from the Ohau 

channel (from eutrophic Lake Rotorua), which was high in nutrients (Vincent et al. 

1991; Westernhagen et al. 2010). The higher chl a concentrations observed in 

Okawa Bay (Lake Rotoiti) on 24 January 202 may be at least partly attributed to the 

shallow depth and associated high sediment surface:water column ratio and 

enhanced nutrient supply from sediment-water column exchange processes 

(Westernhagen et al. 2010). 

 

Lake Rotoehu has high intra-lake variability of chl a based on the analysis of 

remotely sensed images. This lake has complex dendritic morphology, and, 

combined with frequent algal blooms, gives rise to the most heterogeneous spatial 

variation in of all the Rotorua lakes (maximum satellite estimated intra-lake range of 

838 µg L-1). Cyanobacteria blooms are commonly observed in summer (Burns et al. 

2009), and satellite-estimated concentrations of chl a were often higher in downwind 

locations, as noted in other studies (e.g., Hutchinson  and Webster 1994; Oliver and 

Ganf 2000; Oliver et al. 2012). The highest chl a concentrations were estimated 

during time periods where wind speeds were less than 4 m s-1. Wind speeds above 2–

3 m s-1 have been identified as critical to inducing entrainment of floating 

phytoplankton colonies into a turbulent surface layer (Webster and Hutchinson 

1994), preventing the concentration of colonies on leeward shores. Remote sensing 
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is the only tool able to synoptically quantify temporal and spatial dynamics of algal 

blooms that occur in Lake Rotoehu. 

 

The automated operational procedure developed in this study for remote sensing of 

chl a in the Rotorua is applicable to other lakes, however, the symbolic regression 

model is likely to be specific to the Rotorua lakes. The automation of procedures for 

retrieving chlorophyll allowed for processing large amounts of data and 

encompassed many operations which enabled a novel comparison of empirical and 

semi-analytical algorithms over a time series of images. However, as discussed 

above, the potential for error must be carefully considered in any quantitative 

estimates of chl a concentration. 
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3 Atmospheric correction of Landsat thermal imagery 

for surface water temperature retrieval and three-

dimensional hydrodynamic model validation of spatial 

heterogeneity in geothermally-influenced lakes 

3.1 Introduction 

Knowledge of water temperature is crucial to understanding of lake ecosystem 

functioning (Hutchinson 1957). Furthermore, there is increasing recognition of the 

potential for lakes to act as sentinels of climate change, as physical, chemical and 

biological indicators in standing waters reflect atmospheric forcing and may reflect a 

changing climate within lake catchments (Williamson et al. 2008; Adrian et al. 

2009).  

 

High-frequency (e.g., 15 min interval) in situ temperature measurements are 

commonly used to monitor the vertical structure of temperature in lakes (Yeates et 

al. 2008), however, such techniques are not cost effective for characterising 

horizontal temperature variation in large lakes. The use of measurements obtained 

from satellites potentially provides a solution to this problem (Hook et al. 2003). Of 

particular note is the large increase in the use of Landsat visible, infra-red and 

thermal-infrared imagery for water monitoring, prompted by the release of the entire 

data archive for free public use. Satellite thermal imagery has been used for a wide 

variety of lake applications including: temperature monitoring of volcanic lakes 

(Oppenheimer 1993); characterising upwelling and circulation (Steissberg et al. 

2005a); observing surface current speed/direction (Steissberg et al. 2005b) and near-

shore thermal bars (Schott et al. 2001); identification of groundwater discharge areas 

(Tcherepanov et al. 2005); and estimating the influence of lake morphology and 

clarity on water surface temperature (Becker and Daw 2005). 
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Remote sensing radiometers measure the lake water ‘skin’ temperature (upper 100 

µm) rather than the bulk surface temperature usually measured with in situ sensors. 

The skin temperature differs from bulk temperature due to heat transfer at the air-

water interface from sensible and latent heat fluxes and longwave radiation. The skin 

temperature is usually lower than the bulk temperature due to net heat loss, however, 

very shallow diurnal thermoclines (< 100 mm) can sometimes cause skin 

temperature to be warmer than bulk temperature. Bulk and skin temperature 

differences have been found to be at a minimum (average daily temperature 

difference of -0.1 °C) from 0900 to 1100 h, which corresponds to the theoretical time 

of Landsat overpass (Schneider and Mauser 1996). Hook et al. (2003) found 

consistent differences between near-real-time measurements of lake skin temperature 

from radiometers and bulk surface water temperature measurements in Lake Tahoe 

(California, USA) over a diurnal cycle, with daytime and night time skin 

temperatures cooler by an average of 0.11°C and 0.46°C, respectively. 

 

Atmospheric correction (AC) is a crucial step in determining water quality from 

satellite data, as differences between bulk water temperature and uncorrected 

satellite-derived water skin temperature can be as large as 4.55 °C (Fisher et al. 

2004). Limited availability of meteorological data and difficulty of radiative transfer-

based AC have previously limited temperature retrieval algorithms to empirically 

based methods (e.g., Lathrop and Lillesand 1987; Baban 1993). However, 

theoretically-based AC of Landsat data has been achieved with the Low Resolution 

Transmission model (LOWTRAN) for retrieval of Lake Ontario water surface 

temperature (Schott and Volchok 1985). The LOWTRAN 7 model (spectral 

resolution measured by spectroscopic wavenumber at 20 cm-1 ) has now been 

superseded by Moderate Resolution Transmission (MODTRAN) which uses spectral 

resolutions ranging from 2 cm-1 (MODTRAN 3.7-4.0) to 0.2 cm-1 (MODTRAN 5.0). 

There is little information about the accuracy of atmospheric profiles of temperature, 

pressure and relative humidity (RH) used in radiative transfer modelling for thermal 

atmospheric correction, particularly in relation to Landsat water temperature 

retrieval. 
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Process-based modelling of lake water temperature offers opportunities to interpolate 

temporal data gaps derived from satellite and traditional periodical monitoring data 

whilst also extrapolating surface water temperatures to an entire waterbody. 

However, many of these models either do not apply, or, are not well validated in the 

horizontal dimension. Validation of three-dimensional (3-D) models is difficult 

using traditional point-based monitoring, but the synthesis of satellite thermal 

imagery with high-frequency temperature measurements from thermistor chains 

presents an opportunity to spatially evaluate temperature outputs from 3-D 

hydrodynamic models. In addition, determination of initial conditions over a whole 

3-D model simulation domain can be especially challenging, but may be usefully 

resolved with satellite imagery (e.g., Alvarez et al. 2007). However, a high level of 

accuracy and confidence is required in satellite data for it to be useful in validation 

of 3-D models. 

 

The Rotorua lakes, North Island, New Zealand, provide a unique opportunity to 

assess remote sensing of surface water temperature, due to the significant geothermal 

activity giving rise to large temperature variations in some lakes. Thermal imaging 

from helicopter has previously shown the relative distribution of geothermal inflows 

to Lake Rotorua (Mongillo and Bromley 1992), and thermal springs in lakes 

Tarawera, Rotomahana and Frying Pan amongst lakes of the Rotorua region 

(Mongillo 1994). Airborne thermal imaging has been used previously on Lake 

Rotorua to determine spatial variations in water temperature and geothermal inflows 

(Timmins and Belliss 1983) but the transport and mixing of geothermal plumes have 

rarely been observed in detail. Due to the large variation in temperature created by 

geothermal plumes and the availability of thermal remote sensing data, a unique 

opportunity exists in this region to study the transport path of geothermal inflows. 

Positively buoyant warm inflows create plumes or jets, which have been shown to 

support unique biogeochemical processes (Amon and Benner 1998).  

 

The major objective of this work was to compare AC of Landsat thermal imagery 

using MODTRAN with four sources of atmospheric profile data, thereby informing 

global users of Landsat data about the most appropriate AC methods. A further 

objective was to use remotely sensed temperature data to validate output from a 3-D 
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hydrodynamic model of a polymictic lake that has high horizontal variability in 

water temperature due to the influence of a warm geothermal inflow. 

3.2 Methods 

Study site 

The Rotorua lakes (Figure 3.1(a)) are of recent volcanic origin (<140 000 yr. BP.) 

and were formed by explosion craters and subsidence associated with volcanic 

activity (Lowe and Green 1987). The mean depth of these lakes ranges from 6.9 m in 

Lake Rotoehu (Figure 3.2) to 60 m in Lake Tarawera. Lake Taupo (Figure 3.1(b)) 

(area = 616 km2, mean depth 97 m) is located in a caldera created by a super-

volcanic eruption which occurred 26,500 yr BP. Many of the lakes have geothermal 

inputs including Rotorua, Rotoiti, Rotoehu, Rotomahana and Tarawera. In Lake 

Rotorua (area = 80 km2, mean depth = 10 m) this influence is clearly visible due to 

high reflectance caused by scattering of sulphur particles in a thermal plume in the 

south of the lake. Lake Rotoehu is a eutrophic lake with a surface area of 7.95 km2, 

mean depth of 6.9 m and maximum depth of 13.5 m (Trolle et al. 2011; Figure 3.2). 

A geothermal stream enters the lake in the south-west corner of the lake. 

Methods overview 

Atmospheric correction of Landsat 7 thermal data was carried out for the purpose of 

retrieval of lake water surface temperature in Rotorua lakes, and Lake Taupo. The 

effect of the atmosphere on the images was modelled using four sources of 

atmospheric profile data as input to MODTRAN. The retrieved water temperatures 
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Figure 3.1. Study site map including depth for (a) Rotorua lakes and (b) Lake Taupo. 

 

 

 

Figure 3.2. Lake Rotoehu study site, showing the location of the water quality monitoring 

station, and the Waitangi Soda Springs inflow plume zone for comparison of ELCOM and 

Landsat temperature data. 
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from 14 images between 2007 and 2009 were validated using a high-frequency 

temperature sensor deployed from a mid-lake monitoring buoy at the water surface 

of Lake Rotorua. Retrieved surface water temperature was used for assessing spatial 

heterogeneity of surface water temperature simulated with a 3-D hydrodynamic 

model of Lake Rotoehu (using eight Landsat images captured during the simulation 

period). The transport and mixing of a geothermal inflow and basin-scale circulation 

patterns was inferred from thermal distributions from satellite estimated and model 

simulations of surface water temperature and a spatially resolved statistical 

evaluation was used to validate simulations. 

Image analysis  

Landsat satellite images captured from 1 September 2006 until 10 November 2009 

were ordered and downloaded from USGS Global Visualisation Viewer (GloVis). 

Images were captured at approximately 1000 h NZST. Band 6 high-gain (60-m 

resolution) was used for temperature derivation. Conversion from Landsat-scaled 

radiance (DN) to 32-bit spectral radiance at the sensor aperture (L(λ); W m-2 sr-1 µm-

1) was performed according to Landsat (2008): 

 

L(λ) = Gr ∙ Qc + Br     (3.1) 

 

where Gr= rescaled gain (W m-2 sr-1 µm-1/DN), Br= rescaled bias (W m-2 sr-1 µm-1) 

and Qc= quantized calibrated pixel value in DN. 

 

Atmospherically corrected water-leaving radiance 𝐿𝑤 was calculated according to 

Coll et al. (2010), with wavelength dependence for all parameters: 

 

 𝐿𝑤 =
𝐿𝑡−𝐿𝑎

𝜀τ
− (

1−𝜀

𝜀
) 𝐿𝑠𝑘𝑦     (3.2) 

 

where: 

Lt= at-sensor radiance (W m-2 sr-1 µm-1) 

𝐿𝑎= atmospheric or upwelling radiance emitted by the atmosphere (W m-2 sr-1 µm-1) 

𝜀= emissivity of the water surface 



Chapter 3: Remote sensing and modelling of surface water temperature 

 

77 

 

τ= atmospheric transmission 

𝐿𝑠𝑘𝑦=downwelling or sky radiance reflected from the water surface (W m-2 sr-1 µm-1) 

 

Since the emissivity of water is very high, the reflected downwelling sky radiance is 

negligible in the region of the Landsat thermal infrared bands. MODTRAN 3.7 was 

used to calculate 𝐿𝑎 and τ using four sources of atmospheric data detailed below, 

with 𝐿𝑎 weighted with the Landsat 7 relative spectral response function. For upper 

atmosphere heights not included in the four sources of atmospheric profile data, mid-

latitude summer or winter (USA) standard atmospheres were used, corresponding to 

the season closest to the date of image capture. In all cases the atmospheric boundary 

layer was defined using meteorological data from Rotorua Airport weather station. 

NASA Atmospheric Parameter Calculator 

An Atmospheric Parameter Calculator (using MODTRAN 4.0; NASA) was used to 

determine 𝐿𝑎 and τ using National Centres for Environmental Prediction (NCEP) 

atmospheric profile data including pressure, temperature and RH. This tool allows 

estimation of surface temperature to c. ±2 ºC globally if emissivity is known and the 

atmosphere is reasonably clear (Barsi et al. 2005). There is limited validation of this 

method for ground-based targets, especially in the Southern Hemisphere where there 

is greater uncertainty in NCEP data. In all cases the atmospheric boundary layer was 

defined using meteorological data from Rotorua Airport weather station.  

Radiosonde atmospheric profile data 

Radiosonde data were taken at Whenuapai weather station at 1200 h NZST (NZ 

Metservice). This location (latitude 36.793ºS, longitude 174.624ºE) is 200 km north-

west of the Rotorua lakes. Pressure, temperature (T), and calculated RH were used 

for the lower 30 km of the atmosphere. Dew point temperature (Td) and T were used 

to calculate vapour pressure (e), saturation vapour pressure (es) and then RH:  

 

RH = [e(T)/es(T)] × 100%    (3.3) 

 

http://www.ncep.noaa.gov/
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where e and es are calculated from the Clausius-Clapeyron equation: 

 

Ln(es/6.11) = (L/Rv )(1/273.15 - 1/T)     (3.4) 

 

where; 

L = latent heat of vaporization = 2.453 × 106 J kg-1, Rv = gas constant for moist air = 

461.5 J kg-1, and T = temperature (̊ºK). 

Atmospheric Infrared Sounder (AIRS) atmospheric profile data 

The Atmospheric Infrared Sounder (AIRS) is an instrument on-board the MODIS 

Aqua satellite launched in 2002. AIRS is a hyperspectral infrared sounder with 2,378 

spectral channels and is currently the most advanced atmospheric sounding system in 

orbit. AIRS is used to measure temperature and water vapour as a function of height 

for the lower 18.5 km of the atmosphere. The uncertainty is within 15% for 2 km 

layer thickness water vapour, and 1 ºC for 1 km layer thickness temperature profiles. 

However, Tobin et al. (2006) found higher errors for mid-latitude sites, with RMSE 

of 1 to 2 ºC for temperature and 25-35% for water vapour. Over the Rotorua lakes 

the AIRS overpass time (0225 h UTC) is approximately 4 h and 25 min after the 

Landsat overpass time (2150 h UTC). For this study, AIRS level 3 data were used 

(AL3). 

MODIS Terra atmospheric profile data 

MODIS Terra atmospheric profile data were used from the MOD07 product which 

includes atmospheric profiles of T and Td at 20 pressure levels. These data were used 

to calculate RH as above. Due to the lower spectral resolution of this instrument the 

accuracy of derived atmospheric data is lower. The RMSE for temperature retrieval 

has been found to be consistently 1 ºC higher than that derived from AIRS, although 

for the mixing ratio the RMSE is similar to AIRS above 900 hPa (Seemann et al. 

2006). For the Rotorua lakes 19 pressure levels were used corresponding to altitudes 

of approximately 300 to 35 000 m. The Terra satellite has an identical orbit to 

Landsat 7 and c. 15 min between overpass times. 
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Remotely sensed temperature validation 

Water surface temperature estimated by Landsat averaged within a 180 m x 180 m 

area of interest was compared to that for the identical location corresponding to a 

BOPRC monthly monitoring site on Lake Rotoehu (Figure 3.2) and the Rotorua 

buoy location (Figure 3.1). For a comparison of temperature in the Waitangi soda 

springs geothermal plume in Lake Rotoehu (Figure 3.1), a polygon was used which 

encompassed the location of the plume whilst maintaining a 60 m buffer from the 

shoreline, equal to the resolution of a Landsat ETM+ B6 pixel.  

Hydrodynamic model description and setup 

The Estuary and Lake Computer Model (ELCOM) is a 3-D numerical model 

developed at Centre for Water Research at the University of Western Australia 

(Hodges et al. 2000; Hodges and Dallimore 2001). ELCOM uses hydrodynamic and 

thermodynamic models in order to simulate velocity, salinity and temperature in 

waterbodies. The hydrodynamic model solves the unsteady, viscous Navier-Stokes 

equations for incompressible flow using the hydrostatic assumption for pressure. A 

Euler-Lagrange method is used for advection of momentum with a conjugate-

gradient solution for the free-surface height (Casulli and Cheng 1992). Passive and 

active scalars are advected using a conservative ultimate quickest discretization 

(Leonard 1991).  

 

For application of the model to Lake Rotoehu a numerical grid of 30-m x 30-m 

horizontal cells was used, with varying vertical resolution ranging from 0.2-m to 1.6-

m over a depth of 12-m. Model forcing data included hourly meteorological data 

from the Rotorua Airport station (19 km from Lake Rotoehu). The data included 

wind speed, wind direction, air temperature, RH, air pressure and solar radiation. 

Daily cloud cover was used as input to the model to calculate longwave radiation. 

Stream inflow volumes and temperatures were measured monthly (BOPRC 

database) and linear interpolation was used to produce daily flow input to the model. 

Residual inflow or outflow were derived from a water balance of the lake at daily 

time scales, and also included input data of lake inflows, outflows, rainfall calculated 
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evaporation, and changes in lake height adjusted to volume based on a hypsographic 

curve. 

 

Differences were found between air temperature measured at the Lake Rotorua 

monitoring buoy and at Rotorua Airport, which were attributed to air mass 

modification by thermal inertia effects of the lake. In our study ELCOM was run 

using air temperature data from both the Rotorua Airport (Ta) and a modified air 

temperature (Tr) based on air temperature measured at the lake monitoring buoy, Tb, 

based on comparison of data from the two sites (r2=0.97, p<0.01): 

 

Tr = 0.0121 Ta
2 + 0.5797 Ta + 3.95     (3.5) 

 

where Tr = Ta for Ta ≥ 15 ºC. 

Plume flow process classification and comparison of ELCOM and Landsat surface 

water temperature 

A comprehensive classification framework proposed by Jones et al. (2007) was 

applied in order to describe the geothermal inflow symbolically. Buoyant surface jet 

dynamics are determined largely by near-field jet processes, which are characterised 

by discharge fluxes for volume, momentum and buoyancy. Length scales are defined 

from these dynamic quantities and the ambient lake velocity, including the discharge 

length scale, jet-to-plume length scale, jet-to-crossflow length scale, and plume-to-

crossflow length scale. Using a comparison of length scales and applicable 

geometric parameters, four flow categories can be identified; free jets, shoreline-

attached jets, wall jets, and upstream intruding plumes. These categories have been 

subdivided into ten flow classes based mostly on the degree of bottom interaction. 

Stepwise classification methodology of the inflow is used based on a set of criteria 

allowing a tree-like decision framework. This classification was applied to all 

observed discharge volumes/buoyancy fluxes, and model simulated lake ambient 

velocities near the major geothermal inflow to Lake Rotoehu (Waitangi Soda 

Springs).  
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The first criterion in the four inflow classifications determines whether the flow is 

jet-like or plume-like. It is equivalent to an inverse Froude number which also 

includes the influence of the aspect ratio (effectively a depth-based Froude number), 

therefore indicating the distance for the flow to become affected by buoyancy 

relative to the source depth. For plumes there is one more criterion which 

distinguishes between strong plumes with significant upstream intrusion and weak 

plumes which are affected more by ambient currents and remain close to the 

shoreline. 

3.3 Results 

Accuracy of Landsat temperature estimation 

The highest accuracy of Landsat ETM+ temperature estimation in Lake Rotorua was 

achieved with radisonde data as an input into MODTRAN, with a RMSE of 0.37 ºC 

(Table 3.1). The RMSE values of MODIS Level 2, AIRS Level 3, and NASA data 

were 0.55 ºC, 0.75 ºC, and 1.05 ºC, respectively. Errors for non-radiosonde data were 

generally higher in summer. The average calibrated temperature (no AC) was 2.50 

°C lower than atmospherically corrected temperatures (using radiosonde atmospheric 

profiles), with a range of -1.04 to -4.78 °C. 

 
Table 3.1. Root-mean-square-error (RMSE) and mean difference between in situ measured 

water temperature (Lake Rotorua buoy) and Landsat-derived temperature using different 

sources of atmospheric data over 14 separate dates (RASO - radiosonde, ML2 - MODIS Level 2, 

AL3 - Airs Level 3). 

Method RMSE (°C) Mean buoy-Landsat (°C) 

RASO 0.37 -0.04 

ML2 0.55 0.27 

AL3 0.75 -0.17 

NASA 1.05 -0.59 

 

 

Figure 3.3 shows four sources of atmospheric profile data for RH at different 

pressure levels on two separate dates: (a) 27 January 2009 and (b) 8 September 2009. 

Water surface temperature retrieval errors were higher on 27 January 2009 (-2.62°C) 
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using NASA data (Table 3.2) and RH measured at Rotorua meteorological station 

was low (39%). On this date, large differences occurred between the vertical profiles 

of RH at both high and low altitudes. By contrast, on 8 September 2009 water 

surface temperature retrieval errors were low (-0.02°C), and again, significant 

differences between atmospheric profiles were observed at high altitude, whilst at 

low altitude atmospheric profiles were similar. On this date, RH measured at 

Rotorua meteorological station was high (91%). 

 

Table 3.2. Error in temperature estimation in Lake Rotorua (estimated – measured, oC) for 

different AC methods (RASO - radiosonde, ML2 - MODIS Level 2, AL3 - Airs Level 3) and 

relative humidity (RH) measured at the Rotorua meteorological station. 

Date (UTM) RASO ML2 AL3 NASA RH (%) 

17/07/2007 0.05 1.18 -0.07 -0.13 94 

18/08/2007 -0.22 0.25 0.27 -0.09 70 

9/01/2008 0.37 -0.50 1.65 -0.98 76 

25/01/2008 0.17 0.78 -0.57 -1.67 49 

3/07/2008 0.34 0.14 -0.16 -0.37 80 

4/08/2008 0.22 0.17 0.16 0.49 84 

10/12/2008 -0.03 -0.21 -0.92 -1.40 68 

11/01/2009 0.22 1.26 -1.00 -1.19 60 

27/01/2009 -0.95 0.00 -1.13 -2.62 39 

1/04/2009 -0.61 0.35 -1.00 -0.79 64 

3/05/2009 -0.31 0.06 -0.08 0.35 65 

20/06/2009 0.25 0.29 0.68 0.34 61 

8/09/2009 -0.03 -0.17 -0.48 -0.02 91 

10/10/2009 -0.17 0.14 -0.04 -0.18 64 
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Figure 3.3. Comparison of relative humidity versus pressure profiles from four sources of 

atmospheric data used in MODTRAN on two different dates: (a) 27 January 2009 and (b) 8 

September 2009.  

Derived water temperature maps 

Landsat-estimated surface water temperatures (radiosonde) are shown in Figure 3.4 

for large lakes in the Rotorua region on 20 July 2009. Large spatial variations 

occurred both within and between lakes, with a major geothermal inflow apparent as 

higher temperature on the south shore of Lake Rotorua. The Waitangi Soda Springs 

geothermal inflow to Lake Rotoehu is identifiable from elevated water temperature 

in the south east of the lake. In this image (Figure 3.4) temperature ranged from 4.5 

°C in the shallow south-east bay of Lake Rerewhakaaitu (satellite-estimated  
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Figure 3.4. Landsat-estimated temperature (ºC) on 20 June 2009 using radiosonde atmospheric 

data in (a) Rotorua lakes, and (b) Lake Taupo. The stripes of missing data caused by the failure 

of the scan line corrector have been filled using linear interpolation. 
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temperature at Rerewhakaaitu BOPRC monitoring site near the centre of the lake 

was 7.2 °C) to 36.8 °C in Frying Pan Lake. The largest temperature range was in 

Lake Rotomahana (9.8 °C) which also had the highest temperature of 14.6 °C (apart 

from Frying Pan Lake), which was near geothermal springs on the western shore of 

this lake. Within-lake variations in temperature showed a general correspondence 

with water depth, especially in lakes with shallow margins such as Rotorua, and in 

lakes with sheltered bays such as Rotoiti, and Rotomahana (Figure 3.4). For 

example, shallow margins of Lake Rotorua were significantly cooler than open water 

surface temperature by c. 3 °C on 21 June 2009. Surface water temperature derived 

from Landsat data on 25 January 2008 shows cooler water on the northern shore of 

Lake Rotorua, and in some areas around the western shore (Figure 3.5). Shallow 

lakes such as Rotorua and Rotoehu display larger seasonal variations in temperature 

amongst seasons than deeper lakes such as Tarawera (Figure 3.4). 

 

 

Figure 3.5. Landsat-estimated temperature (ºC) on 25 January 2008 using radiosonde 

atmospheric data with a standard deviation stretch. The stripes of missing data caused by the 

failure of the scan line corrector have been filled using linear interpolation.  
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ELCOM application to Lake Rotoehu 

ELCOM simulations of water temperature were undertaken for Lake Rotoehu from 

20 July 2005 to 30 December 2007. The RMSE between measured and modelled 

lake water temperature at the BOPRC site using Rotorua Airport air temperature data 

was 1.02 °C (Table 3.1). Use of the modified air temperature (Eq.3. 5) reduced the 

RMSE to 0.61 °C. A comparison was made of in situ Lake Rotoehu surface water 

temperature with Landsat- estimated (radiosonde) data, and ELCOM-simulated 

surface temperature, including the simulations with modified air temperature from 

the lake buoy. Errors between observed and modelled water temperature data are 

highest at the end of austral winter (Figure 3.6). A more detailed spatial comparison 

is given in Figure 3.7, which shows Landsat- estimated and ELCOM-simulated 

surface water temperature in the region of the plume created by the Waitangi Soda 

Springs geothermal inflow to Lake Rotoehu. It shows that ELCOM-simulations and 

Landsat observations are in general agreement but the methodology to invoke direct 

comparisons may have been affected by different resolutions of Landsat (60-m 

pixels) and ELCOM (30-m grid) data, together with possible georeferencing errors 

involved in the georectification of simulated data. Furthermore, whilst geothermal 

inflow volume and composition are generally stable, measurements are conducted 

only bimonthly, with linear interpolation used between measurements to provide 

daily input data to ELCOM.  
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Figure 3.6. Surface water temperature simulations at the BOPRC monitoring site using 

Rotorua Airport meteorological temperature data (ELCOM), modified temperature data (using 

equation 3.5) (ELCOM modified met), in situ temperature and Landsat-derived temperature 

data (radiosonde). 

 

 

Figure 3.7. Mean water surface temperature in the Waitangi Soda Springs geothermal plume 

zone of Lake Rotoehu estimated by Landsat (black line) compared that simulated (dashed line). 
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A spatially resolved comparison of surface water temperature observed in Lake 

Rotoehu using Landsat data and ELCOM-simulated temperature and currents is 

shown in Figure 3.8. The simulated geothermal inflow path, based on temperature 

gradients, generally follows what may be construed from Landsat temperature 

gradients. The 60-m pixel resolution of Landsat data may mean that temperature in 

the narrow north arms of Lake Rotoehu (Figure 3.2) is influenced by adjacent land 

pixels, despite use of a 60 m buffer. The dispersion of the modelled geothermal 

inflow appears to be heavily influenced by lake surface ambient current direction and 

velocity (Figure 3.8 (b)), although all cases the geothermal plume does not separate 

from the shoreline.  

 

ELCOM simulated basin scale surface temperature variation reasonably well on 

some dates (Figure 3.8). For example, on 1 September 2006 Landsat data showed 

cooler surface temperature in the southern and western part of the lake which agreed 

with the spatial variability simulated by ELCOM. On this date, wind speed was 

moderately strong (4.1 m s-1), and radial spreading of the plume front was 

discernible as well as some deflection of the plume in an anticlockwise direction as it 

became entrained into more coherent lake circulation currents (Figure 3.8 (a), 3.9 (a) 

and 3.9 (c)).  
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Figure 3.8. ELCOM surface water temperature simulation (column 1 and 3), Landsat-derived 

water surface temperature (columns 2 and 4) with standard deviation stretched colour ramp 

(ºC). Wind speed and direction are represented on the compass plot with compass radius 

representing a wind speed of 10 m s-1, compass north direction is zero degrees. 

 

On 17 September 2006 (Figure 3.8 (b)) high wind speed (10.3 m s-1) resulted in 

correspondingly high-velocity lake currents which deflected the geothermal inflow 

strongly to the eastern direction, creating a narrow plume along the shoreline, which 

was simulated with ELCOM. A visualisation of the geothermal inflow was created 

using a conservative tracer input in this inflow. From Figure 3.9 the path of the 

inflow can be seen as it intrudes into the lake initially as a buoyant surface overflow   
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Figure 3.9. Landsat-estimated surface water temperature of Lake Rotoehu on (a) 1 September 

2006 and (b) 17 September 2006 and visualization of ELCOM-simulated tracer on the 

corresponding dates of (c) 1 September 2006 with 25% and (d) 17 September 2006 (25%). The 

percent tracer concentration is relative to 100% tracer concentration in the inflow. 

 

and then as it becomes entrained into ambient lake water. There were also instances 

when water surface temperature distributions were not well represented with 

ELCOM within the vicinity of the geothermal inflow. For example, on 22 December 

2006 (Figure 3.8 (f)), there was a limited spread of the Landsat-observed geothermal 

plume relative to that simulated with ELCOM. On 19 August 2007 the ELCOM-

simulated plume was deflected north of the outlet, however Landsat data showed that 

the plume was dispersed more radially, with some deflection to the south.  

Flow classification 

The flow classification indicates that the Waitangi Soda Springs geothermal inflow 

is an upstream-intruding plume which is shore-hugging over all of the measured 

(a) (b) 

(c) (d) 
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flow regimes and lake current velocities given by ELCOM simulations. The 

receiving depth of this inflow is shallow (0.2 m), therefore the inflow occupies the 

full depth of the receiving water, which blocks off the ambient current. This creates a 

zone of recirculating discharge along the shoreline, with limited mixing occurring 

until the inflow temperature at cools to that of the ambient lake temperature (Jones et 

al. 2007). 

3.4 Discussion 

Positively buoyant gravity flows have been well studied for industrial discharges into 

lakes and oceans (e.g., Gibbins et al. 1989; Davies and Mofor 1993; Davies et al. 

1997), compared with the limited number of studies of natural geothermal inflows 

into lakes. This chapter has validated ELCOM-simulated temperature at high 

resolution, on eight separate dates, using Landsat-estimated surface water 

temperature. It highlights the ability of a 3-D hydrodynamic model to accurately 

simulate physical properties of lakes such as temperature and circulation, while 

demonstrating the applicability of using satellite imagery for 3-D model validations. 

The Waitangi soda springs geothermal plume in Lake Rotoehu was usually well 

represented by ELCOM, and the distribution of this plume was primarily affected by 

lake ambient water current velocity and direction. Remote sensing is an ideal 

candidate for studying the dispersion of buoyant plumes and jets, due to its synoptic 

capabilities. The relationships between the Landsat- estimated surface geothermal 

inflow path and the ELCOM-simulated geothermal inflow path indicates that 

algorithms for buoyant inflow intrusions and their in-lake dispersion perform 

adequately in ELCOM. Large spatial gradients in temperature exist in Lake Rotoehu 

which allows inflow water masses to be tracked as well as basin scale water spatial 

variation. The upstream-intruding geothermal plume in Lake Rotoehu occurs due to 

the strongly buoyant discharge entering the relatively slow-moving ambient lake 

current. This case is characterised by a front in which the buoyant upstream intrusion 

is balanced by a drag force at the head of the plume. For this strongly buoyant 

discharge, buoyancy-induced lateral spreading becomes the dominant spreading 

mechanism within a very short distance from the mouth of the discharge (Jones et al. 
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2007). However, as the plume becomes progressively entrained through depth, and 

more widely distributed within the lake, it is not possible to validate its path using 

satellite imagery, due to temperature becoming largely homogenous. The 3-D 

modelling and visualisation of the plume allows the simulation of the wider 

distribution within the lake. 

 

The spatial variation in temperature observed in the Rotorua lakes is caused by a 

number of factors. In individual lakes morphology plays a key role in inducing 

gradients between deep and shallow areas such as in Lake Rotorua which has 

extensive shallow margins, or between sheltered bays and arms and a main basin 

such as in lakes Rotoehu, Rotoiti, Rerewhakaaitu and Rotomahana. The regularity of 

these geomorphological variations suggests that they are the norm rather than 

infrequent, and that single-station sampling may grossly under-represent the range of 

surface temperature responses to climatic forcing, particularly where there is 

substantial differential heating and cooling (Imberger et al. 1989) which creates 

horizontal and vertical instabilities leading to convectively induced motions (e.g., 

Sturman et al. 1999). Differential heating or cooling and associated mixing processes 

can also be caused by differences in wind speed between sheltered and open-water 

areas, as latent and sensible heat vary with wind speed (Fischer 1979). These 

temperature and density gradients can induce density-driven flows which can 

transport nutrients and biota between littoral and pelagic areas (MacIntyre and 

Melack 1995). This process has been termed the "thermal siphon", and has been 

shown to increase horizontal exchange between side-arms and the main basin of 

lakes (Monismith et al. 1990), and drive large-scale convective circulations (Verburg 

et al. 2011). The results of this chapter demonstrate that in Lake Rotoehu there is 

evidence of differential cooling and heating between the main lake body and side-

arms, which is evident in simulation and satellite estimated water surface 

temperatures. 

 

The accuracy of hydrodynamic models to simulate lake water temperature relies on 

the quality of forcing data (Imberger 1985). The use of adjusted air temperature data 

based on the relationship between Lake Rotorua buoy measurements and land-based 

data improved the ELCOM temperature simulation accuracy. We attribute the 
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improvements with use of lake buoy data to the effect of thermal inertia of the water 

body on the above-water air temperature. This thermal inertia modifies the 

atmospheric boundary layer, which in turn affects atmospheric stability and heat 

fluxes (Long et al. 2007). Thus air temperature inputs to lake models should, 

whenever possible, be on-lake to avoid direct errors from conductive exchanges and 

indirect errors for other heat flux components (e.g., sensible and longwave radiation 

transfers). 

 

Monitoring the spatial variability of lake surface water temperature using satellite 

imagery provides truly synoptic horizontal quantification, resolving fine and large-

scale temperature variation, but requires accurate AC. This work has shown that 

radiosonde data taken two hours after image capture and 200 km from the study site 

provided atmospheric profiles that produced accurate water surface temperature 

estimations. Schneider and Mauser (1996) similarly found that radiosonde data for 

AC taken 120 km from the study site gave atmospheric profiles applicable for 

radiative transfer based atmospheric correction. The RMSE of bulk water surface 

temperature estimations using the radiosonde-based AC method was 0.37 °C, which 

is comparable to the combined Landsat noise-equivalent change in temperature 

(NE∆T) of 0.22 °C and buoy error of ±0.1 °C (as specified by the temperature string 

manufacturer). Radiosonde data are captured regularly at only two sites in New 

Zealand, thus areas further away than 200 km may need alternate sources of 

atmospheric data. 

 

Of the globally available atmospheric profile data for atmospheric correction, 

MOD07 provided the most accurate water temperature retrieval, with an error 

comparable to that obtained from radiosonde data. The MODIS Terra satellite has a 

near-synchronous orbit to Landsat and has the highest spatial resolution (5 km), 

however, data are only available post 1 March 2000, whereas thermal imaging was 

available in Landsat 4, 5 and 7 post-1982. Atmospheric corrections applied to the 

global archive of Landsat thermal data could apply MODIS atmospheric profile data, 

whilst NASA atmospheric correction methods are applicable for preceding periods. 

MODIS TERRA is better suited to Landsat atmospheric correction applications as 

the time difference between the overpass of MODIS AQUA (AIRS sensor) and 
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Landsat (approximately 4 h) is likely to produce larger errors in temperature retrieval 

than using MODIS and radiosonde data. The accuracy of the NASA method relies 

on the accuracy of NCEP data, which may be better for areas where the model has 

been extensively validated such as North America. However, this correction tool 

(Barsi et al. 2005) allowed water temperature in Lake Rotorua to be estimated with a 

RMSE of 1.05 °C, while being the least time-consuming to apply amongst four 

different AC methods, as the web-based input requires few parameters. Notably, the 

largest errors in surface water temperature retrieval occurred during summer, when 

RH measured at the Rotorua meteorological station was low, indicating that NCEP 

atmospheric profile data near the boundary layer may overestimate RH at these 

times.  

 

Inflows to lakes influence lake circulation, thermal structure, residence time, and 

sediment transport and ultimately biogeochemical responses (Pickrill and Irwin 

1982; Spigel et al. 2005, Chung et al. 2009). In this chapter remote sensing was 

demonstrated to be an effective means if identifying the location, path and dispersion 

of geothermal inflows. Geothermal inflows in the Rotorua lakes have been shown to 

have high nutrient concentrations, particularly NH4
+ (Hoellein et al. 2012), thus 

creating concentration gradients of nutrients which have the potential for influencing 

fine and basin scale variation of phytoplankton concentration. The present also study 

demonstrated the usefulness of remote sensing for identification of large cold water 

inflows, and could further be used to estimate their plunge point.  

 

The present chapter has demonstrated that remote sensing of water surface 

temperature is accurate; however, sources of atmospheric profile data used in 

atmospheric correction need to be carefully considered for the effect on the accuracy 

of temperature retrieval. The use of high-frequency autonomous buoy measurements 

of temperature allowed for concurrent validation of satellite retrieved surface 

temperature, and the combination of the two data sources with 3-D hydrodynamic 

modelling allows high spatial and temporal resolution water temperature analysis.  

  



Chapter 3: Remote sensing and modelling of surface water temperature 

 

95 

 

3.5 References 

Adrian, R., C. M. O’Reilly, H. Zagarese, S. B. Baines, D. O. Hessen, W. Keller, D. 

M. Livingstone, R. Sommaruga, D. Straile, E. Van Donk, G. A. Weyhenmeyer, 

and M. Winder. 2009. Lakes as sentinels of climate change. Limnology and 

Oceanography 54: 2283–2297. 

Alvarez, G. A., R. A. Salinas, and T. J. Malthus. 2007. Integrating CFD modelling, 

neural networks and remote sensing: controlled prediction of chlorophyll-a 

concentration in the Mejillones of South Bay. Computer Vision 1: 55–65. 

Amon, R. M. W., and R. Benner. 1998. Seasonal patterns of bacterial abundance and 

production in the Mississippi River plume and their importance for the fate of 

enhanced primary production. Microbial Ecology 35: 289–300. 

Baban, S. M. J. 1993. Detecting and evaluating the influence of water depth, volume 

and altitude on the variations in the surface temperature of lakes using Landsat 

imagery. International Journal of Remote Sensing 14: 2747–2758. 

Barsi, J. A., J. R. Schott, F. D. Palluconi, and S. J. Hook. 2005. Validation of a web-

based atmospheric correction tool for single thermal band instruments. 

Proceedings of SPIE 5882, 58820E. 

Becker, M. W., and A. Daw. 2005. Influence of lake morphology and clarity on 

water surface temperature as measured by EOS ASTER. Remote Sensing of 

Environment 99: 288–294. 

Casulli, V., and R. T. Cheng. 1992. Semi-implicit finite difference methods for three 

dimensional shallow water flow. International Journal for Numerical Methods 

in Fluids 15: 629–648. 

Chung, S. W., M. R. Hipsey, and J. Imberger. 2009. Modelling the propagation of 

turbid density inflows into a stratified lake: Daecheong Reservoir, Korea. 

Environmental Modelling & Software 24: 1467–1482. 

Coll, C., J. M. Galve, J. M. Sanchez, and V. Caselles. 2010. Validation of Landsat-

7/ETM+ thermal-band calibration and atmospheric correction with ground-

based measurements. IEEE Transactions on Geoscience and Remote Sensing 

48: 547–555. 

Davies, P. A., L. A. Mofor, and M. J. V. Neves. 1997. Comparisons of remotely 

sensed observations with modelling predictions for the behaviour of wastewater 

plumes from coastal discharges. International Journal of Remote Sensing 18: 

1987–2019. 

Davies, P. A., and L. A. Mofor. 1993. Remote sensing observations and analyses of 

cooling water discharges from a coastal power station. International Journal of 

Remote Sensing 14: 253–273. 



Chapter 3: Remote sensing and modelling of surface water temperature 

 

96 

 

Fischer, H. B., E. J. List, R. C. Y. Koh, J. Imberger, and N. H. Brooks. 1979. Mixing 

in Inland and Coastal Waters. Academic Press, San Diego, USA. 

Gibbons, D. E., G. E. Wukelic, J. P. Leighton, and M. J. Doyle. 1989. Application of 

Landsat Thematic Mapper data for coastal thermal plume analysis at Diablo 

Canyon. Photogrammetric Engineering and Remote Sensing 55: 903–909. 

Hodges, B. R., J. Imberger, A. Saggio, and K. B. Winters. 2000. Modelling basin 

scale waves in a stratified lake. Limnology and Oceanography 45: 1603–1620. 

Hodges, B., and C. Dallimore. 2001. Estuary and Lake Computer Model: ELCOM 

Science Manual Code Version 2.0.0. Centre for Water Research, University of 

Western Australia, Perth, Australia. 

Hoellein, T. J., D. A. Bruesewitz, and D. P. Hamilton. 2012. Are geothermal streams 

important sites of nutrient uptake in an agricultural and urbanising landscape 

(Rotorua, New Zealand)? Freshwater Biology 57: 116–128. 

Hook, S. J., F. E. Prata, R. E. Alley, A. Abtahi, R. C. Richards, S. G. Schladow, and 

S. Ó. Pálmarsson. 2003. Retrieval of lake bulk and skin temperatures using 

Along-Track Scanning Radiometer (ATSR-2) data: a case study using Lake 

Tahoe, California. Journal of Atmospheric and Oceanic Technology 20: 534–

548. 

Hutchinson, G. E. 1957. A Treatise on Limnology. Wiley and Sons, New York, 

USA. 

Imberger, J. 1985. Thermal characteristics of standing waters: an illustration of 

dynamic processes. Hydrobiologia 125: 7–29. 

Jones, G. R., J. D. Nash, R. L. Doneker, and G. H. Jirka. 2007. Buoyant surface 

discharges into water bodies. I: Flow classification and prediction methodology. 

Journal of Hydraulic Engineering 133: 1010–1020. 

Lathrop Jr, R. G., and T. M. Lillesand. 1987. Calibration of thematic mapper thermal 

data for water surface temperature mapping: Case study on the Great Lakes. 

Remote Sensing of Environment 22: 297–307. 

Leonard, B. P. 1991. The ULTIMATE conservative difference scheme applied to 

unsteady one-dimensional advection. Computer Methods in Applied Mechanics 

and Engineering 88: 17–74. 

Long, Z., W. Perrie, J. Gyakum, D. Caya, and R. Laprise. 2007. Northern lake 

impacts on local seasonal climate. Journal of Hydrometeorology 8: 881–896. 

Lowe, D.J. and Green, J.D. 1987. Origins and development of lakes, p. 1–64. In A.B. 

Viner [ed.], Inland Waters of New Zealand. Science Information Publishing 

Centre, Department of Scientific and Industrial Research, Wellington, New 

Zealand. 



Chapter 3: Remote sensing and modelling of surface water temperature 

 

97 

 

MacIntyre, S., and J. M. Melack. 1995. Vertical and horizontal transport in lakes: 

linking littoral, benthic, and pelagic habitats. Journal of the North American 

Benthological Society 14: 599–615. 

Mongillo, M. A. 1994. Aerial thermal infrared mapping of the Waimangu-Waiotapu 

geothermal region, New Zealand. Geothermics 23: 511–526. 

Mongillo, M. A., and C. J. Bromley. 1992. A helicopter-borne video thermal infrared 

survey of the Rotorua geothermal field. Geothermics 21: 197–214. 

Monismith, S. G., J. Imberger, and M. L. Morison. 1990. Convective motions in the 

sidearm of a small reservoir. Limnology and Oceanography 35: 1676–1702. 

Oppenheimer, C. 1993. Infrared surveillance of crater lakes using satellite data. 

Journal of Volcanology and Geothermal Research 55: 117–128. 

Pickrill, R. A., and J. Irwin. 1982. Predominant headwater inflow and its control of 

lake-river interactions in Lake Wakatipu. New Zealand Journal of Marine and 

Freshwater Research 16: 201–213. 

Schneider, K., and W. Mauser. 1996. Processing and accuracy of Landsat Thematic 

Mapper data for lake surface temperature measurement. International Journal of 

Remote Sensing 17: 2027–2041. 

Schott, J. R., J. A. Barsi, B. L. Nordgren, N. G. Raqueño, and D. de Alwis. 2001. 

Calibration of Landsat thermal data and application to water resource studies. 

Remote Sensing of Environment 78: 108–117. 

Schott, J. R., and W. J. Volchok. 1985. Thematic Mapper thermal infrared 

calibration. Photogrammetric Engineering and Remote Sensing 51: 1351–1357. 

Seemann, S. W., E. V. A. E. Borbas, J. Li, W. P. Menzel, and L. E. Gumley. 2006. 

MODIS atmospheric profile retrieval - algorithm theoretical basis document 

version 6, October 25. Cooperative Institute for Meteorological Satellite Studies 

University of Wisconsin-Madison, USA. 

Steissberg, T. E., S. J. Hook, and S. G. Schladow. 2005. Characterizing partial 

upwellings and surface circulation at Lake Tahoe, California-Nevada, USA 

with thermal infrared images. Remote Sensing of Environment 99: 2–15. 

Steissberg, T. E., S. J. Hook, and S. G. Schladow. 2005. Measuring surface currents 

in lakes with high spatial resolution thermal infrared imagery. Geophysical 

Research Letters 32: L11402. 

Sturman, J. J., C. E. Oldham, and G. N. Ivey. 1999. Steady convective exchange 

flows down slopes. Aquatic Sciences 61: 260–278. 

Tcherepanov, E. N., V. A. Zlotnik, and G. M. Henebry. 2005. Using Landsat thermal 

imagery and GIS for identification of groundwater discharge into shallow 



Chapter 3: Remote sensing and modelling of surface water temperature 

 

98 

 

groundwater-dominated lakes. International Journal of Remote Sensing 26: 

3649–3661. 

Timmins, S. M., and S. E. Belliss. 1983. Lake Rotorua aircraft scanner mosaic. New 

Zealand Journal of Science 26: 473–480. 

Tobin, D. C., H. E. Revercomb, R. O. Knuteson, B. M. Lesht, L. L. Strow, S. E. 

Hannon, W. F. Feltz, L. A. Moy, E. J. Fetzer, and T. S. Cress. 2006. 

Atmospheric Radiation Measurement site atmospheric state best estimates for 

Atmospheric Infrared Sounder temperature and water vapor retrieval validation. 

Journal of Geophysical Research 111: D09S14.  

Trolle, D., D. P. Hamilton, C. A. Pilditch, I. C. Duggan, and E. Jeppesen. 2011. 

Predicting the effects of climate change on trophic status of three 

morphologically varying lakes: Implications for lake restoration and 

management. Environmental Modelling and Software 26: 354–370. 

Verburg, P., J. P. Antenucci, and R. E. Hecky. 2011. Differential cooling drives 

large-scale convective circulation in Lake Tanganyika. Limnology and 

Oceanography 56: 910–926. 

Williamson, C. E., W. Dodds, T. K. Kratz, and M. A. Palmer. 2008. Lakes and 

streams as sentinels of environmental change in terrestrial and atmospheric 

processes. Frontiers in Ecology and the Environment 6: 247–254. 

Yeates, P. S., J. Imberger, and C. Dallimore. 2008. Thermistor chain data 

assimilation to improve hydrodynamic modelling skill in stratified lakes and 

reservoirs. Journal of Hydraulic Engineering 134: 1123–1135. 

 



 

99 

 

4 MODIS-based estimates of suspended minerals to evaluate 

performance of a three-dimensional hydrodynamic-

ecological model application to a large, shallow coastal 

lagoon 

4.1 Introduction 

Shallow coastal lakes are characterised by highly heterogeneous concentrations of suspended 

sediments (SS) (both mineral and organic) which have significant implications for nutrient 

concentrations, phytoplankton production (Hamilton and Mitchell 1997), zooplankton (Kirk 

and Gilbert 1990) and benthic algae (Horppila and Nurminen 2003). Wind-induced waves are 

the dominant force involved in resuspension of sediments in shallow lakes (Cole and Miles 

1983; Luettich et al. 1990; Lick et al. 1994; Bloesch 1995). Resuspended sediments act as a 

transport mechanism for phosphorus which can be adsorbed onto the sediments, and this 

phosphorus has the potential to be desorbed in the water column (Søndergaard et al. 1992). 

Suspended sediments attenuate light through scattering and absorption, and thereby play a 

critical role in determining the depth of the photic zone (Scheffer 1998) and production of 

phytoplankton and macrophytes. Considering the critical role of SS in regulating physical and 

biological properties of aquatic environments, it is essential to effectively monitor 

concentrations, however, monitoring spatial heterogeneity using traditional grab-samples can 

be inaccurate (Dekker et al. 2002) and costly. 

 

The development of an operational algorithm to monitor SS using Moderate Resolution 

Imaging Spectroradiometer (MODIS) Terra and Aqua satellite imagery would complement 

conventional monitoring regimes by extending the spatial and temporal resolution of data 

capture. In this study I investigate the potential of MODIS band 1 (B1) imagery for remote 

sensing of tripton (suspended non-living component of SS) and suspended minerals (SM). I 

also calibrate a three-dimensional hydrodynamic model for simulation of SM, and use surface 
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distributions of SM estimated from MODIS B1 to validate model-simulated surface SM 

distributions, using visual comparisons and statistical metrics. 

 

Remote sensing of SS was originally developed for Case 1 ocean waters where suspended 

sediments are comprised mostly of algal and detrital particles (Morel 1980; Sturm 1981). The 

algorithms were applied in a similar way to early empirically-based band ratio algorithms for 

chlorophyll a (chl a). For low to moderate concentrations of SS subsurface remote sensing 

reflectance (rrs(λ)) is nearly linearly related to the concentration of SS at visible and near 

infrared wavelengths. For high SS, the relationship becomes non-linear, characterised by an 

asymptote where increases in SS concentration cannot be detected by increased rrs(λ) 

(Bowers et al. 1998; Doxaran et al. 2002). With increasing wavelength, saturation occurs at 

higher SS concentrations, meaning that for turbid waters the retrieval of suspended sediment 

can be more accurate at wavelengths corresponding to the red and near infrared (NIR) region 

(Ruddick et al. 2006). At NIR wavelengths the absorption by phytoplankton and coloured 

dissolved organic matter (CDOM) is minimal, and water dominates absorption relative to 

other optically active constituents. Therefore at NIR wavelengths the variation in rrs(λ) is 

primarily determined by changes in the scattering due to SS (Ruddick et al. 2006). 

 

Many empirical relationships for estimations of SS have been developed from single-band 

wavelengths, especially in the red wavelengths (e.g., Hu et al. 2004; Miller and McKee 2004; 

Kutser et al. 2007; Nechad et al. 2010). For high concentrations of SS (>2000 mg L-1), 

reflectance ratios in red and NIR bands have been used to estimate SS (Doxaran et al. 2009). 

A major limitation of empirically based models, however, is that satellite imagery needs to be 

calibrated concurrently with in situ data. Additionally, inaccuracies in estimated SS may 

occur when concentrations are outside of those used in the model calibration (Dekker et al. 

2002). 

 

In order to overcome limitations of empirical models, analytical models have been developed 

which are based on physical relationships between absorption and scattering properties of 

optically active constituents in the water column. Since the optical model of Gordon et al. 

(1988) was applied to eutrophic inland waters (Dekker et al 1997), semi-analytical models 

have been used widely to estimate suspended sediment concentrations in Case 2 waters (e.g. 

Dekker et al. 2002; Eleveld et al. 2008; Binding et al. 2010). Recently, there has been 
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increased focus on analytical spectral inversion algorithms to estimate concentrations of chl 

a, CDOM and SS simultaneously (Matthews 2011), using bio-optical models that are 

parameterised with inherent optical properties (IOPs) of the water body of interest (Brando 

and Dekker 2003; Santini et al. 2010; Campbell et al. 2011). Furthermore, bio-optical 

modelling approaches have now been developed account for optically complex waters where 

temporal and spatial variation of IOPs occurs (Doerffer and Schiller 2007; Schroeder et al. 

2007; Brando et al. 2012). 

 

Remote sensing algorithms to estimate SS are based on relationships between particle 

backscattering and suspended sediment. Light scattering is quantified by a volume scattering 

function (β(θ)), where θ is the forward scattering angle (Mobley 1994). The integral of β(θ) 

for angles from 0 to π angles yields the scattering coefficient (b):  
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The backscattering coefficient is a subset of the angle used to define b: 
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The backscattering ratio (Bb) is defined as bb /b. 

 

Variations in the specific backscattering per unit concentration of SS affect accuracy of 

remote sensing of SS (Bowers and Binding 2006). The relationship between particle 

backscattering and suspended sediment concentration varies in time and space, mostly due to 

variations in particle size distribution and the bulk refractive index of the particles (Tzortziou 

et al. 2006). The refractive index of minerals is generally higher than that of organic particles 

(including phytoplankton), mostly due to the high water content of organic material 

(Twardowski et al. 2001). The slope of the backscattering coefficient is related to the particle 

size distribution and, in combination with angular scattering, can be used to estimate the 

refractive index of particles (Twardowski et al. 2001).  
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The top of the atmosphere radiance of oceans and lakes measured by Earth observation 

satellite sensors can be comprised of 90% atmospheric path radiance (Vidot and Santer 

2005), making atmospheric correction essential. Methods developed for Case 1 ocean waters 

rely on the high absorption of water in the NIR, and an assumption of negligible scattering 

from optically active constituents. Therefore any radiance measured at these wavelengths is 

used to estimate path radiance (Gordon and Wang 1994). This assumption does not apply to 

Case 2 waters which have elevated levels of SS that scatter NIR radiation (Vidot and Santer 

2005). Other factors that complicate atmospheric correction for inland waters include 

variations in elevation, heterogeneous concentrations of aerosols, and adjacency effects 

caused by land contamination of water reflectance. The application of radiative transfer 

models to correct for variations in atmospheric attenuation provides an ability to address the 

complexities of atmospheric correction over inland waters (e.g., Campbell et al. 2011b). 

 

Three-dimensional (3-D) modelling of SS concentrations in shallow lakes can complement 

remote sensing by providing insights into the complex physical dynamics leading to satellite-

estimated SS distributions. Deterministic water quality models offer the opportunity to more 

fully understand complex physical and biogeochemical processes and their interactions at 

high spatial and temporal resolution. Previous studies comparing randomly located grab-

samples with synoptic remote sensing estimates of SS have been shown to be within ±20 to 

30%, however, they could deviate by as much as 4000% (Dekker et al. 2002). Effective 

validation of deterministic 3-D models in turbid waters using in situ monitoring and grab-

sample collection is therefore not practical. Use of remote sensing to provide synoptic 

measurements of water quality provides an opportunity for comparisons against surface layer 

outputs of these variables from 3-D models. Of the limited number of 3-D modelling studies 

which have compared water quality parameters or temperature with estimates derived from 

remote sensing data, most have used qualitative comparison (primarily visual) to assess the 

quality of the comparison, without quantifying the comparison spatially (Hedger et al. 2002; 

Spillman et al. 2007).  

 

Visual comparison of two raster images provides a fast and efficient way of comparing 

spatial and numerical differences and similarities. Visual comparison has generally 

outperformed automated procedures as human perception will naturally identify multiple 

spatial and numerical quantities, including global and local similarities, logical coherence and 
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pattern recognition (Hagen 2003; Kuhnert et al. 2005). The problem with visual comparison 

is that it is subjective and produces no quantitative output. In addition, visual comparison is 

not practical over large numbers of images (Kuhnert et al. 2005), and quantitative algorithms 

become essential for this purpose. 

 

The application of traditional statistical algorithms may not be applicable to qualitative 

comparison of variables derived from remote sensing and from modelling simulations due to 

spatial autocorrelation, and scale and edge effects (O’Sullivan and Unwin 2002). 

Geographical patterns tend to be spatially variable in nature, which can lead to a phenomenon 

referred to as spatial nonstationarity, where a “global” model cannot explain the relationship 

between some sets of variables (Fotheringham et al. 1996). For example, shallow areas within 

lakes could constitute regions of nonstationarity, and lead to spatial autocorrelation. While 

state of the art spatial statistical methods have been developed to overcome the limitations of 

traditional statistical methods (Kuhnert et al. 2005), the inherent complication of spatially 

explicit comparisons has in the past limited their application. However, spatial statistics have 

been developed within Geographic Information System (GIS) software such as ArcGIS, and 

the publically available Map Comparison Kit (MCK) (Visser and De Nijs 2006). 

 

The high temporal resolution of MODIS Terra and Aqua data provides a unique opportunity 

to develop remote sensing algorithms capable of twice-daily estimation of SS. The high 

temporal resolution and synoptic capabilities of satellite estimations in turn present a cost-

effective method to validate 3-D simulations. However, non-subjective comparison of 

satellite estimation and 3-D simulations is required. Therefore, the objectives of this study 

were three-fold: 1) to compare empirical and semi-analytical relationships between the 

MODIS B1 subsurface remote sensing reflectance (rrs(B1)) and tripton concentrations in a 

large shallow lake, 2) to calibrate a 3-D hydrodynamic-ecological model for the simulation of 

SM in the lake, and 3) to carry out a spatially resolved quantitative comparison of simulated 

SM from a 3-D coupled hydrodynamic-ecological model of the lake against synoptic remote 

sensing estimates of tripton distributions (adjusted to concentrations of SM) for comparative 

purposes.  
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4.2 Study site 

Lake Ellesmere (also known as Te Waihora) is the fifth-largest lake in New Zealand by area 

(199 km2; Figure 4.1). It is a coastal lake in the South Island of New Zealand with a 

maximum depth of 2.43 m (mean depth of 1.33 m) and is highly turbid, wind-exposed and 

hypertrophic (Gerbeaux and Ward 1991; Hamilton and Mitchell 1997). 

 

 

Figure 4.1. Study site Lake Ellesmere (overlaid on a Landsat 5 background captured 2 July 2005) 

showing inflows, outlet, mid-lake grab-sampling site, Kaituna Lagoon and Kaitorete Spit. 

 

Lake Ellesmere is a RAMSAR wetland of international significance for the large number of 

birds (166 species recorded) occupying its periodically inundated margins and wadeable 

areas. The lake has no natural outlet but is artificially opened (average of 3.3 times per year) 

to prevent inundation of surrounding farmland, which was originally wetland that has since 

been drained. The water level fluctuations change the total lake area from 160 km2 at 0.3 m 

above mean sea level (AMSL) to 242 km2 at 1.5 m AMSL (Hemmingsen 1997), which has a 

significant effect on bird habitat area and emergent macrophyte distributions. Prior to 1968 
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Lake Ellesmere had up to 80 000 black swans (Cygnus atratus), abundant submerged 

macrophytes and relatively high water clarity (Hughes et al. 1974). In 1968 a severe storm 

(which also sank the “Wahine”) destroyed the submerged macrophyte beds and transformed 

the lake to an alternate state dominated by high concentrations of suspended sediment and 

phytoplankton (Gerbeaux 1993; Hamilton and Mitchell 1997). Submerged macrophyte 

populations have not recovered since the storm and remain negligible (Schallenberg et al. 

2010). 

4.3 Methods 

Overview of methods 

MODIS Aqua and Terra B1 radiance were atmospherically corrected using a radiative 

transfer model, and then converted to subsurface remote sensing reflectance (rrs(B1)). 

Empirical algorithms were created between rrs(B1) and in situ grab-sample tripton 

concentrations measured within 40 min of satellite overpass. A semi-analytical model to 

estimate tripton was calibrated and validated with this situ data. A 3-D coupled 

hydrodynamic-ecological model was calibrated for the estimation of SM concentrations. 

Satellite-estimated tripton concentrations were converted to SM concentrations to enable 

visual comparisons and analysis of spatial statistics against simulated SM from the numerical 

model. 

Field data used for calibration of MODIS 

Canterbury Regional Council (CRC) has monitored water quality in Lake Ellesmere and its 

tributaries at monthly frequency since 1992. Sampling has included three within-lake sites, of 

which a mid-lake site (Figure 4.1) was used in my study to examine SS. Volatile suspended 

sediment (VSS) are measured infrequently. Samples were usually taken c. 1000 h. These data 

were compared with rrs(B1) from the MODIS Terra satellite over an average area of interest 

of 1 km x 1 km centred on the sampling point (averaging the 250-m resolution pixels of 

MODIS B1), at the overpass time of approximately 1000 h New Zealand Standard Time 

(NZST). 
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Tripton concentration was calculated from in situ SS concentration (Gons et al. 1992) as: 

 

CTR = SS - (0.07*C ϕ)      (4.1) 

 

where C ϕ is the in situ concentration of chl a. 

 

ELCOM-CAEDYM simulates SM and therefore CTR was used to estimate the concentration 

of SM from the relationship between in situ CTR and non-algal volatile suspended sediment 

(NAVSS). Non-algal volatile suspended sediment was estimated from volatile suspended 

sediment (VSS) as: 

 

NAVSS= VSS - (0.07*C ϕ)     (4.2) 

Satellite imagery 

MODIS is a remote sensing instrument on-board both the Terra and Aqua satellites. In this 

study, data from MOD02QKM and MYD02QKM B1 (620 - 670 nm) was used, which has a 

250 m resolution and captures images twice daily, at approximately 1000 and 1400 h for 

MODIS Terra and Aqua, respectively. For the creation of an empirical relationship between 

MODIS rrs(B1) and in situ tripton, 12 MODIS Terra images were used from 25 July 2001 

until 11 April 2007. These images were selected when the satellite overpass was within 1.5 h 

of an in situ grab-sample. For validation of the 3-D hydrodynamic model used in this study, 

24 MODIS Aqua and Terra cloud-free images were used from 18 December 2006 until 1 

March 2007. 

 

MODIS MOD02QKM data were atmospherically corrected with the 6sv (Second Simulation 

of a Satellite Signal in the Solar Spectrum) radiative transfer model, to account for 

atmospheric scattering and absorption effects of gases, and aerosols. The radiative transfer 

model was parameterised with atmospheric conditions and angular geometry extracted from 

MODIS data. The solar zenith, solar azimuth, sensor zenith and sensor azimuth angles were 

used from the MOD03 data, MOD04 for Aerosol Optical Depth (AOD), and MOD07 for total 

ozone and water vapour. For instances of negative AOD, values were set to 0.025.  
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Bio-optical model for inland waters  

Forward bio-optical modelling was used to develop an analytical relationship between 

MODIS rrs(B1) and tripton concentration. This semi-analytical relationship was then used to 

estimate tripton from MODIS rrs(B1). Water surface remote sensing reflectance is given as: 
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where Lw is radiance leaving the water,, Ed is downwelling irradiance immediately above the 

water surface,  is the zenith angle,   is the azimuth angle and the symbol λ represents 

wavelength. Subsurface remote sensing reflectance rrs(λ) was estimated from Rrs(λ) by 

correcting for air-sea interface effects, assuming a nadir viewing sensor and optically deep 

waters (Lee et al. 2002): 
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The relationship between rrs(λ) and the total backscattering coefficient (bb ) (m
-1) and total 

absorption a (m-1) is (Gordon et al. 1988): 
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where u is defined as (Dekker et al. 1997): 
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and go and g1 are empirical constants that depend on the anisotropy of the downwelling light 

field and scattering processes within the water. The constant go is equivalent to f/Q (where f 

represents geometrical light factors and Q represents the light distribution factor, which is 

defined as upwelling subsurface irradiance/upwelling subsurface radiance) (Maritorena et al. 

2002). For open ocean waters and nadir-viewed rrs(λ), values of go and g1 of 0.049 and 0.0794 
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have been derived using Monte Carlo simulations (Gordon et al. 1988). For coastal waters 

values of go and g1 of 0.084 and 0.17 have been derived from Hydrolight simulations (Lee et 

al. 1998). In turbid waters, variation of go and g1 is more complex, and can depend on bio-

optical states, solar and viewing geometry, and wind speed (Gould et al. 2001; Morel et al. 

2002; Aurin and Dierssen 2012; Li et al. 2013), and can vary between water bodies (Aurin 

and Dierssen 2012). It has been suggested that go and g1 should be considered as variables in 

optically complex inland waters (Aurin and Dierssen 2012; Li et al. 2013). Therefore for the 

present study, in addition to using values from the literature, an iterative solution of equation 

4.5 was used to derive values of go and g1 using Microsoft Excel Solver. In this process bio-

optically modelled rrs(B1)were adjusted iteratively for each date to match rrs(B1) from 

MODIS (with modelled and in situ tripton concurrent with the MODIS image being equal), 

and an average go and g1 was calculated over all dates. 

 

The absorption and backscattering coefficients are comprised of individual optically active 

constituents: 

 

bb(λ) = bbw(λ) + BbTR b
*

TR(λ) CTR + Bbϕ b
*

ϕ(λ) Cϕ   (4.7) 

 

a(λ) = aw(λ) + Cϕ a*ϕ(λ) + aCDOMD(λ)    (4.8) 

 

aCDOMD(λ) = aCDOMD(λ440) exp[-S (λ - λ440)]     (4.9) 

 

where: 

bbw(λ) = backscattering coefficient of water 

BpTR = backscattering ratio from tripton  

b*
TR(λ) = specific scattering coefficient of tripton 

CTR = concentration of tripton 

Bpϕ = backscattering ratio from phytoplankton 

b*
ϕ(λ) = specific scattering coefficient of phytoplankton 

aw(λ) = absorption coefficient of pure water 

Cϕ = concentration of chl a 

a*ϕ(λ) = specific absorption coefficient of phytoplankton 
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aCDOMD(λ) = combined absorption coefficient for coloured dissolved organic matter (CDOM) 

and detritus  

S = spectral slope coefficient 

 

Literature values of aw(λ) and bbw(λ) were prescribed (Morel 1974; Pope and Fry 1997). The 

backscattering ratio of tripton, BpTR , was set to 0.016, equating to measured values for 

suspended marine particles in turbid coastal waters (Lubac and Loisel 2007), and not 

dissimilar to the commonly used value of 0.019 arising from Petzold (1972). The specific 

scattering coefficient of tripton at the MODIS B1 wavelength was estimated using a power 

function (Morel and Prieur 1977): 
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where the value b*
TR (555) was set to 0.51 m2 g-1, typical of backscattering values for particles 

in coastal waters (Babin et al. 2003). The hyperbolic exponent n was set to 0.63, equating to a 

value measured in Lake Taupo, New Zealand (Belzile et al. 2004). The specific absorption 

coefficient of phytoplankton a*ϕ(645) was taken to be equal to the average value measured in 

eight Dutch lakes (0.0077 m2 mg-1) (Dekker 1993). The bio-optical simulations were run by 

varying tripton concentration from 0 to 380 mg L-1 in increments of 10 mg L-1 while 

aCDOMD(440) was fixed at 0.68 m-1, which is an average value of seven in situ samples of 

aCDOM(440) in Lake Ellesmere (Gerbeaux and Ward 1991), and chl a was fixed at 90.5 µg L-1 

which is the average in situ chl a measured at the mid-lake station in Lake Ellesmere in 2007 

(n=12).  

1-D and 3-D coupled hydrodynamic-ecological model description and setup 

DYRESM-CAEDYM (DYCD) is a one-dimensional (1-D) water quality model developed at 

the Centre for Water Research, University of Western Australia (Gal et al. 2009). DYRESM 

simulates vertical distribution of temperature, salinity and density based using a horizontal 

Lagrangian layer approach. The layers are free to move vertically and can contract and 

expand based on changes in inflows and outflows and surface mass fluxes, as well as to 

achieve appropriate resolution to represent vertical density gradients. DYRESM is based on 
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an assumption of one dimensionality where variations in the vertical dimension are assumed 

to be greater than variations in the horizontal dimension (Imerito 2007). The coupled model 

of DYRESM and CAEDYM (Computational Aquatic Ecosystem Dynamics Model) was used 

to simulate several biological and chemical variables broadly constituting 'water quality'. 

CAEDYM is a general biogeochemical model that can simulate specific ecological 

interactions between species or groups. A detailed description of the model can be found in 

Hamilton and Schladow (1997) and Hipsey and Hamilton (2008). 

 

ELCOM (Estuary, Lake, Coastal Ocean Model) is a three-dimensional (3-D) numerical 

model (Hodges and Dallimore 2007) that uses hydrodynamic and thermodynamic models in 

order to estimate velocity, salinity and temperature in waterbodies. The hydrodynamic model 

solves the unsteady, viscous Navier-Stokes equations for incompressible flow using the 

hydrostatic assumption for pressure. A Euler-Lagrange method is used for advection of 

momentum with a conjugate-gradient solution for the free-surface height (Casulli and Cheng 

1992). Passive and active scalars are advected using a conservative Ultimate Quickest 

discretisation (Leonard 1991). ELCOM was also coupled to CAEDYM for the purpose of 

resolving horizontal distributions of biological and chemical variables for MODIS 

comparisons. A horizontal cell size of 200 x 200 m was used in the coupled model 

simulations, with a vertical resolution of 15 cells, each 0.2 m in the vertical, which allowed 

the model to run with a real-time to run-time ratio of approximately 180:1. 

 

Meteorological forcing variables for each of these models included hourly air temperature 

(ºC), shortwave radiation (W m-2), cloud cover (fraction of whole sky), vapour pressure 

(hPa), wind speed (m s-1) and rainfall (m), which were acquired from the National Institute of 

Water and Atmosphere (NIWA) weather station at Lincoln (Broadfield), Christchurch 

(latitude 43.626oS, longitude 172.470oE). For the period of ELCOM-CAEDYM simulation 

runs, hourly average wind speed values were taken from Birdlings flat (University of 

Canterbury Physics Department Weather Station (latitude 43.825oS, longitude 172.707 oE) 

located 4.3 km east of Lake Ellesmere. Wind speed and direction instrument failure periods at 

Birdlings flat were filled with data from the Broadfield weather station. A linear regression of 

average hourly wind speed at Birdlings flat (BFw) on that at Broadfield (Bw) yielded: 

 

BFw = 1.3704 Bw + 4.1938 (r² = 0.59, n=368)   (4.11) 
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and was used to synthesise wind speeds at Birdlings flat. There was no clear relationship of 

wind directions between the two stations, so the wind direction of Broadfield was not 

modified. 

 

Daily inflow and outflow data were derived by using linear interpolation between monthly 

samples for flow, and concentrations of nutrients and SM. A daily water balance was 

determined for the lake, which included inflows, estimates of groundwater inflow and 

seawater overtopping (Horrell 1992), rainfall and calculated evaporation from estimates of 

the evaporative heat flux (Fischer 1979) and the saturation vapour pressure (Wunderlich 

1972), together with water-level induced changes in lake volume. A residual term in the 

water balance was used to derive a daily outflow. Nutrient concentrations in ungauged 

inflows were estimated based on volume-weighted averages of observed inflow 

concentrations. A full description of the Lake Ellesmere model set-up and calibration can be 

found in Trolle (2009) and Trolle et al. (2011). The present study uses the same input data, 

apart from wind speed and direction, but adjustment was made for the calibration of SM. 

 

Within the ecological model CAEDYM, SM is simulated from settling and resuspension, 

with advection and mixing simulated using the hydrodynamic model. The equation for 

simulating SM is:  
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where sSM  is the concentration of SM (g m-3) for each size class s, s  is the settling velocity 

(m s-1), z  is layer thickness (m), bot is bottom, ss  is the resuspension rate (g m−2 s−1),   is 

shear stress (N m-2) , cs  is the critical shear stress (N m-2), ref  is a reference shear stress (set 

to 1 N m-2), and 
sTPK  limits resuspension as the sediment supply in the bottom, SMs-sed (g), is 

exhausted. Further details of the application of the algorithm can be found in Hipsey and 

Hamilton (2008). 
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Validation of 3-D model simulation of SM using satellite imagery 

The spatial statistics methods for comparison of raster images from 3-D model simulations of 

SM, and raster images of SM estimated from satellite imagery, are introduced briefly below. 

Potentially land-contaminated pixels were removed from the analysis. A channel to the north-

east of the lake was not included, as it was too narrow (approximately 250 m wide) to be free 

of land contamination.  

 

Geographically Weighted Regression (GWR) (Brunsdon et al. 1996) was applied using 

ArcGIS. The GWR regression equation is defined as: 

 

𝑦𝑖 = 𝛼𝑖 + 𝛽𝑖𝑥 + 𝜀𝑖      (4.13) 

 

where 𝜀𝑖 represents an error term and the point i is generalizable and can simply refer to 

points at which data are collected. GWR then uses a weighted approach depending on the 

location of i. A fixed Gaussian kernel was used to solve each local regression, using a 

bandwidth of 4000 m. This was selected by first running GWR using the Akaike Information 

Criterion (Akaike 1969) to determine the optimal bandwidth, which was close to 4000 m for 

the concurrent model and satellite image on 18 December 2006. 

 

The remaining spatial statistic methods were implemented using in MCK software (Visser 

and De Nijs 2006). The first of these is the Fuzzy Numerical Statistic (FNS), which is based 

on the rationale of Fuzzy Kappa as introduced in Hagen (2003). For raster map comparison, 

fuzziness was considered in terms of location and accuracy, and as a means of accounting for 

the fact that maps always contain a level of uncertainty. The fuzzy numerical statistic was 

determined by the degree of similarity of the raster value at a specific location between two 

raster maps. The outcome of the comparison depends on the distance weight function, which 

introduces subjectivity into the statistic (Hagen-Zanker 2006). The default settings were used 

for the calculation of FNS within MCK, which used a radius neighbourhood of four cells and 

an exponential decay halving distance of two. 

 

The wavelet verification algorithm (WVA) (Briggs and Levine 1997) uses discrete wavelet 

transformations to forecast verification problems. The technique was designed to reduce 
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noise while developing measures of performance assessment for weather forecasting. The 

discrete wavelet transformation transforms input maps to a variety of different scales. These 

maps are then compared against each other in terms of root squared error (RSE) and 

correlation. The default MCK settings were used for the calculation. 

 

The image warping algorithm (Reilly et al. 2004) distinguishes pixel to pixel differences and 

location differences within two rasters. Location differences are quantified by warping the 

estimated raster (as opposed to the validation raster) until an optimal fit is found to the 

validation raster. The degree of warping (stretching and contracting) is given as the Warping 

Defamation Penalty Statistic (WDPS) (Reilly et al. 2004). The default Map Comparison Kit 

warping setting was used in the calculation of WDPS. 

Model parameters 

Table 4.1 shows the CAEDYM sediment resuspension parameters used in the 3-D model. 

Parameters used in the 1-D model were identical to the 3-D model except for the 

resuspension rate, which was set to 0.1 g m-2 d-1, as opposed to 0.4 g m-2 d-1 used in the 3-D 

model. Resuspension rate in the two models was different to account for spatial effects on 

parameters (Romero et al. 2004). Three different SM particle sizes were used, with particle 

size 1 (3.75 µm) and 2 (2.16 µm) being chosen to represent two different size fractions of 

clay, and particle size 3 (0.83 µm) chosen in order to represent colloidal particles. These three 

size classes were assigned a fractional composition of total SM. Particle size 3 effectively 

remained in suspension continuously, with the fraction of total SM set to 0.001, therefore 

limiting the available supply of this sediment size class for resuspension. Critical shear stress 

was increased with particle size, from 0.10 N m-2 for particle size group one to 0.05 N m-2 for 

particle size group three (Table 4.1).  
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Table 4.1. ELCOM-CAEDYM parameters related to suspended mineral (SM) resuspension and 

sedimentation. 

Parameter Particle size 1 

class 1 

Particle size 2 

class 2 

Particle size 3 

class 3 SM particle density (kg m-3) 2650 2650 2650 

Diameter (µm) 3.75 2.16 0.83 

Critical shear stress (N m-2) 0.10 0.07 0.05 

Fraction of total SM 0.25 0.25 0.001 

Sediment organic fraction 0.05 0.05 0.05 

Sediment porosity  0.54 0.54 0.54 

Resuspension rate (g m-2 d-1) 0.40 0.40 0.40 

 

 

The values of critical shear stress used in this study, which ranged from 0.05 - 0.10 N m-2 

across the three assigned size classes, are somewhat lower than the value of 0.49 N m-2 used 

by Hamilton and Mitchell (1996) for a zero-dimensional model application to Lake 

Ellesmere, but are comparable to values for other shallow lakes (e.g., 0.05 N m-2 used by 

Sheng and Lick (1979) for an application to Lake Erie, USA).  

4.4 Results 

Estimates of suspended mineral concentration from tripton 

The relationship between in situ CTR and NAVSS is shown in Figure 4.2. This equation is 

then used to estimate CSM  as: 

 

CSM = CTR - (0.199*CTR – 7.65) (RMSE=2.7 mg L-1)  (4.14) 
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Figure 4.2. Relationship between non-algal volatile suspended sediment (NAVSS) and tripton 

concentration (CTR)  in Lake Ellesmere (r2=0.92, n=12) from 9 July 2008 to 1 September 2008.  

Empirical remote sensing of suspended minerals 

 

The empirical equation used to estimate tripton concentration from rrs(B1) was: 

 

CTR= exp(2.51 ln(rrs(B1)) + 12.26)    (4.15) 

 

with r2=0.61, p<0.0001, RMSE=58.9, and n=12 (Figure 4.3). 

 

 

Figure 4.3. Relationship between MODIS reflectance and tripton concentration (CTR) (mg L-1). The line 

shows the linear regression with r2=0.61 and p<0.0001. 
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Although the relationship potentially contained outliers, there was not sufficient statistical 

evidence to remove these. 

Bio-optical modelling  

The analytical relationship between tripton concentration and MODIS rrs(B1) was 

approximated using an exponential equation which was then used to estimate tripton 

concentration from MODIS rrs(B1) (Figure 4.4(a)). The RMSE in tripton concentration 

retrieval using literature values of go and g1 has been found to be 111.8 mg L-1 for open ocean 

waters (Gordon et al. 1988), 156.2 mg L-1 for coastal waters (Lee et al. 1998) and 58.4 mg L-1 

using fitted values of 0.103 and 0.009 (using the fitting routine described in the methods). 

The retrieval error using fitted values is comparable to the RMSE of the empirical model of 

58.9 mg L-1. The linear regression between tripton derived in situ and from semi-analytical 

methods using MODIS rrs(B1) produced a slope of 1.02 and a constant of 11.2 mg L-1 

(r2=0.72). The linear regression between in situ and empirically estimated tripton produced a 

slope of 1.04 and a constant of -6.2 mg L-1 (r2=0.73) (Figure 4.5). While there are differences 

in the error metrics of the two models, plots of observed and estimated tripton reveal that the 

two models produce very similar results.  

 

The saturation reflectance of MODIS rrs(B1) with increasing tripton concentrations was 

investigated by running the bio-optical model over a larger range of tripton concentrations 

(Figure 4.4(b)). An asymptote can be observed near rrs(B1) of 0.1, indicating a theoretical 

saturation value of rrs(B1) (i.e. at tripton concentrations c. 1000 mg L-1). 
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Figure 4.4. (a) The analytical relationship between tripton concentrations as a function of MODIS 

subsurface remote sensing reflectance (rrs(B1)) represented by open grey circles. An exponential 

relationship is used to approximate the analytical relationship (black line). This function was used to 

estimate tripton concentration from MODIS rrs(B1). (b) Graph of the same relationship as (a) but 

extended over a larger range of tripton concentrations. 

 

  

 

Figure 4.5. In situ concentration of tripton and estimates using (a) the semi-analytical model (RMSE=58.4 

mg L-1) and (b) empirical model (RMSE=58.9 mg L-1). A 1:1 line (grey) and the observed vs. estimated 

regression equation and line (black) and associated r2 are shown on each plot (n=9). 
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One-dimensional model results 

Over the simulation period from 1 March 2006 to 31 August 2007 the RMSE between SM 

from mid-lake grab-samples and from the 1-D simulations was 126 mg L-1. Suspended 

mineral concentrations in the model ranged from 34 to 481 mg L-1, with an average of 212 

mg L-1 and 82 mg L-1 (Figure 4.6). The minimum and maximum simulated change in SM 

concentration over a single day (24 h) was 0.001 and 207 mg L-1, respectively 

 

  

Figure 4.6. Suspended mineral (SM) concentrations (mg L-1) simulated using the 1-D model (line), 

measured with situ grab-samples (closed circles) and estimated from remote sensing (open circles) for the 

period 1 March 2006 to 31 August 2007. 

SM from 3-D modelling and satellite image retrieval 

The 3-D model simulation period was from 1 December 2006 to 11 March 2007. Figure 4.8 

shows simulated SM from the 3-D model (at the mid-lake site) and from the 1-D model, 

compared to in situ and satellite-estimated SM measurements at the same location. On 19 

December 2006 a large storm occurred, with maximum wind speeds of 28 m s-1  
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(100.8 km hr-1) (refer to Figure 4.7). The resulting resuspension event was reflected in 

strongly elevated SM in both the 1-D and 3-D models. Over the period of the 3-D model 

simulation SM concentrations at the mid-lake station averaged 217 mg L-1 and ranged from 

123 to 600 mg L-1, with the maximum SM concentration observed during the storm event at 

1600 h on 23 December. The minimum and maximum change in SM concentration over any 

one-day (24 h) was 0.002 and 184 mg L-1, respectively.  

 

 

 

Figure 4.7. Simulated concentrations of suspended minerals (SM) (mg L-1) using the 3-D model (black 

line) and 1-D model (dashed line), in situ concentrations (closed circles for the period 1 December 2006 to 

11 March 2007), and satellite-estimated concentrations (open circles). Average hourly wind speed (m s-1) 

is represented by the grey line. 
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compared with estimated SM of 107 mg L-1. After 18 January 2007 and until the end of the 

study period on 11 March 2007, SM simulated with the model was much closer to the in situ 

and estimated values, with exceptions on 1 and 20 February 2007. After the storm (excluding 

exceptions mentioned above) the difference in SM between satellite calculations and 3-D 

simulations ranged from 1 to 46 mg L-1. 

Visual analysis of SM from 3-D simulations and satellite estimation 

There was considerable spatial heterogeneity of SM concentration across the lake on most 

days based on the MODIS semi-analytical estimation. Large gradients were observed on 

some dates (Figure 4.8a-d). For example, at 10:00 h on 18 December 2006 (Figure 4.8a (i)) 

MODIS-estimated SM ranged from 134 to 502 mg L-1. Areas of higher SM were usually 

associated with littoral areas (e.g. Figure 4.8b (ii)). The highest SM concentrations tended to 

occur in littoral areas on the northern shore (Figure 4.8b (ii)) corresponding to Greenpark 

Sands (see Figure 4.1), and in areas near the southern shore (Kaitorete Spit; Figure 4.1), 

though the highest SM was recorded on the eastern shore (Figure 4.8a (vi)) near Kaituna 

Lagoon (Figure 4.1). Occasionally there were areas of elevated SM concentration within the 

main body of the lake (e.g., 4.8d (i)). 

 

Suspended mineral concentrations derived from model simulations were highly 

heterogeneous with elevated concentrations in littoral areas. Basin-scale variations in SM 

were sometimes captured based on visual comparison with SM derived from MODIS data 

(Figure 4.8b (ii), 4.8b (iv), 4.8c (ii)). On some other dates SM distribution patterns estimated 

from satellite data were quite different from model simulation cases (e.g. Figure 4.8a (i), 4.8a 

(vi), 4.8c(vi), 4.8d (i), 4.8d (iv)). Generally, simulations over-estimated SM concentrations in 

shallow lake margins (e.g. Figure 4.8d (ii)), however, there were also instances when 

MODIS-estimated SM concentrations were elevated in association with shorelines; these 

were not simulated well by the 3-D model (e.g., Figure 4.8a (i) and (ii)). The elevated 

shoreline SM estimated from MODIS cannot be attributed to land contamination, as the 

surrounding land has a lower reflectance than that of nearby lake water. Similarly, high SM 

concentrations near river entrances in simulations with the 3-D model were not observed in 

MODIS output (Figure 4.8d (i) and 4.8d (iv)) corresponding to the Selwyn and Halswell 

rivers (Figure 4.1), respectively. 
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Statistical comparisons of SM from MODIS data and 3-D model simulations compared to 

visual comparison 

The Geographically Weighted Regression between concurrent MODIS image and simulation 

estimated water surface SM concentration produced r2 values that ranged from 0.13 (Figure 

4.8d (iii)) to 0.62 (Figure 4.8d (i)), with a mean of 0.41. Visual comparison of SM spatial 

distributions in Figure 4.8d (iii) reveals some basin scale similarities in patterns of horizontal 

variation, which does not conform with having the lowest r2. The visual comparison of 4.8d 

(i) shows very different basin scale patterns, and again does not conform to a case with the 

highest r2. In Figure 1.9b (v) patterns of spatial distribution of SM match reasonably well on 

a basin scale, however, the GWR r2 is only 0.19, the second lowest of all dates.  

 

Linear regression r2 values conform better than GWR r2 values when compared to visual 

comparisons of similarities in spatial patterns. The largest r2 was 0.11 (p > 0.05; Figure 1.9c 

(ii)), when visual patterns of spatial distribution have basin scale similarities. The lowest r2 

(with p > 0.05) was for SM on 3 January 2007 (Figure 4.8a (iii)) when patterns of spatial 

distribution did not match well.  

 

While there is a clear difference in performance between GWR and traditional regression as 

statistical measures of spatial similarities and differences between model simulations and 

MODIS estimations of SM, the same cannot be said for the differences between the three 

MCT-derived statistics. There was general agreement amongst the three MCT statistics as far 

as ranking comparison performance. All three statistics compared well with the visual spatial 

pattern ranking, and dates with visual similarities corresponded to high Fuzzy Numerical 

Statistic (FNS), high Wavelet Verification Algorithm (VWA) r values, and low Warping 

Defamation Penalty Statistic (WDPS). The WVA r values were highest for Figure 4.8b (vi) 

and 4.8c (ii) and lowest for Figure 4.8a (vi) and 4.8c (i). The FNS was highest for 4.8a (iv) 

and 4.8b (iii) and lowest for 4.8b (v) and 4.8a (i). WDPS identified Figure 4.8b (ii) and  

4.8d (iii) as the closest matching rasters and Figure 4.8c (vi) and 4.8d (i) as the most 

different.  

 

There was no clear relationship between the 3-D model forcing variables of wind speed and 

wind direction, and comparisons of similarities between spatial distributions from model and 

MODIS based estimations of SM concentration on a basin scale. Stronger winds, however, 
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were associated with high simulated SM concentrations in littoral areas (e.g., Figure 4.8c (ii), 

4.8d (ii), 4.8d (ii), 4.8d (iii)), which were not present in MODIS-estimated SM 

concentrations. 
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Table 4.2. Statistical comparison of SM concentrations estimated from the semi-analytical algorithm and simulated from the 3-D model (n = 2414 for each 

instance). Statistical fit is represented using r2 values based on linear regression, Geographically Weighted Regression (GWR r2), Fuzzy Numerical Statistic (FNS), 

Wavelet Verification Algorithm (WVA r and WVA RSE), and Warping Defamation Penalty Statistic (WDPS). Relationships that were not significant (p > 0.05) 

were represented by *. 

Date 

Time 

(h) 

Linear 

r2 p Slope RMSE 

GWR  

r2 FNS 

WVA 

r 

WVA 

RSE WDPS Figure 

18/12/2006 10:00 0.022 0.000 -0.29 120.4 0.57 0.47 0.9950 976.6 0.00354 4.8a (i) 

18/12/2006 14:00 0.007 0.000 -0.04 97.4 0.54 0.78 0.9970 35.4 0.00177 4.8a (ii) 

03/01/2007 14:00 0.000* 0.718 -0.01 182.3 0.41 0.73 0.9980 71.1 0.00141 4.8a (iii) 

05/01/2007 10:00 0.000* 0.610 0.01 125.6 0.51 0.90 0.9970 7.4 0.00147 4.8a (iv) 

05/01/2007 14:00 0.001* 0.067 -0.02 126.8 0.43 0.79 0.9820 57.7 0.00154 4.8a (v) 

15/01/2007 10:00 0.015 0.000 -0.46 45.0 0.31 0.63 0.8530 235.1 0.00105 4.8a (vi) 

18/01/2007 10:00 0.019 0.000 0.08 54.9 0.43 0.74 0.9960 70.8 0.00090 4.8b (i) 

19/01/2007 10:00 0.013 0.000 0.17 59.6 0.24 0.83 0.9790 11.2 0.00057 4.8b (ii) 

19/01/2007 14:00 0.009 0.000 -0.07 37.3 0.58 0.90 0.9930 6.7 0.00227 4.8b (iii) 

22/01/2007 10:00 0.009 0.000 -0.09 41.6 0.52 0.85 0.9890 8.1 0.00128 4.8b (iv) 

01/02/2007 10:00 0.058 0.000 0.3 38.2 0.19 0.45 0.9980 1195.2 0.00482 4.8b (v) 

01/02/2007 14:00 0.020 0.000 -0.24 61.4 0.48 0.84 0.9990 49.1 0.00176 4.8b (vi) 

06/02/2007 10:00 0.078 0.000 0.37 59.1 0.45 0.83 0.9780 69.3 0.00093 4.8c (i) 

06/02/2007 14:00 0.112 0.000 0.21 28.2 0.27 0.76 0.9990 60.1 0.00161 4.8c (ii) 

18/02/2007 10:00 0.043 0.000 -0.27 43.6 0.36 0.83 0.9880 10.3 0.00118 4.8c (iii) 

18/02/2007 14:00 0.033 0.000 -0.19 29.1 0.43 0.84 0.9890 8.2 0.00151 4.8c (iv) 

20/02/2007 10:00 0.009 0.000 0.19 69.5 0.45 0.72 0.9850 47.1 0.00231 4.8c (v) 

20/02/2007 14:00 0.001* 0.093 -0.05 39.9 0.23 0.66 0.9980 230.4 0.02046 4.8c (vi) 

25/02/2007 10:00 0.044 0.000 -0.22 92.5 0.62 0.70 0.9820 169.5 0.00494 4.8d (i) 

26/02/2007 10:00 0.000* 0.221 0.03 57.1 0.36 0.78 0.9870 71.1 0.00381 4.8d (ii) 

26/02/2007 14:00 0.001* 0.087 -0.04 44.7 0.13 0.68 0.9860 201.2 0.00064 4.8d (iii) 

01/03/2007 10:00 0.060 0.000 -0.18 44.4 0.47 0.85 0.9870 13.8 0.00163 4.8d (iv) 

01/03/2007 14:00 0.008 0.000 0.07 43.7 0.35 0.86 0.9980 21.4 0.00240 4.8d (v) 
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Figure 4.8a. Suspended mineral concentration (mg L-1) estimated from MODIS data (left) and 

from 3-D model simulations (right). Note colour scale differences in some instances. Hourly 

average wind speed and direction are plotted on the wind rose, with changes in colour 

representing wind speed.  
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Figure 4.8b. Suspended mineral concentration (mg L-1) estimated by MODIS (left) compared to 

simulations from the 3-D model (right). Hourly average wind speed and direction are plotted on 

the wind rose, with changes in colour representing wind speed. 
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Figure 4.8c. Suspended mineral concentration (mg L-1) estimated by MODIS (left) compared to 

simulations from the 3-D model (right). Hourly average wind speed and direction is plotted on 

the wind rose, with changes in colour representing wind speed. 
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Figure 4.8d. Suspended mineral concentration (mg L-1) estimated by MODIS (left) compared to 

simulations from the 3-D model (right). Note colour scale differences in some instances. Hourly 

average wind speed and direction is plotted on the wind rose, with changes in colour 

representing wind speed. 
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4.5 Discussion 

The synoptic estimations of SM from MODIS have provided a tool to directly 

compare with simulated SM from 1-D and 3-D models on a twice-daily basis, i.e., at 

substantially higher frequency than is used in most routine lake sampling 

programmes involving grab-sample collection. In addition, the development of a 

semi-analytical model to estimate tripton concentration from MODIS Aqua and 

Terra subsurface remote sensing reflectance will greatly extend the current spatial 

and temporal coverage of monitoring. State of the art spatial statistical methods were 

applied for comparison of the horizontal distributions from 3-D model simulations 

with those estimated from the MODIS-based semi-analytical model, using the Map 

Comparison Kit (MCK) (Visser and De Nijs 2006), which allowed for a quantitative 

validation. 

 

There have been few comparisons of semi-analytical and empirical methods for 

remote sensing of tripton or suspended sediment concentrations. Empirical methods 

may be advantageous because they can be calibrated specifically for the images and 

in situ data in question, and provide robust estimates within the calibrated 

concentration range (Matthews 2011). The present study has demonstrated, however, 

that semi-analytical methods are capable of a similar level accuracy over the same 

series of images. Moreover, semi-analytical methods are applicable to a wider range 

of tripton concentrations as the algorithm accounts for non-linearity of the 

relationship between tripton and rrs(B1). Furthermore, semi-analytical algorithms 

can be developed independently from in situ data and the methodology is 

transferable to other sensors such as Landsat (e.g., Dekker et al. 2002). 

 

Remote sensing and modelling revealed that tripton concentrations are highly 

dynamic temporally and spatially in Lake Ellesmere, which can lead to potential for 

large differences between the spatial representation of in situ data and MODIS AOI. 

Obtaining representative in situ samples of SS corresponding to a MODIS AOI 

presents some challenges. The MODIS AOI represents average rrs(B1) over 0.56 

km2, as opposed to a point in situ sample. An ideal situation for the calibration and 
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validation of SS algorithms would involve multiple samples over the AOI, 

synchronous with the satellite overpass. 

 

The values of the parameters g0 and g1 used in semi-analytical models have a 

significant effect on the accuracy of inversion of ocean colour (Brando et al. 2012). 

For eutrophic inland waters, variations in g0 and g1 are larger than for coastal waters 

and oceans (Dekker et al. 1997). In the present study it was found that the 

application of commonly applied values g0 and g1 from the open ocean (Gordon et 

al. 1988), and coastal zones (Lee et al. 1998), were not applicable for the simplified 

semi-analytical model applied to Lake Ellesmere. The use of fitted g0 and g1 was 

required in order to obtain a semi-analytical model with comparable accuracy to the 

empirical model. The value of g0 derived by this study (0.103 sr-1) is within the 

reported range of 0.08 to 0.15 sr-1 (Morel et al. 2002) and is approximately equal to 

the optimized value at 650 nm for highly turbid waters derived by Aurin and 

Dierssen (2012) of 0.10305 sr-1. These authors concluded that waters with extremely 

high SS concentrations displayed more spectral variability of g0. The value of g1 

derived by this study of 0.009  sr-1 is significantly lower than the value of Gordon et 

al. (1988) and Lee et al. (1998) however Aurin and Dierssen (2012) reported 

instances where g1 was not significantly different from zero where waters were 

highly turbid. 

 

For the remote sensing of suspended sediment in aquatic systems using MODIS B1, 

an above-surface saturation irradiance reflectance of 0.16 has been suggessted 

(Sipelgas et al. 2009), not dissimilar to that estimated by the semi-analytical model 

used in this study (rrs(B1)=0.10 or B1 above surface irradiance reflectance =0.17 sr-

1). The accuracy of semi-analytical and empirical algorithms for estimating tripton or 

suspended sediment may be constrained by saturation of rrs(λ), whereby at high 

suspended sediment concentrations there is limited sensitivity of rrs(λ) to any 

changes in concentration (Bowers et al. 1998; Doxaran et al. 2002). The present 

study demonstrated the applicability of a MODIS B1-based semi-analytical model to 

estimate suspended sediments over a concentration range from 62 to 356 mg L-1. 

While these concentrations are relatively high compared to those found in most 

lakes, simplified semi-analytical models using MODIS B1 have also been 



Chapter 4: Remote sensing and modelling of suspended minerals 

 

130 

 

successfully applied to estimate suspended sediment concentrations from c. 0 to 29 

mg L-1 (Binding et al. 2010).  

 

Several spatial statistics were used to make quantitative comparisons between SM 

estimated from remote sensing and from a 3-D model simulation. Kuhnert et al. 

(2005) found that the literature is lacking in methods to quantify the numerical and 

spatial differences between two raster maps. Since these methods are lacking, visual 

analysis has been used to compare the relative performance of spatial statistics (e.g., 

Kuhnert et al. 2005). In the present study, the three MCT statistics tested were more 

closely linked to visual comparison than the Geographically Weighted Regression, 

however, the relative difference between the three MCT methods was not clearly 

identified. The MCK approach avoids violating statistical assumptions made by 

traditional regression methods that require independence of adjacent cells 

(O’Sullivan and Unwin 2002). Quantitative statistics are essential for comparison of 

multiple rasters, however, it is important that they retain features of visual 

comparison as human perception is able to quickly determine the appropriate scale 

for comparison (Kuhnert et al. 2005). Quantitative synoptic validation is a clear 

improvement on qualitative validation techniques for 3-D modelling, as it provides 

the ability to establish a quantitative ranking (Kuhnert et al. 2005). This quantitative 

ranking is essential for the evaluation of model performance over large numbers of 

images.  

 

The 1-D and 3-D models have niches suited to different time and space scales of 

interest. High real-time to run-time ratios of 1-D models make them readily 

applicable for long term simulations over periods of years to decades (e.g., Trolle et 

al. 2008; Trolle et al., 2011). By contrast, 3-D models, even those with a non-

hydrostatic computational scheme, tend to have low real-time to run-time ratios and 

are best applied to addressing spatial variations on time scales of a few days to a few 

seasons (e.g., Leon et al. 2011; Huang et al. 2012). Application of 1-D models 

potentially allows a more robust calibration process through repeated calibration 

runs in which it is possible to ‘tune’ parameters to observations over time scales that 

capture seasonal and inter-annual variations. The parameters from the 1-D model can 

then potentially be used directly in 3-D model simulations with little or no re-
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calibration. Romero et al. (2004) have demonstrated that ecological parameter 

configurations derived from calibration of a 1-D model (DYRESM-CAEDYM) 

could be applied with reasonable accuracy in a 3-D (ELCOM-CAEDYM) 

hydrodynamic-ecological model to simulate seasonal spatial dynamics of nitrogen 

and phosphorus in a meso-oligotrophic reservoir, but algal growth and particle 

resuspension/settling were re-calibrated specifically for the 3-D model application. 

 

The 3-D model reproduced some of the basin-scale and fine-scale features of SM 

that were observed with MODIS imagery, but differences between the simulation 

and satellite estimation may have arisen from factors such as the accuracy of input 

data to the hydrodynamic model (e.g., Imberger et al. 1989). For example, basin-

scale, wind-induced circulation currents depend on interactions of spatially and 

temporally varying wind-fields (Laval et al. 2003). In the case of the model 

application to Lake Ellesmere, the Birdlings flat weather station is located at the 

southern end of Banks Peninsula where the wind field may potentially be highly 

variable due to mesoscale topographic effects. In order to more accurately model 

surface circulation, wind data at several different locations on the lake would ideally 

be required. Here again, remote sensing may provide a cost-effective solution to 

investigate wind fields for large shallow lakes such as Ellesmere, as algorithms are 

emerging to derive high resolution wind vectors from Synthetic Aperture Radar 

(Vachon et al. 2000; Koch and Feser 2006). 

 

The over-estimation by ELCOM-CAEDYM of SM concentrations in littoral areas 

may be a result of coarser sediments in these areas than those parameterised in the 

model application. In the application of the 3-D model used in this study, particle 

size distribution was assumed to be homogeneous across the lake and the model set-

up does not allow for considerations of spatial variations in sediment properties. 

Sediment sorting and redistribution based on erosional, transportational and 

depositional environments across a lake bottom have been well documented for both 

in shallow and deep lakes (Hakanson 1982). In Lake Ellesmere, the littoral areas, 

and river-mouths in particular, represent relatively high-energy environments where 

sediment grain sizes are likely to be correspondingly coarse, particularly considering 

that there may be interacting effects of wave shear and river currents. Additionally, 
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the composition of the sediments is not fixed and depends on the recent 

resuspension/deposition history resulting from temporal variations in wind speed and 

wind direction, which in turn affect sediment compaction (Einstein and Krone 1962; 

Lick et al. 1995). 

 

Differences in the spatial distribution between simulated and satellite-estimated SM 

concentrations may be partly attributable to simplifications in the representation of 

waves in the simulation model. In shallow lakes the dominant resuspension 

mechanism is due to waves that create oscillatory motions and shear stress (Luettich 

et al. 1990; Scheffer 1998; Jin and Sun 2007). Horizontal currents may also be 

involved in the resuspension of sediments, however, the bottom shear stresses 

associated with these currents are usually too small in shallow lakes to affect 

suspended sediment concentrations substantially (Luettich et al. 1990; Bailey and 

Hamilton 1997). The estimation of waves in the 3-D model used in this study does 

not account for refraction, diffraction, shoaling, breaking, and wave-current 

interactions (Hamilton and Schladow 1997). The process of wave refraction tends to 

focus wave energy on headlands or protrusions, and disperses it in embayments 

(Komar 1998). This phenomenon could be responsible for the over-estimation of 

simulated SM concentrations in embayments in Lake Ellesmere. However, at the 

headland near the Selwyn River entrance, SM was over-estimated, which could be 

due to the high-energy environment in this region leading to coarser sediments that 

are more difficult to entrain into the water column. There exists the possibility to 

couple the 3-D hydrodynamic model ELCOM with a numerical wave model such as 

SWAN (Simulating Waves Nearshore) (Yajima, Tottori University, Japan, pers. 

comm). SWAN is a third generation spectral model developed at the Delft 

University of Technology, the Netherlands (http://www.swan.tudelft.nl), and is 

capable of simulating wave generation, dissipation and non-linear wave interactions 

including shoaling and refraction (Moeini 2009). The coupled 3-D model should in 

theory provide more accurate simulation of suspended mineral resuspension in 

shallow areas, especially in bays where wave refraction is occurring. 

 

As in previous studies of sediment resuspension in Lake Ellesmere (Gerbeaux and 

Ward 1991; Hamilton and Mitchell 1996), the present study used a background 
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concentration of sediment to represent fine material with very low settling velocities 

(which effectively remains in suspension continuously). Sediment cores taken in the 

main basin of Lake Ellesmere show that sediment in the upper 10 cm is comprised 

mostly of fine silt, with small fractions of clay and sand (Kitto 2010). Sediment 

cohesiveness and flocculation may therefore influence the critical shear stress for 

resuspension as well as the settling process. In contrast to modelling of resuspension 

of non-cohesive sediments, modelling of resuspension of cohesive sediments is far 

less advanced due to the difficulties of quantifying the complex interactions between 

hydrodynamics, inter-particle electrochemical attraction, and biological stabilisation 

or destabilisation. Bio-stabilisation induced from extracellular polymeric substances 

(EPS) produced by phytoplankton, in particular benthic diatoms and bacteria, has 

been shown to increase the critical shear stress of sediment (MacIntyre et al. 1990; 

Black et al. 2002; De Backer et al. 2010). At present no general analytical theory 

exists to account for sediment cohesiveness (Black et al. 2002), although significant 

progress has been made with empirical models (Lick and Lick 1988; Lick et al. 

1994). The model used in this study does not account for sediment cohesiveness and 

flocculation, which may partly account for the post-storm deviation of SM measured 

in situ and that estimated by MODIS. Luettich et al. (1990) found the largest 

deviation between modelled and in situ suspended sediment concentrations occurred 

after resuspension events, when sediment settled faster in simulations than was 

observed. In this study, the opposite effect was observed in which in situ suspended 

minerals settled faster than what was simulated by the 1-D and 3-D models. 

 

The sediment-water exchange of phosphorus is highly important in influencing the 

trophic state of shallow lakes (Scheffer 1998; de Vicente et al. 2006). Sediment 

resuspension exacerbates phosphorus internal loading and eutrophication. Internal 

loading can delay long-term recovery of trophic state in lakes following reductions 

in external loads (Søndergaard et al. 2007), especially in shallow eutrophic lakes 

such as Ellesmere. Lake level manipulation is possible in Lake Ellesmere and could 

be used as a means to reduce trophic status through reduction of sediment 

resuspension. Restoring a natural opening regime would result in less frequent but 

longer duration openings due to larger barrier breaches (Schallenberg et al. 2010) 

and higher water levels in Lake Ellesmere, which would reduce turbulent shear stress 
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and sediment resuspension in the main body of water (Hamilton and Mitchell 1997). 

It has been suggested, however, that reduced suspended sediment concentrations 

would increase light availability to phytoplankton, resulting in increased 

phytoplankton biomass (Schallenberg et al. 2010). Maintaining the current lake level 

management regime limits the potential for macrophyte re-establishment due to high 

turbidity and shear stress (Gerbeaux 1993), however, locations estimated via remote 

sensing with consistently lower SM, could be used to identify focal areas for 

recovery of macrophytes either through re-planting or using barriers to reduce effects 

of wave action (Cook 2005). In the long term, however, reductions in external 

nutrient inputs are required to bring about a sustained improvement in water quality 

(Webster and Graham 2004). Processed-based lake models could be used to 

elucidate complex biological and physical interactions resulting from various lake 

opening regimes, the interactions of internal and external loads, and climate change, 

particularly in relation to alternate stable states (e.g., Webster and Graham 2004).  

 

The bio-optical modelling approach used in this study was demonstrated to be 

applicable for the estimation of suspended sediment and minerals in Lake Ellesmere. 

It was demonstrated that the combination of remote sensing and modelling can 

greatly increase the spatial and temporal resolution of analysis and improve 

understanding of the causal factors leading to observed spatial distributions. The 

patterns of spatial variation of water quality divulged by 3-D models and remote 

sensing can aid in understanding ecosystem function and have applications in lake 

environmental management (Jorgensen 2008). However, the quantitative methods of 

3-D comparison presented in this study highlighted clearly that improvement is 

needed in the both the 3-D simulation forcing data and the processes represented. 

Future improvements in model application can be evaluated quantitatively using the 

spatial statistics investigated in the present study.  
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5 Optimization of a semi-analytical model for remote 

sensing of chlorophyll a and suspended sediments in a 

large, oligotrophic lake 

5.1 Introduction 

High spectral resolution sensors used for remote sensing of reflectance from 

waterbodies, such as the Moderate Resolution Imaging Spectroradiometer (MODIS), 

may be used to infer surface values for optically active water quality variables 

(Becker et al. 2009; Binding et al. 2010; Horion et al. 2010). The high satellite revisit 

capability (twice daily), moderate spatial resolution (1 km and 250 m) and 

appropriate spectral resolution have input data for the bio-optical modelling of inland 

waters (Xiaoyu et al. 2005). Therefore in Case 2 waters bio-optical algorithms can 

then be used to allow estimation of the optically active water quality variables. 

 

Inversion of bio-optical models requires a measure of irradiance reflectance or 

remote sensing reflectance above or just below the water surface, which requires 

some form of atmospheric correction. Atmospheric path radiance measured by Earth 

observation satellites can comprise 90% contribution of total radiance over water, 

which originates from scattering of solar radiation by air molecules and aerosols 

(suspended liquid and particles such as salt, dust, ash, pollen and sulphuric acid) 

(Vidot and Santer 2005). The application of radiative transfer models used to correct 

for variations in atmospheric attenuation offers the flexibility to address the 

complexities of atmospheric correction over inland waters (e.g., Campbell et al. 

2011). Such complexities include variations in elevation, which affects molecular 

calculations due to changes in air pressure, adjacency effects, and heterogeneous 

concentrations of aerosols and aerosol content at coastal and inland locations. 

However, it is often assumed that aerosol optical depth (AOD) is homogenous at 
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spatial scales of 50 to 100 km (Vidot and Santer 2005), which is a spatial scale 

comparable to the maximum size of most lakes. 

 

The colour and clarity of water depend on its optical character, and relate to the bulk 

optical processes of absorption and scattering. Absorption refers to the transfer of 

light into another form of energy (e.g., heat) and is quantified by the absorption 

coefficient, a(λ), which is the fraction of incident light absorbed divided by the 

thickness of the layer. Scattering is defined as the change in deflection of photons 

from their original path (Davies-Colley et al. 1993), and is quantified by the 

scattering coefficient, b(λ), which is the fraction of the incident light scattered 

divided by the thickness of the layer (Kirk 2010). These two variables are referred to 

as inherent optical properties (IOPs) as they are dependent on the concentration and 

specific IOPs of optically active substances comprising the aquatic medium (which 

are independent of the ambient light field). In contrast apparent optical properties 

(AOPs) depend on the geometric structure of the light field (Kirk 2010), which are 

partly determined by the solar zenith angle and local atmospheric conditions (Bukata 

et al. 1995). 

 

Light absorption by pure water increases exponentially towards longer wavelengths 

of the electromagnetic spectrum, whilst scattering increases at shorter wavelengths 

of the visible near-infrared range (Rudorff et al. 2006). Clear lake water possesses a 

spectral reflectance that is similar to pure water. Algae-laden water exhibits a 

reflectance peak in the green region, which represents an aggregate absorption 

minimum, and another reflectance peak at 700 nm. Absorption troughs occur in the 

blue and red/infrared wavelengths (Han 1997), with the exact location and width of 

these troughs dependent on phytoplankton species’ assemblages and their 

physiological state (Kirk 2010). Suspended minerals (SM) include sand, silt, clay 

and other inorganic material such as atmospheric dust (Koponen 2006) and their 

optical absorption and scattering properties are affected by the shape and size 

distribution of particles (Bukata et al. 1995). In clear water, increasing 

concentrations of SM result in a near-linear increase in reflectance in the infra-red 

region. In this area of the electromagnetic spectrum the effect of chl a on reflectance 

is negligible (Han 1997). In algae-laden water, however, SM adds to reflectance at 
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all wavelengths (Bukata et al. 1995). Coloured dissolved organic matter (CDOM) 

shows exponentially increasing absorption at shorter wavelengths (< c. 500 nm) and 

little absorption above 700 nm (Bricaud et al. 2009). The effect of CDOM on light 

scattering can largely be ignored (Koponen 2006). 

 

Analytical bio-optical models relate water subsurface reflectance to the 

concentration and IOPs of optically active constituents (OACs) and the IOPs of 

water itself. Different techniques have been used for solving these analytical models 

including Monte Carlo methods (Gordon and Brown 1973; Morel and Prieur 1977; 

Kirk 1981), the invariant embedding technique (Preisendorfer 1976; Mobley 1994), 

the matrix operator method (Fischer and Grassl 1984; Fell and Fischer 2001), and 

the finite-element method (Kisselev et al. 1995; Bulgarelli et al. 1999). More 

recently, ocean colour algorithms have been implemented, focusing on optically-

complex Case 2 waters (Lee and Carder 2004). Many of these models are based on 

the assumption that pigment-specific particulate absorption is invariant. However, 

IOPs vary temporally and spatially (Kostadinov et al. 2010; Devred et al. 2011; 

Moisan et al. 2011). Variance in the specific chlorophyll absorption coefficient 

(a*ϕ(λ)), for example, is based on many factors including phytoplankton pigment 

composition, cell size, the packaging effect, light accumulation and nutrient 

limitation (Sathyendranath et al. 1987; Bricaud et al. 1995).  

 

The MODIS satellite has two bands at 250 m resolution in the red and near infra-red 

wavelengths. Whilst having broader bandwidths and lower spectral sensitivity than 

MODIS 1 km resolution bands, data at 250 m resolution has proven useful in 

monitoring total suspended sediment (SS) concentration (Doxoran et al. 2009), and 

has potential to monitor chl a concentrations during algal blooms (Reinart et al. 

2006). Kopenen et al. (2004) found MODIS B1 was applicable to estimate general 

measures of water quality such as trophic state, rather than for monitoring CDOM 

and chl a (Koponen et al. 2006). High spectral resolution MODIS bands are more 

suitable for remote sensing of chl a than MODIS B1 and B2. For example, Gitelson 

et al. (2008) developed a simple semi-analytical model for estimation of chl a in 

turbid waters, based on three bands of MEdium Resolution Imaging Spectrometer 

(MERIS) or two bands of MODIS Aqua/Terra. Their algorithm has proved 
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applicable for waters with chl a ranging from 10-200 µg L-1, however, in 

oligotrophic lakes the near-infrared (NIR) reflectance peak critical to algorithm 

function is not present (Giardino et al. 2007; Odermatt et al. 2008). For the 

estimation of low chl a concentrations in inland waters, more complex, physically-

based inversion models are needed (Odermatt et al. 2008). 

 

The specific IOPs Lake Taupo are now known (Belzile et al. 2004), which presents 

an opportunity to investigate bio-optical modelling to enable future remote sensing 

based near-real time monitoring of OACs. The objective of this study was to develop 

algorithms to determine chl a, CDOM absorption, and SS using subsurface remote 

sensing reflectance derived from MODIS Aqua. A further objective was to 

parameterise the bio-optical model across seasons based on the different absorption 

properties of the seasonally-varying dominant phytoplankton groups, in order to 

refine estimations of chl a as a proxy for total phytoplankton biomass. Finally, this 

study will investigate the relationship between bio-optical estimated SS (1 km 

resolution) and MODIS Terra/Aqua B1 remote sensing reflectance (250 m 

resolution). If relationships can be developed which enable estimation of SS at 250 

m, the enhanced resolution of monitoring may enable the future study of lake inflow 

effects on circulation and mixing. 

5.2 Methods 

Study site 

Lake Taupo (Figure 5.1(a)) (area = 616 km2, mean depth 97 m) is located in a 

caldera created by a super-volcanic eruption which occurred 26 500 yr BP. The 

present lake was formed after the last massive eruption in 186 AD. Its major inflows 

are from the Tongariro River and Tokaano Tailrace (a hydropower diversion of the 

Tongariro River) at the south end of the lake (Figure 5.1(b)). Annual average flow 

rate in the Tongariro River is 29.2 m3 s-1 and 49.7 m3 s-1 in the Tokaano Tailrace. 

The latter flow is highly variable depending on power generation by the Tokaano 

hydropower plant. The outflow is to the Waikato River in the northeast.  
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Figure 5.1. Lake Taupo study site. (a) Sites A , B and C represent water quality monitoring 

stations used in this study and bathymetry contours (m) are shown as a colour gradient from 

blue (shallow) to red (deep). (b) Tongariro/Tokaanu inflows and locations of Turangi 

meteorological station and Tongariro flow gauge at Major Jones. 

 

Lake Taupo is in a mid-temperate zone (38°50’0”S latitude) but seasonal variations 

in phytoplankton biomass and productivity are considered to be similar to those of 

sub-tropical lakes, with maxima occurring during winter isothermy (Vincent 1983). 

(a) 

(b) 
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The winter production maxima is thought to be stimulated by increased availability 

of nutrients, particularly nitrate and ammonium, as nitrogen tends to most strongly 

limit phytoplankton productivity in the lake (White et al. 1980). Decreased grazing 

pressure in winter, when the lake is mixed, may also contribute to this phenomenon 

(Vincent 1983). Chlorophyll a is increasing at a rate of 0.021 ± 0.015 (95% 

confidence limit) µg L-1 y-1 in the upper 10 m of the water column (Gibbs 2011). 

Methods overview  

This study used 23 MODIS Aqua images captured from 13 Aug 2003 to 8 Jul 2008. 

Atmospheric correction was achieved using a radiative transfer model. The Garver-

Seigel-Maritorena 2001 (GSM01) bio-optical model (Maritorena et al. 2002) was 

optimised using in situ IOPs specific for Lake Taupo (Belzile et al. 2004) and then 

inverted to determine chl a, CDOM absorption, and SS, using MODIS Aqua bands 

8-12. The bio-optical algorithm used two specific phytoplankton absorption curves, 

for each seasonally dominant phytoplankton phyla observed in Lake Taupo (Gibbs 

2011), with concurrent field chl a concentrations used for algorithm validation. 

Further investigation into flood event commencing on the 28th of February 2004 was 

carried out, using empirical relationships developed between MODIS subsurface 

remote sensing reflectance (250 m resolution) and SS estimated from the bio-optical 

model (1 km resolution) to estimate SS at 250 m resolution on the 4th and 5th of 

March 2004. Also in relation to the flood event, Secchi depth measurements were 

available from Site A and B from November 2003 to June 2004 (Gibbs 2011). 

Coinciding with the flood event, wind speed from a nearby weather station and 

thermistor chain data (Site B, Figure 5.1(a)) from 13 January 2004 to 8 March 2004 

were available, as were flows from the Tongariro River (refer to Figure 5.1(b)) for 

the period 27 February to 6 March 2004. 

Field data 

Phytoplankton biomass, water clarity and nutrient concentrations have been 

monitored Site A (Figure 5.1(a)) monthly since 1994 (Taupo Long Term Monitoring 

Programme, TLTMP). This study made use of monthly 0-10 m integrated chl a 
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concentrations, usually taken from Site A (Figure 5.1(a)) corresponding satellite 

overpass date of MODIS Aqua (August 2003 to July 2008). Algal species 

composition and abundance were available (Gibbs 2011), determined using the 

sedimentation procedure (Utermöhl 1931) with up to 100-ml samples and 

enumeration using an inverted microscope. Biovolume was estimated from cell 

dimensions of each species and dominance was estimated from relative biovolumes 

(Gibbs 2011). Additional sites (B and C; Figure 5.1(a)) were monitored between 

January 2002 and December 2004. Secchi depth measurements were available from 

Site A and B from November 2003 to June 2004 (Gibbs 2011).  

 

Over the study period (13 Aug 2003 to 8 Jul 2008), the phytoplankton assemblage at 

Site A included Cyanophytes, Bacillariophytes, Chlorophytes, Chrysophytes, and 

Dinophytes. Often all of these taxa coexisted, however, dominance or co-dominance 

usually varied with season. In summer the dominant species were Chlorophytes and 

Chrysophytes, in particular Botryococcus braunii and Dinobryon sp. Cyanophytes 

were usually present at low levels, however, they dominated in late summer and 

early autumn 2006 (mostly Aphanizomenon gracile and Anabaena sp.). 

Bacillariophytes were also present at low levels throughout summer. In autumn the 

assemblage was dominated by Chlorophytes (Botryococcus braunii) and 

Chrysophytes (Dinobryon sp.). Of note was that the Cyanophyte Anabaena flos-

aquae was a major component of the assemblage between April and June 2005 and 

became dominant in May. In winter Bacillariophytes dominated, mainly Asterionella 

formosa (dominant in 2003 and 2006), Aulacoseira granulata (dominant in 2005), 

and Fragilaria crotonensis. In spring there was a return of Chlorophytes and 

Chrysophytes in moderate densities, and to a lesser extent Cyanophytes, however, 

Bacillariophytes were often still dominant, especially Asterionella formosa and 

Aulacoseira granulata (Gibbs 2004, 2005, 2007, 2008, 2009). 

 

Wind speed data from 13 January 2004 to 8 March 2004 were taken from National 

Institute of Water and Atmosphere (NIWA) weather station at Turangi (Figure 

5.1(b), (-38.9753°S, 175.7908° E); 2.6 km south of Lake Taupo. Flows from the 

Tongariro River (refer to Figure 5.1(b)) were measured by Genesis Energy at 
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Turangi (Major Jones Pool shown in Figure 5.1(b)) for the period 27 February to 6 

March 2004. 

Satellite imagery 

Twenty-three MODIS Aqua (1 km resolution) images were obtained during a period 

from 13 August 2003 to 8 July 2008. For validation of satellite estimated chl a, eight 

in situ samples were taken on the day of image capture, three samples were within 

one day of image capture and nine within five days of image capture. The remaining 

three images had in situ samples that were taken 7, 8 and 19 days apart from the day 

of image capture. For images captured > 3 d from the date of the in situ sample, 

images were selected during time periods in between monthly sampling dates when 

chl a concentrations varied by ≤ 0.03 µg L-1, with the assumption of low variation 

between these dates. MODIS Aqua and Terra imagery at 250 m resolution was 

obtained on 4 and 5 March 2004 (four images), and B1 was used to develop an 

algorithm to estimate SS concentrations. 

Atmospheric correction 

All images were converted from radiance to subsurface remote sensing reflectance, 

using the radiative transfer atmospheric correction model Second Simulation of a 

Satellite Signal in the Solar Spectrum (6sv) (Kotchenova et al. 2008) and 

parameterised with concurrent MODIS atmosphere data including water vapour and 

ozone concentration. Estimation of aerosol optical depth (AOD) is the most 

challenging of the parameters required to assist with atmospheric correction. For 

New Zealand conditions AOD measured at Lauder (860 km south-west of Lake 

Taupo, South Island, NZ) is among the lowest recorded globally, ranging from about 

0.01 to 0.08 (Liley and Forgan 2009). However, AOD over Lake Taupo may deviate 

significantly from this. The error in AOD retrieval by MODIS is comparable to the 

actual levels of AOD commonly recorded at Lauder, New Zealand. The global 

validation of MODIS AOD error over land, ε, is given as: 

 

ε = ±0.03+0.05 AOD   (Remer et al. 2005)  (2.1) 
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AOD is likely to be higher in Taupo, but would likely still be low relative to global 

measurements. Considering the uncertainty in AOD retrieval over Lake Taupo, AOD 

was fixed at 0.05 for this study (the upper limit of the manly average measured at 

Lauder). A horizontally homogeneous atmosphere was assumed across Lake Taupo 

for each image used in this study.  

Bio-optical model 

A semi-analytical bio-optical inversion model (Gordon et al. 1988) was optimised 

with locally derived absorption and scattering coefficients from Lake Taupo (Belzile 

et al. 2004), and additional values from the literature discussed below: 
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where rrs(λ) = subsurface remote sensing reflectance, bb(λ)  is the total backscattering, 

a(λ) is total absorption, λ is the wavelength, with l1 = 0.0949 sr-1 and l2 = 0.0794 sr-1 

taken from Gordon et al. (1988) (applicable to waters with bb(λ)/ bb(λ)+a(λ) > 0.3). 

 

This equation was applied in the form of the GSM01 model as detailed below. 

GSM01 inverts observations of rrs(λ) into chl a concentration, CDOM and detrital 

absorption coefficient at 443 nm, as well as the particle backscatter coefficient at 443 

nm. This model was modified to estimate SS. 

 

The absorption and backscattering coefficients in Eq. 5.2 are made up of the sum of 

individual optically active components; 

 

bb(λ)= bbw(λ) + bbss(λ)     (5.3) 

 

a(λ) = aw(λ) + aϕ(λ) + aCDOMD(λ)    (5.4) 
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where aw(λ) and bbw(λ) are the respective absorption and scattering values due to 

water, a ϕ(λ) is phytoplankton absorption, bbSS(λ) is SS backscatter, and aCDOMD(λ) is 

the combined absorption due to CDOM and detrital materials. Values of aw(λ) and 

bbw(λ) were taken from the literature, and are the values specified in GSM01 for the 

wavelength of each MODIS band (Morel 1974; Pope and Fry 1997). In Eq. 5.4 

CDOM and detritus absorption are described by a single exponential shape over the 

spectral range, due to their similar spectral signatures (termed CDOMD). 

 

The values for non-water IOP spectra are assumed to have a known shape but with 

an unknown magnitude; 

 

aϕ(λ) = Cϕ a
*

ϕ(λ)      (5.5a) 

 

aCDOMD(λ) = aCDOMD(λ0) exp[-S( λ- λ0)]    (5.5b) 

 

bbss(λ) = bbss(λ0) (λ/λ0)
-n    (5.5c) 

 

bbss(λ) = Bbss b*ss(λ) Css     (5.5d) 

 

where a*
ϕ(λ) is the specific chlorophyll absorption coefficient, Cϕ is chlorophyll 

concentration, S is the spectral slope coefficient for aCDOMD, λ0 is a reference 

wavelength (443 nm), n is the power law exponent for the SS backscattering 

coefficient, Bbss is the backscattering ratio of SS, and b*ss(λ) is specific scattering of 

SS. A functional form of the GSM01 model is expressed as: 
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       (5.6) 

 

Values of a*
ϕ(λ), S, and n were taken from the literature, leaving three unknowns; Cϕ, 

aCDOMD(λ0) and bbSS(λ0), which can be retrieved from rrs(λ) values measured at five 

different wavelengths (412, 443, 488, 531 and 551 nm) with MODIS Aqua. Equation 

5.6 is solved using the Levenberg–Marquardt algorithm for least-squares estimation 

of nonlinear parameters (Levenberg 1944). 
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Between 5 and 10 May 2002, Belzile et al. (2004) completed a detailed study on 

light absorption and scattering coefficients in the euphotic zone of Lake Taupo. 

Optical properties were consistent with Case 2 marine waters. Belzile et al. (2004) 

enumerated most of the IOPs necessary for the optimization of the above bio-optical 

model. The dominant genera observed during their study were Asterionella, 

Ceratium, Anabaena, Dinobyron, and Botryococcus. A high chl-specific absorption 

coefficient was observed (mean = 0.027 m-1 (µg L-1)-1 at 674 nm), which the authors 

suggested was indicative of minimal package effect consistent with small cells, high 

light accumulation and/or nutrient limitation (cf. Bricaud et al. 1995; Stramski et al. 

2001). For the present study, the lowest phytoplankton absorption was taken from 

the 19 stations of Belzile et al. (2004), and was converted to a*
ϕ(λ) by dividing by the 

lowest observed chl a concentration measured in their study (0.86 µg L-1). This 

a*
ϕ(λ) (at MODIS Aqua wavelengths) was used to represent the period from October 

to May for all years (Figure 5.2). From June to September, a*
ϕ(λ) for the a*

ϕ(λ) for 

the Bacillariophyte Chaetoceros protuberans was used (Sathyendranath et al. 1987) 

(Figure 5.2). The a*
ϕ(λ) absorption spectrums were chosen based on similar 

morphology to species found in Lake Taupo (the literature did not contain a*
ϕ(λ) for 

any common species found in Lake Taupo). 

 

In the Lake Taupo optical study of Belzile et al. (2004) from 5 and 10 May 2002, 

CDOM absorption at 443 nm ranged from 0.03 to 0.09 m-1, with the highest values 

found near inflows in the south of the lake. S varied from 0.013-0.024 m-1 with a 

mean of 0.017 m-1, and this was the value of S adopted in the model. No significant 

correlation was found by Belzile et al. (2004) between CDOM and a ϕ(λ). The model 

also adopted SS bio-optical parameters from their study; mean Bbss 0.011, b*
SS (555) 

= 0.54 m2 g-1 at the Tokaanau tail race and n = 0.63. The value of b*
SS (443) was 

calculated from b*
SS(555) using a power function (Belzile et al. 2004): 
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Figure 5.2. Chlorophyll absorption cross section with wavelength. Black line is the lowest 

absorption measured by Belzile (2004), and the dashed line is from the Bacillariophyte 

Chaetoceros  protuberans (Sathyendranath et al. 1987). 

MODIS Aqua and Terra band 1 correlation to bio-optical modelled SS 

On 4 and 5 March 2004, SS was also estimated from MODIS Aqua B1 using linear 

regression relationships between SS estimated from the MODIS Aqua bio-optical 

model (1000 m resolution) and atmospherically corrected subsurface remote sensing 

reflectance from MODIS Aqua band 1 (250 m resolution) on corresponding dates. 

For estimation of SS from MODIS Terra, B1 on 4 (1100 h) and 5 (1000 h) March 

2004, no Terra bio-optical estimated SS was available for the regression, so SS was 

estimated from the regression relationship on 5 March 2004 (1415 h) created for 

MODIS Aqua. For regression relationships, a 1500 m buffer zone from the land-

water boundary into the lake was used to mask the influence of bottom reflectance 

and land contamination (e.g., stay light from land pixels), and any areas of cloud 

were also masked. For the estimation of SS from these regression relationships, all 

water areas were included by using an unsupervised classification of MODIS B2 to 

differentiate water and land. Adjacency effects (land contamination) and bottom 

reflection affect estimations of SS (Guanter et al. 2009), however, for the present 
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study all areas of the lake were included, including the near shore, as there was a 

need to distinguish certain nearshore features associated with inflows. 

5.3 Results 

Field data 

Field meteorological and water temperature data from 1 February to 14 March 2004 

are shown in Figure 5.3. This time period is of particular significance to the study, 

due to a one in one-hundred year high-discharge event in the Tongariro River. Figure 

5.3(a) shows rainfall for this time period and flow data from the Tongariro River 

from 27 February 2004 to 6 March 2004. A number of major rainfall events occurred 

of which the largest occurred on 20 February 2004 (max. 19 mm in one hour). On 29 

February 2004 Tongariro River flow peaked at 1325 m3 s-1(mean base flow is c. 30 

m3 s-1). The average flow on 4 and 5 March 2004 (corresponding to the two dates for 

which MODIS imagery was captured) was 89 m3 s-1. 

 

On 15 February average wind speed from hourly values between from 0400 and 

2100 h was > 4.7 m s -1 (SSE direction), with a maximum of 7.6 m s -1 at 1000 h 

(Figure 5.3(b)). The effect of the sustained high wind speed on lake thermal 

stratification can be seen on this day in Figure 5.3(c) as a seiche setup event. The 

seiching resulted in the largest displacement of the thermocline between 1 and 16 

February (Figure 5.3(c)), with an internal wave displacement of up to 95 m based on 

displacement of temperature isotherms in the metalimnion region. Figure 5.4 shows 

Secchi depth (m) at Site A (unshaded Secchi disk) and Site B (shaded Secchi disk). 

On 8 March 2004 Secchi depth at Site B was 5 m, the lowest ever recorded in Lake 

Taupo (Gibbs, unpubl. data). Nutrient concentrations and chl a did not show large 

fluctuations after the storm inflow event, except for particulate phosphorus at Site B, 

which increased from 1.8 µg L-1 on 26 February 2004 to 3.1 µg L-1 on 8 March 2004. 

This is consistent with phosphorus associated with particulate material originating 

from the Tongariro River (Viner 1988). 
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Figure 5.3. Plots of field data used in this study from 1 February to 14 March 2004. (a) Hourly 

rainfall (mm) and Tongariro River flow from 27 February to 6 March 2004 (m3 s-1) measured at 

Turangi. (b) Hourly wind speed (m s-1) measured at Turangi. (c) Interpolated thermistor chain 

data (oC) from Site B in Lake Taupo. 
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Figure 5.4. Secchi depth (m) from 19 November 2003 to 10 June 2004 from Site A (unshaded 

disk symbol) and Site B (shaded disk symbol). 

 

During the study period, in Site A in situ chl a close to the time of MODIS 

overpasses ranged from 0.3 µg L-1 (17 January 2008) to 2.9 µg L-1 (13 and 14 August 

2003). Succession of phytoplankton species followed a regular pattern in Lake 

Taupo (Gibbs 2011). 

Bio-optical modelling results 

Linear regression between observed and in situ values of chl a was not significant 

(p>0.05) when only one a*
ϕ(λ) value, corresponding to that for the Chlorophyte 

Dunaliella sp., was used. With a seasonally varying value of a*
 ϕ (λ) (refer to Figure 

5.2), linear regressions were highly significant (see Figure 5.5; r2 = 0.71, p<0.01, 

root mean squared error (RMSE) = 0.522 µg L-1 and normalised RMSE = 16%). 

Using a seasonally varying value of a*
 ϕ (λ), the highest magnitude (1.51 µg L-1) of 

residual values from the linear regression of estimated and in situ chl a occurred in 

August. Clouds were present in most images in this study, but for the images with 

the four largest chl a estimation residuals (three in August and one in December), 

clouds were present near the lake edge and may have affected chl a retrievals. 

Additionally, low solar elevation meant the signal to noise ratio would be higher in 

August. 
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Figure 5.5. In situ versus MODIS-estimated chlorophyll a. The line denotes the regression 

relationship (satellite-estimated chl a = 0.741 (In situ chl a) + 0.356) using a seasonally adjusted 

chlorophyll specific absorption coefficient (n = 23, r2 = 0.71, p<0.01, root mean squared error 

(RMSE) = 0.522 µg L-1). The estimations using the a*
ϕ(λ) from Belzile (2004) are shown with a 

diamond, and using a*
ϕ(λ) from the Bacillariophyte Chaetoceros  protuberans (Sathyendranath 

et al. 1987) shown with a square. 

 

Figure 5.6 shows MODIS-estimated chl a (µg L-1), CDOMD absorption at 443 nm 

(m-1), and SS (mg L-1) on 3 August 2004. A 1500 m buffer from the lake edge is 

shown as grey, in order to mask possible influences of bottom reflection and/or land 

contamination. In most cases the MODIS-estimated chl a showed little spatial 

variation, however, on this day relatively high chl a (max 2.65 µg L-1) and SS (max  

0.98 mg L-1) was observed in the south and east of Lake Taupo, and higher CDOMD 

absorption was evident in the south and west (max. absorption = 0.026 m-1 at 443 

nm). 
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Figure 5.6. MODIS-derived chl a (µg L-1), CDOMD absorption (abs) (m-1) at 443 nm and SS 

(mg L-1) on 3 August 2004. A grey-coloured buffer is used from the lake edge to 1500 m into the 

lake, to avoid possible areas of bottom reflectance and stray light from regions close to the 

shoreline. 

 

Figures 5.7 and 5.8 show MODIS-estimated chl a, CDOMD absorption at 443 nm, 

and SS on 4 and 5 March 2004, respectively. The white oval shape is used to mask a 

small area of cloud on 4 March 2004. In both images, there is higher chl a, SS and 

CDOMD absorption in the south basin, in close proximity to, and at a time of, high 

discharge from the Tongariro River (inflow location shown in Figure 5.1). On 4 

March 2004, a distinct broad plume is visible (Figure 5.7). Within the plume, 

maximum values were 2.3 µg chl a L-1, 0.038 m-1 CDOMD absorption, and 14.2 mg 

SS L-1. The bio-optical algorithm produced negative CDOMD absorption in northern 

areas of Lake Taupo at the opposite end to the plume. The plume front was 

associated with unusually high or low values of chl a, high CDOMD absorption, and 

low SS. On 5 March 2004 the plume was narrower, with lower concentrations of chl 
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a (max 1.61 µg L-1) and SS (max 7.08 mg L-1), however, CDOMD absorption was 

higher (0.060 m-1) at this time. 

 

Figure 5.7. MODIS-derived chl a (µg L-1), CDOMD absorption (abs) (m-1) at 443 nm and SS 

(mg L-1) on 4 March 2004. The white oval shape is used to mask a small area of cloud, and a 

grey-coloured buffer is used from the lake edge to 1500 m into the lake, to avoid possible areas 

of bottom reflectance and stray light from regions close to the shoreline. 

MODIS Aqua and Terra band 1 estimations of SS 

The relationship from linear regression between SS calculated from MODIS Aqua 

using bio-optical modelling and MODIS Aqua rrs(B1) on 4 March 2004 was: 

 

SS = 1022 rrs(B1) - 3.35  (r2 = 0.89, p<0.01, n = 3785) (5.8) 

 

This relationship was used to estimate the lake-wide distributions of SS in Figure 

5.9(b). At 1330 h on 5 March 2004 the relationship between MODIS Aqua SS 

derived from bio-optical modelling and MODIS Aqua rrs(B1), was: 
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SS = 1159.6 rrs(B1) - 0.48 (r² = 0.77, p<0.01, n = 3785) (5.9) 

 

 

Figure 5.8. MODIS-derived chl a (µg L-1), CDOMD absorption (abs) (m-1) at 443 nm and SS 

(mg L-1) on 5 March 2004. A grey-coloured buffer is used from the lake edge to 1500 m into the 

lake, to avoid possible areas of bottom reflectance and stray light from regions close to the 

shoreline. 

 

Equation 5.9 was used to estimate lake-wide distributions of SS in Figure 5.9(a), (b), 

(c) and (d). Even though r² was higher in Eq. 5.8, it produced negative SS values in 

estimations based on MODIS Terra rrs(B1). The high resolution of MODIS B1 

enabled quantification of plume features on a much finer scale than MODIS 1 km 

resolution bio-optical estimations. In Figure 5.9 the Tongariro River mouth is clearly 

identified as the source of the plume, and the high SS emanating into the lake and 

continuing in an easterly direction suggests that it was deflected along the shoreline 

before moving towards the central part of the lake. On 4 March a region of water 

with high SS near Motuoapa Bay (Figure 5.9 (a) and (b)) suggests that the plume 

detaches from the shoreline near this bay, while on 5 March the plume travels a 

shorter distance before detaching from the shoreline near Stump Bay (bay locations 
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shown in Figure 5.1(b)). On 5 March the plume is much narrower and appears to be 

deflected first right and then left, encountering what appears to be two separate 

gyres. On 5 March SS concentrations were high near the Tongariro inflow, with an 

abrupt decrease as the plume entered the main body of the lake. There was high 

variability of SS concentrations at this transition point, possibly associated with 

differential advection into the gyre. 

 

Figure 5.10 shows a photograph coincidentally taken from an aircraft early on the 

morning on 5 March. This photograph was captured from above the north-eastern 

shore of Lake Taupo looking south-west. The plume appears to take a similar path to 

that shown in Figure 5.9 (c) and 5.9 (d), and the photo shows evidence of a large 

clockwise gyre in the area where the plume enters the main basin of Lake Taupo 

from the southern basin. 

 

 

Figure 5.9. MODIS band 1 SS calculated from eq. 5.8 and 5.9, on 4 and 5 March 2004. The 

white oval shape shows areas where cloud has been masked. 
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Figure 5.10. Photograph of Lake Taupo taken from c. 3000 m above Taupo Airport on the 

north eastern shore looking towards the south-west shore (Photo by Jonathan King, 5 March 

2004).  

5.4 Discussion 

Increased focus has been placed on the contribution of inherent optical property 

constituents on the accuracy of any derived products from remote sensing 

(Sathyendranath et al. 2001; Stramski et al. 2001). Our study confirms previous 

oceanographic optical studies that show that inclusion of varying phytoplankton 

IOPs can increase the accuracy of derived water quality parameters such as chl a 

(Carder et al. 1999). While choice of a*
ϕ(λ) values was made based on time of year 

and historical patterns of species succession, an ideal algorithm would derive a 

suitable a*
ϕ(λ) value from reflectance. In oligotrophic lakes deriving a suitable a*

ϕ(λ) 

becomes difficult, however, as the low concentration of chl a results in low total 

absorption and similar spectral signatures throughout the year. In winter in 

particular, there is low solar elevation, lower signal to noise ratio and greater cloud 

cover, which collectively hinder remote sensing accuracy, suggesting that more 

testing of the algorithm is needed. Gons et al. (2008), for example identified chl a 

concentrations of 2 to 5 µg L-1 as being the most problematic for remote sensing 
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retrieval in the Laurentian Great Lakes, a problem which the author termed the 

‘mesotrophic blind’. 

 

The two different a*
ϕ(λ) values used in this study are analogous to those used by 

Carder (1999); (1) high photoprotective pigment to chlorophyll ratio and low self-

shading unpackaged chloroplasts (using Belzile a*
ϕ(λ), representing small celled 

chloropytes and cyanobacteria), (2) low photoprotective pigment to chlorophyll ratio 

and high self-shading (Bacillariophyte a*
ϕ(λ)), however this study did not include a 

transitional phase. The value of Belzile a*
ϕ(λ) is within literature ranges for other 

lakes (Campbell et al. 2011b), estuaries (Mercado et al. 2006), and coastal waters 

(Blondeau-Patissier et al. 2009), and it of similar magnitude to a*
ϕ(λ) measured in 

coastal oligotrophic waters of the North Atlantic (Babin et al. 2003). Although there 

has been increased interest in the development of bio-optical algorithms to account 

for varying inherent optical properties associated with different phytoplankton 

groups, sizes and physiological status (e.g., based on nutrient and irradiance 

exposure levels), there has been limited application of such algorithms for ocean 

colour satellite imagery. Our study could benefit from further investigation into a*
ϕ 

(λ) values in Lake Taupo during winter, when chl a concentrations attain their annual 

maximum (e.g., Vincent 1983), and residuals from the model are highest.  

 

The previously observed phytoplankton succession in Lake Taupo can be related to 

specific physiological and morphological adaptations of the species represented but 

perhaps at a more general level, for the purposes of remote sensing, the succession 

could be denoted by transitions in phytoplankton functional groups denoted by 

letters of the alphabet (Reynolds et al. 2002). In the stratified months Botryococcus 

braunii dominated (Group F: adapted to clear epilimnia and low-nutrient tolerance), 

and Dinobyron sp. sometimes dominated (Group E, adapted to low nutrients, high 

light, and can resort to mixotrophy). The cyanophyte Anabaena flos-aquae appeared 

in autumn (group HI: adapted to low nitrogen/nitrogen-fixing, low phosphorus, low 

light). The dominance of Bacillariophytes (Group C and P) in winter reflects their 

tolerance to disturbance (particularly mixing), however, group C and P are specified 

as representative of eutrophic lakes in the classification. Winter may represent a time 

when nutrients are largely replete (as in eutrophic lakes) due to a fully mixed water 
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column, offsetting low light availability and low temperature (Vincent 1983). 

Additionally greater turbulence and mixing in winter would allow negatively 

buoyant siliceous diatoms to remain in suspension. 

 

Neither in situ measurements of CDOM absorption or SS concentration were 

available to fully validate the model results of my study. The retrieval of negative 

CDOMD absorption values for some images may indicate problems with either the 

model parameterisation or atmospheric correction. Since measured IOPs were used 

to parameterise the bio-optical model, it is more likely that they are a result of 

inaccuracies in atmospheric correction. The assumption of an AOD value of 0.5 used 

in atmospheric correction may have led to unrealistically high reflectance at lower 

wavelengths, and since CDOMD absorbs most strongly in this region of the 

spectrum, high reflectance would be treated by the model as low CDOMD 

absorption. In future studies a more accurate source of AOD data may be needed for 

CDOMD quantification. Remote sensing of North Island lakes would benefit from 

measurements of AOD at a North Island site in addition to the South Island Lauder 

site. Retrieved SS values were realistic for non-flood conditions, and were 

comparable to those previously measured (Belzile et al. 2004), however, flood 

conditions were unprecedented in the measurement history and no in situ data exist 

for comparison of SS in the flood inflow plume. 

 

Horizontal variability of water quality parameters in Lake Taupo is considered to be 

minimal and mid-lake Site A is currently used in the TLTMP to represent long-term 

changes in lake water quality. My study found little spatial variability in most 

images, however, the two exceptions discussed show that this was not always the 

case. The accuracy of monitoring in Lake Taupo would benefit from at least one 

additional monitoring site in the southern basin, the present study shows that 

conditions in this part of the lake are more variable. This variability appears to be 

contributed in large part from the influence of the major inflow, the Tongariro River. 

The presence of gyres that appear to be more specific to, and mostly contained in, 

the southern end of the lake may limit exchange between the southern and northern 

lake basins. Monitoring of CDOM and SS in Lake Taupo would also aid in further 

algorithm development for applications of remote sensing to enhance the spatial and 
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temporal coverage which is currently limited with in situ sampling to just one station 

(A) in the central basin of the lake. 

 

Turbid inflows often propagate as relatively discrete density currents into stratified 

waters (Imberger et al. 1989). The large flood-derived turbid inflow from the 

Tongariro River provided insights into Lake Taupo hydrodynamics and circulation. 

The presence of gyres and internal waves indicates complex physical mixing and 

transport phenomena. Of particular interest is the elevated SS present in gyre 

locations. Gyres can cause upwelling (MacIntyre and Melack 1995), and this may be 

responsible for locally elevated SS concentrations in upwelling areas. It is possible 

that there was floating debris such as low-density pumice (floating volcanic-origin 

rock) and organic matter at the head of the plume, which may have caused the highly 

variable SS and chl a estimation at the plume front. In Lake Taupo floating pumice 

plumes in the lake are often associated with storm flow discharges (M. Gibbs, 

NIWA, personal communication).  

 

No water temperature data were available for the Tongariro inflow, so it was only 

possible to speculate on its fate, but Spigel et al. (2005) has previously shown that 

water temperature is the dominant driver of inflow insertion depth into the water 

column of Lake Taupo. The Tongariro inflow enters the lake as numerous turbulent 

jets in close proximity, and subsequently merging. At 25 m from the entrance the 

plume extended as a turbulent jet moving (via deflection) in a northeast direction 

over the entire 10 m of the water column (Spigel et al. 2005). The authors postulated 

that this deflection to the northeast was likely due to ambient lake currents rather 

than Coriolis forces which would act in the northwest direction. The inflow then 

plunged down a very steep lake bed slope but eventually lifted to form an interflow 

at a depth of c. 45 m. In contrast, in the present study, the satellite-observed inflow 

was deflected strongly to the northwest, remaining attached to the shoreline for some 

distance, indicating ambient lake currents and possibly Coriolis effects played a 

greater role at this time. 

 

Phytoplankton did not show any concentration fluctuation in response to increased 

particulate phosphorus associated with the flood flow event in March 2004. Post-
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flood winter levels of chl a in 2004 were little different to previous years, and it is 

likely that the high SS in the inflow plume was primarily composed of allochthonous 

particulate matter which was predominantly inorganic (Bloesch 1995). This 

inorganic matter likely contains phosphorus adsorbed onto Fe and Mn oxy-

hydroxides (Viner 1978), and would eventually settle to the lake bed. This absorbed 

phosphorous in the sediment can be released to the water column by active redox 

processes that reduce the metal oxides (Wilson et al. 2010), however, oxic surface 

sediments in Lake Taupo may prevent the reduction of these metals and therefore the 

release of phosphorus.  

 

Using an optimised semi-analytical bio-optical model the present study found that 

MODIS estimates of chl a concentration can be accurately related to in situ data. The 

bio-optical model used in this study is applicable to other high spectral resolution 

satellites such as the Envisat MERIS, which has a resolution of 260 m x 300 m, 

presenting to opportunities to increase the spatial resolution of remote sensing for 

water quality retrieval, depending on weather conditions. This study has highlighted 

the importance of accurate input data for atmospheric correction including an 

alternative source of AOD data to ensure accuracy, especially in blue wavelengths. 

Remote sensing can complement the current Taupo long term monitoring 

programme through increased spatial and temporal resolution of monitoring. Use of 

empirical relationships between bio-optical-estimated SS and band 1 subsurface 

remote sensing reflectance would allow increased temporal and spatial resolution of 

monitoring, allowing for resolution to study fine-scale features. 
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6 Conclusions 

6.1 Research summary 

Human activities are increasingly impacting upon the quality and quantity of 

freshwaters across the globe. Management of freshwaters needs to be cost-effective, 

and in order for this to occur there must be emphasis on technological developments 

related to monitoring and modelling of water quality so that there is informed 

decision making. This thesis describes methods developed for remote sensing of 

water quality variables and temperature using empirical, semi-analytical and 

analytical algorithms, with synoptic estimations derived to allow comparisons with 

3-D lake model simulations of water temperature and suspended minerals. 

 

The high spatial resolution of Landsat and the freely available archive of data 

spanning more than 40 years have made Landsat the sensor of choice for monitoring 

inland water quality in small lakes. In order to efficiently make use of this resource 

for water quality monitoring, automation of image processing is required. In Chapter 

2 an automated image processing method was derived to estimate chl a from Landsat 

imagery, using empirical models. The automation allowed processing of large 

numbers of images, and an evaluation of algorithm robustness over multiple images. 

For the estimation of chl a over a time series of images, the use of symbolic 

regression resulted in a significant improvement in the precision of chl a estimation 

compared with traditional approaches based on regression equations. Whilst Landsat 

remote sensing provides high spatial resolution, spectral resolution is low, which can 

result in opposing absorption and scattering features of optically active constituents 

that contribute to subsurface irradiance reflectance within individual bands. To 

investigate the potential sources of error of chl a using the symbolic regression 

algorithm, bio-optical modelling was used to estimate theoretical changes in Landsat 

subsurface irradiance reflectance from waters containing fixed chl a and varying 

coloured dissolved organic matter (CDOM) or tripton. Bio-optical modelling 
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demonstrated that the presence of CDOM and tripton contributes to large changes in 

simulated Landsat B1-B3 subsurface irradiance reflectance. Therefore CDOM and 

tripton can perturb the symbolic regression relationship, and have the potential to 

cause moderate to large errors in chl a estimation in optically complex waters. 

However, in Chapter 2 it was demonstrated that Landsat-based empirical algorithms 

for remote sensing of chl a still provide a valuable method for mapping the 

distribution of phytoplankton at a landscape scale, providing synoptic ‘snapshots’ 

and a cost effective solution for examining temporal trends in water quality across a 

large number of lakes for which it may not be feasible to establish a routine ground-

based monitoring programme in all lakes. Trends in satellite imagery acquisition and 

processing show that the spatial resolution and frequency of image capture are 

increasing and therefore remote sensing is likely to be increasingly used for detection 

of temporal and spatial trends in water quality within and between lakes. 

 

Water temperature is fundamental in determining water circulation and mixing 

patterns, and for inducing spatial (horizontal and vertical) and temporal variations in 

phytoplankton biomass. Atmospheric correction (AC) is a crucial step in determining 

water temperature from satellite data, as differences between bulk water temperature 

and uncorrected satellite-derived water skin temperature can be as large. In Chapter 

3 the accuracy of Landsat water surface temperature retrieval was investigated, 

including the influence of different sources of atmospheric profile data used in 

MODTRAN-based atmospheric correction. The highest accuracy of Landsat ETM+ 

temperature estimation in Lake Rotorua was with radiosonde data as an input into 

MODTRAN, which gave a root-mean-square-error (RMSE) of 0.37 ºC, followed by 

MODIS Level 2 (0.55 ºC), AIRS Level 3 (0.75 ºC), and NASA data (1.05 ºC). Of the 

globally available atmospheric profile data for atmospheric correction, MOD07 

provided the most accurate water temperature retrieval, with an error comparable to 

that obtained from radiosonde data. Lake surface water temperature images were 

used to validate a 3-D hydrodynamic model of Lake Rotoehu. This validation proved 

satisfactory for using the hydrodynamic model to reproduce the dominant spatial 

variations in temperature in the lake, including the path of a geothermal inflow and 

basin-scale thermal distribution patterns. This study highlighted the ability of the 3-

D hydrodynamic model ELCOM to accurately estimate physical properties of lakes 
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such as temperature and the inferred circulation pattern, while demonstrating the 

applicability of using satellite imagery for 3-D model validations. 

 

The temporal resolution of Landsat data (16 days) is such that in New Zealand there 

is limited access to cloud-free images. While the research using Landsat in Chapters 

2 and 3 allowed for high spatial resolution snapshots of chl a concentration and 

water temperature, the temporal resolution was limited. In larger lakes, the use of 

ocean colour satellites such as MODIS offers the possibility of near real time 

monitoring of water quality. A semi-analytical algorithm was developed in Chapter 

3, to determine spatial and temporal variations of tripton in a large, shallow lake 

(Ellesmere, South Island, New Zealand), from the Moderate Resolution Imaging 

Spectroradiometer (MODIS) subsurface remote sensing reflectance. These data were 

used to quantitatively validate simulations of suspended inorganic minerals derived 

from a 3-D hydrodynamic-ecological model, ELCOM-CAEDYM, using four 

different spatially-resolved statistical techniques. The statistical analysis showed that 

the model did not perform well in reproducing both basin-scale and fine-scale spatial 

variation in suspended minerals derived from MODIS satellite imagery. The 

spatially resolved statistical analysis of modelled and satellite estimated suspended 

minerals allowed a quantitative statistical comparison which would not otherwise 

have been possible with conventional regression methods. Application of the bio-

optical over the lifetime of the MODIS sensor will greatly extend its spatial and 

temporal coverage for monitoring purposes, and provide a tool to validate the 

simulated suspended minerals from 1-D and 3-D models on a daily basis. The 

models developed in this study could be of value for management purposes, to 

provide a guide to assigning water levels that may reduce sediment resuspension and 

potentially allow re-establishment of an alternate clear-water state associated with 

the re-colonisation of macrophytes. 

 

The empirical and semi-analytical approach adopted to estimate water quality 

parameters from remote sensing imagery in chapters 2 and 4 was not able to estimate 

with any accuracy multiple co-varying water quality parameters. Analytical 

algorithms were therefore developed in order to model the combined effects of all 

optically active substances on subsurface remote sensing reflectance. The model was 
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optimised using in situ IOPs from the literature. Images were atmospherically 

corrected using 6sv. Two different chl a-specific absorption spectra were used, based 

on the seasonal dominance of phytoplankton phyla with differing absorption 

properties. The application of this model resulted in good agreement between 

estimated and in situ chl a concentrations (r2=0.71, p<0.01). Highest concentrations 

were observed during winter when Bacillariophytes (diatoms) dominated the 

phytoplankton assemblage. On 4 and 5 March 2004 an unusually large turbidity 

current was observed originating from the Tongariro River inflow in the south-east 

of the lake. In order to resolve fine details of the plume, empirical relationships 

between MODIS band 1 reflectance (250-m resolution) and SS estimated from 

MODIS bio-optical features (1-km resolution) were used to estimate SS at 250-m 

resolution. Complex lake circulation patterns were observed including a large 

clockwise gyre. With the development of this bio-optical model MODIS can be used 

to remotely sense optically active constituents in near real time, and the relationship 

developed for SS estimation using band 1 can therefore be used to provide sufficient 

resolution to detect fine-scale features such as turbidity currents. 

6.2 Final conclusions 

Remote sensing of lake water temperature has been undertaken in a number of 

instances, however, my study identified that atmospheric correction is critical in the 

retrieval of accurate surface water temperature data. For the Landsat satellite, 

radiative transfer modelling of the atmosphere is the only accurate atmospheric 

correction option applicable to thermal imagery. Atmospheric profile data that is 

modelled or captured is an essential input to the radiative transfer model. My study 

has shown that the accuracy of this data has significant effects on the accuracy 

atmospheric correction and subsequent water surface temperature retrieval. Use of 

radiosonde atmospheric profile data to parameterise the radiative transfer model 

offered the highest accuracy of temperature retrieval, however, use of MODIS also 

resulted in high-accuracy temperature retrieval and has the advantage of being able 

to be applied globally. 
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For the remote sensing of optically active water constituents, there is no one 

definitive remote sensing solution for any lake or group of lakes, and the method 

needs to be tailored to the lake size and optical complexity of the system, and the 

spectral and spatial resolution of the remote sensor. Algorithms for remote sensing of 

optically active water constituents can be divided into analytical, semi-analytical or 

empirical methods. Empirical methods are applicable where there is a simple 

relationship between the optically active constituent of interest (e.g., chl a, or 

tripton). Empirical methods targeting specific water quality parameters are therefore 

usually limited to lakes where only one water quality variable dominates reflectance. 

This empirical approach requires in situ samples to be taken near the time of image 

capture for a few representative lakes (e.g., 10 – 15 as in my study) within the image. 

However, with atmospheric corrections applied to images, these estimations can be 

extended to other images without in situ samples, in a semi-quantitative fashion. 

Semi-analytical algorithms can often be applied in the place of empirical algorithms, 

and have a number of advantages. Semi-analytical algorithms can be developed 

independently of in situ samples, are applicable to multiple satellite sensors and have 

greater spatio-temporal applicability. Analytical algorithms are designed to 

determine more than one water quality parameter simultaneously, however, a 

suitable satellite sensor is required which has the spectral resolution to separate fine 

reflectance features. Such satellites include the low spatial resolution ocean colour 

satellites such as MODIS and MERIS. The disadvantages of low spatial resolution 

are offset, however, by the high temporal resolution (daily imagery in the case of 

MODIS) and spectral resolution. Most analytical methods do not require in situ data 

(except for validation), but do require parameterisation with in situ inherent optical 

properties.  

 

Remote sensing remains the only method to quantitatively assess water quality over 

large areas simultaneously, and has the potential to allow monitoring of water quality 

globally. However, remote sensing should not be considered as a replacement for 

traditional monitoring techniques, but is complimentary, as it can only derive 

information on optically active water quality constituents. Thus information cannot 

be derived for variables such as nutrients or pollutants such as heavy metals. In 

addition, remote sensing does not capture variations of optically active components 
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deeper in the water column, which means that relevant phenomena such as deep 

chlorophyll maxima are not included in assessments of biomass and productivity of 

aquatic systems.  

 

The data derived from in situ grab-sampling, autonomous water quality monitoring 

sensors, remote sensing and 3-D modelling all have different spatial, temporal and 

water quality parameter characteristics. The analysis of data from each of these 

sources enables more effective water quality monitoring and management. Remote 

sensing provides the opportunity to calibrate, update, and validate 3-D models based 

on hindcast simulations. Modelling studies provide insights into complex water 

quality dynamics, describing observed spatial distributions which are critical to 

understanding ecosystem function. With increased development and deployment of 

autonomous water quality monitoring sensors, opportunities to calibrate and validate 

satellite remote sensing algorithms will increase in the future. In this study remote 

sensing and 3-D modelling data were synthesised to provide an example of 

unparalleled opportunity for cost effective and quantitative validation of modelling 

results.  

6.3 Recommendations for future work 

In Chapter 2, chl a explained most of the variation in retrieved Landsat water surface 

reflectance, however, in some of the shallow Rotorua lakes resuspended sediment 

may influence the accuracy of chl a retrieval. Further investigation is needed into 

satellite platforms that possess the spectral resolution to allow the application of 

water quality retrieval algorithms that account for multiple optically active 

constituents. For example, bio-optical algorithms have been used with medium-

spectral resolution imaging spectrometer (MERIS) data for the remote sensing of 

turbid inland waters where both chl a and suspended minerals are responsible for 

significant portions of the reflectance measured by satellites. The precision of bio-

optical models depends on their parameterization of inherent optical properties, of 

which very little is known regarding the Rotorua lakes. Future research should be 

focused on measuring there parameters, in conjunction with in situ radiometry. 
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As demonstrated in Chapter 3, the 3-D hydrodynamic model reproduced satellite-

observed surface water temperature with considerable accuracy. At 30-m horizontal 

resolution, the model was suited for validation by 60-m resolution thermal satellite 

imagery, however, at 30-m the resolution was coarse considering the small area 

occupied by the geothermal plume zone. Increasing the resolution would cause the 

model to run too slowly for more intensive validation through time, but alternative 

grid structures with varying cell size could be investigated to at least partially 

circumvent this problem. Hydrodynamic models exist which use unstructured 

triangular cells, for example, and these may allow for higher resolution near the 

shoreline. Additionally, in situ data on current velocity/direction and temperature in 

the plume zone would provide model validation data that could more specifically 

target circulation patterns. 

  

As demonstrated in Chapter 4 the 3-D model of Lake Ellesmere performed poorly in 

reproducing MODIS-estimated, basin-scale and fine-scale variations in suspended 

minerals. As identified in detail in the discussion in Chapter 4, there are a number of 

improvements which could be made to the modelling approach. These include 

investigation of horizontally varying grain size, and application of more advanced 

wave models to account for diffraction and refraction. Furthermore the inherent 

optical properties of Lake Ellesmere could be measured in order to validate the semi-

analytical modelling approach used to estimate suspended sediment. 

 

In Chapter 5, a radiative transfer model, 6sv, was used to atmospherically correct 

MODIS 1-km resolution satellite imagery. With automation the entire archive of 

MODIS imagery for Lake Taupo could be processed, which would further elucidate 

the validity and robustness of the seasonally parameterised bio-optical model. More 

investigation is needed on the absorption properties of phytoplankton in winter and 

spring, as at this time the largest uncertainty in chl a estimations was encountered, 

likely due to species composition changes and the associated changes in reflectance 

characteristics of the assemblage. 
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6.4 Future directions 

Recent technological developments and remote sensing technology have allowed 

remote sensing to focus from deriving chl a in Case 1 oceanic waters to deriving chl 

a, coloured dissolved organic matter and tripton in optically complex Case 2 inland 

and coastal waters. Along with sensor technology, water quality retrieval algorithms 

have also become more sophisticated. The development of sensors with moderate 

spatial resolution and high spectral resolution, such as MODIS, has facilitated the 

continued development of bio-optical algorithms for remote sensing of Case 2 

waters. The Visible Infrared Imaging Radiometer Suite (VIIRS) on-board the 

National Preparatory Project (NPP) satellite (launched 28 October 2011) is designed 

to improve upon the MODIS data record, with increased spatial resolution (750 m), 

whist maintaining similar spectral resolution. 

 

The Landsat satellite offers the longest continuous optical record of the Earth’s 

surface, spanning more than 40 years. While it has limited spectral resolution and 

limited signal-to-noise ratio (which limits temporal stability), the sensor has proved 

exceedingly useful for many applications, including remote sensing of large and 

small lakes. Currently the Landsat 5 and Landsat 7 sensors are at the end of their 

functional life and the remote sensing community is eagerly awaiting their 

replacement with proposed new satellite launches. The Landsat Data Continuity 

Mission (LDCM), which supports the Operational Land Imager (OLI) on-board 

Landsat 8, has improved quantization and spectral resolution over past Landsat 

satellites. The combination of data from OLI and VIIRS sensors will improve water 

quality and remote sensing solutions for small and large lakes, ensuring further 

expansion of NASA-based remote sensing of water quality. 
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7 Appendix 

7.1 ENVI IDL image processing routines written for Landsat image 

processing  

PRO batch_subset_via_roi_landsat_rot 

  ENVI, /RESTORE_BASE_SAVE_FILES 

  ENVI_BATCH_INIT, LOG_FILE='batch.txt' 

input_dir = 'C:\Users\mat\Documents\LANDSAT\rotsouthETM\' 

input_dir_name_lenght=STRLEN(input_dir) 

output_location = 'C:\Users\mat\Documents\LANDSAT\rotsouthETM\' 

flist=FILE_SEARCH('C:\Users\mat\Documents\LANDSAT\rotsouthETM\*', 

COUNT=count) 

 

FOR h=0, count-1 Do Begin 

 

            path_filename=flist[h] 

            imagelist=FILE_SEARCH(path_filename+'\*.TIF')            

            path_filename_lenght=STRLEN(path_filename) 

            filename=STRMID(path_filename,input_dir_name_lenght) 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

            envi_open_file, imagelist(0), r_fid=fid                                       

            ENVI_FILE_QUERY,fid,DIMS=dims,NS=ns,NL=nl,NB=nb 

            t_fid=LONARR(nb)+fid 

            pos=LINDGEN(nb)               

               

            ;open the EVF file 

            evf_file = 'E:\LANDSAT_6stxts\clipS.evf' 

            evf_id=ENVI_EVF_OPEN(evf_file) 

               

            ;get the vector information 

            

ENVI_EVF_INFO,evf_id,NUM_RECS=num_recs,DATA_TYPE=data_type,P

ROJECTION=projection,$ 

            LAYER_NAME=layer_name 

               

            ;print information about each record 

            PRINT, 'Number of records:',num_recs 

            FOR i=0,num_recs-1 DO BEGIN 
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            record=ENVI_EVF_READ_RECORD(evf_id,i) 

            PRINT, 'Number of nodes in Record 

'+STRTRIM(i+1,2)+':',N_ELEMENTS(record[0,*]) 

            PRINT, 'Record Info:' 

            PRINT, record 

            ENDFOR 

               

              ; Get record info (assuming one record in EVF) 

              record=ENVI_EVF_READ_RECORD(evf_id,0) 

               

              ;  Result[0, *] contains the x values, and Result[1, *] contains the y values 

              xMap=record[0,*]  

              yMap=record[1,*] 

               

              roi_id = ENVI_CREATE_ROI(COLOR=4, NAME='rotCLIP_roi', NS=ns, 

NL=nl)  

 

              ; Define the roi 

              ENVI_DEFINE_ROI, roi_id, /POLYGON, XPTS=xMap, YPTS=yMap  

              ;roi_data = ENVI_GET_ROI_DATA(roi_id,POS=pos,FID=t_fid) 

             

              ;Convert record to xy pixel coordinates of the image to be subsetted 

              ENVI_CONVERT_FILE_COORDINATES,fid,xf,yf,xMap,yMap 

               

              ;Prepare the subset dimensions 

              dims[0]= ENVI_GET_ROI_DIMS_PTR(roi_id) ;-1L ; A Pointer to the 

;Opened ROI 

              dims[1]=min(xf)-1 ; The starting sample number, the first x pixel is 0 

              dims[2]=max(xf)-1 ; The Ending sample number 

              dims[3]=min(yf)-1 ; The starting line number, the first y pixel is 0 

              dims[4]=max(yf)-1 ; The ending line number. 

               

              ;Use copyfile_doit to copy input file with new dimensions 

              

ENVI_DOIT,'CF_DOIT',FID=t_fid,POS=pos,DIMS=dims,REMOVE=0,OUT_

NAME=path_filename+'\'+filename+'_b1DN_rotS.img',R_FID=r_fid 

               

              envi_file_mng, id=fid, /remove 

              envi_file_mng, id=r_fid, /remove 

     

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

   

            envi_open_file, imagelist(1), r_fid=fid                                       

            ENVI_FILE_QUERY,fid,DIMS=dims,NS=ns,NL=nl,NB=nb 

            t_fid=LONARR(nb)+fid 

            pos=LINDGEN(nb)               

               

            ;open the EVF file 

            evf_file = 'E:\LANDSAT_6stxts\clipS.evf' 
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            evf_id=ENVI_EVF_OPEN(evf_file) 

               

            ;get the vector information 

            

ENVI_EVF_INFO,evf_id,NUM_RECS=num_recs,DATA_TYPE=data_type,P

ROJECTION=projection,$ 

            LAYER_NAME=layer_name 

               

            ;print information about each record 

            PRINT, 'Number of records:',num_recs 

            FOR i=0,num_recs-1 DO BEGIN 

            record=ENVI_EVF_READ_RECORD(evf_id,i) 

            PRINT, 'Number of nodes in Record 

'+STRTRIM(i+1,2)+':',N_ELEMENTS(record[0,*]) 

            PRINT, 'Record Info:' 

            PRINT, record 

            ENDFOR 

               

              ; Get record info (assuming one record in EVF) 

              record=ENVI_EVF_READ_RECORD(evf_id,0) 

               

              ;  Result[0, *] contains the x values, and Result[1, *] contains the y values 

              xMap=record[0,*]  

              yMap=record[1,*] 

               

              roi_id = ENVI_CREATE_ROI(COLOR=4, NAME='rotCLIP_roi', NS=ns, 

NL=nl)  

              ; Define the roi 

              ENVI_DEFINE_ROI, roi_id, /POLYGON, XPTS=xMap, YPTS=yMap  

              ;roi_data = ENVI_GET_ROI_DATA(roi_id,POS=pos,FID=t_fid) 

             

              ;Convert record to xy pixel coordinates of the image to be subsetted 

              ENVI_CONVERT_FILE_COORDINATES,fid,xf,yf,xMap,yMap 

               

              ;Prepare the subset dimensions 

              dims[0]= ENVI_GET_ROI_DIMS_PTR(roi_id) ;-1L ; A Pointer to the 

Opened ROI 

              dims[1]=min(xf)-1 ; The starting sample number, the first x pixel is 0 

              dims[2]=max(xf)-1 ; The Ending sample number 

              dims[3]=min(yf)-1 ; The starting line number, the first y pixel is 0 

              dims[4]=max(yf)-1 ; The ending line number. 

               

              ;Use copyfile_doit to copy input file with new dimensions 

              

ENVI_DOIT,'CF_DOIT',FID=t_fid,POS=pos,DIMS=dims,REMOVE=0,OUT_

NAME=path_filename+'\'+filename+'_b2DN_rotS.img',R_FID=r_fid 

               

              envi_file_mng, id=fid, /remove 

              envi_file_mng, id=r_fid, /remove 
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;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

            envi_open_file, imagelist(2), r_fid=fid                                       

            ENVI_FILE_QUERY,fid,DIMS=dims,NS=ns,NL=nl,NB=nb 

            t_fid=LONARR(nb)+fid 

            pos=LINDGEN(nb)               

               

            ;open the EVF file 

            evf_file = 'E:\LANDSAT_6stxts\clipS.evf' 

            evf_id=ENVI_EVF_OPEN(evf_file) 

               

            ;get the vector information 

            

ENVI_EVF_INFO,evf_id,NUM_RECS=num_recs,DATA_TYPE=data_type,P

ROJECTION=projection,$ 

            LAYER_NAME=layer_name 

               

            ;print information about each record 

            PRINT, 'Number of records:',num_recs 

            FOR i=0,num_recs-1 DO BEGIN 

            record=ENVI_EVF_READ_RECORD(evf_id,i) 

            PRINT, 'Number of nodes in Record 

'+STRTRIM(i+1,2)+':',N_ELEMENTS(record[0,*]) 

            PRINT, 'Record Info:' 

            PRINT, record 

            ENDFOR 

               

              ; Get record info (assuming one record in EVF) 

              record=ENVI_EVF_READ_RECORD(evf_id,0) 

               

              ;  Result[0, *] contains the x values, and Result[1, *] contains the y values 

              xMap=record[0,*]  

              yMap=record[1,*] 

               

              roi_id = ENVI_CREATE_ROI(COLOR=4, NAME='rotCLIP_roi', NS=ns, 

NL=nl)  

              ; Define the roi 

              ENVI_DEFINE_ROI, roi_id, /POLYGON, XPTS=xMap, YPTS=yMap  

              ;roi_data = ENVI_GET_ROI_DATA(roi_id,POS=pos,FID=t_fid) 

             

              ;Convert record to xy pixel coordinates of the image to be subsetted 

              ENVI_CONVERT_FILE_COORDINATES,fid,xf,yf,xMap,yMap 

               

              ;Prepare the subset dimensions 

              dims[0]= ENVI_GET_ROI_DIMS_PTR(roi_id) ;-1L ; A Pointer to the 

Opened ROI 

              dims[1]=min(xf)-1 ; The starting sample number, the first x pixel is 0 

              dims[2]=max(xf)-1 ; The Ending sample number 

              dims[3]=min(yf)-1 ; The starting line number, the first y pixel is 0 

              dims[4]=max(yf)-1 ; The ending line number. 
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              ;Use copyfile_doit to copy input file with new dimensions 

              

ENVI_DOIT,'CF_DOIT',FID=t_fid,POS=pos,DIMS=dims,REMOVE=0,OUT_

NAME=path_filename+'\'+filename+'_b3DN_rotS.img',R_FID=r_fid 

               

              envi_file_mng, id=fid, /remove 

              envi_file_mng, id=r_fid, /remove 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;   

            envi_open_file, imagelist(3), r_fid=fid                                       

            ENVI_FILE_QUERY,fid,DIMS=dims,NS=ns,NL=nl,NB=nb 

            t_fid=LONARR(nb)+fid 

            pos=LINDGEN(nb)               

               

            ;open the EVF file 

            evf_file = 'E:\LANDSAT_6stxts\clipS.evf' 

            evf_id=ENVI_EVF_OPEN(evf_file) 

               

            ;get the vector information 

            

ENVI_EVF_INFO,evf_id,NUM_RECS=num_recs,DATA_TYPE=data_type,P

ROJECTION=projection,$ 

            LAYER_NAME=layer_name 

               

            ;print information about each record 

            PRINT, 'Number of records:',num_recs 

            FOR i=0,num_recs-1 DO BEGIN 

            record=ENVI_EVF_READ_RECORD(evf_id,i) 

            PRINT, 'Number of nodes in Record 

'+STRTRIM(i+1,2)+':',N_ELEMENTS(record[0,*]) 

            PRINT, 'Record Info:' 

            PRINT, record 

            ENDFOR 

               

              ; Get record info (assuming one record in EVF) 

              record=ENVI_EVF_READ_RECORD(evf_id,0) 

               

              ;  Result[0, *] contains the x values, and Result[1, *] contains the y values 

              xMap=record[0,*]  

              yMap=record[1,*] 

               

              roi_id = ENVI_CREATE_ROI(COLOR=4, NAME='rotCLIP_roi', NS=ns, 

NL=nl)  

              ; Define the roi 

              ENVI_DEFINE_ROI, roi_id, /POLYGON, XPTS=xMap, YPTS=yMap  

              ;roi_data = ENVI_GET_ROI_DATA(roi_id,POS=pos,FID=t_fid) 

             

              ;Convert record to xy pixel coordinates of the image to be subsetted 

              ENVI_CONVERT_FILE_COORDINATES,fid,xf,yf,xMap,yMap 
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              ;Prepare the subset dimensions 

              dims[0]= ENVI_GET_ROI_DIMS_PTR(roi_id) ;-1L ; A Pointer to the 

Opened ROI 

              dims[1]=min(xf)-1 ; The starting sample number, the first x pixel is 0 

              dims[2]=max(xf)-1 ; The Ending sample number 

              dims[3]=min(yf)-1 ; The starting line number, the first y pixel is 0 

              dims[4]=max(yf)-1 ; The ending line number. 

              

               

              ;Use copyfile_doit to copy input file with new dimensions 

              

ENVI_DOIT,'CF_DOIT',FID=t_fid,POS=pos,DIMS=dims,REMOVE=0,OUT_

NAME=path_filename+'\'+filename+'_b4DN_rotS.img',R_FID=r_fid 

               

              envi_file_mng, id=fid, /remove 

              envi_file_mng, id=r_fid, /remove 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

            envi_open_file, imagelist(4), r_fid=fid                                       

            ENVI_FILE_QUERY,fid,DIMS=dims,NS=ns,NL=nl,NB=nb 

            t_fid=LONARR(nb)+fid 

            pos=LINDGEN(nb)               

               

            ;open the EVF file 

            evf_file = 'E:\LANDSAT_6stxts\clipS.evf' 

            evf_id=ENVI_EVF_OPEN(evf_file) 

               

            ;get the vector information 

            

ENVI_EVF_INFO,evf_id,NUM_RECS=num_recs,DATA_TYPE=data_type,P

ROJECTION=projection,$ 

            LAYER_NAME=layer_name 

               

            ;print information about each record 

            PRINT, 'Number of records:',num_recs 

            FOR i=0,num_recs-1 DO BEGIN 

            record=ENVI_EVF_READ_RECORD(evf_id,i) 

            PRINT, 'Number of nodes in Record 

'+STRTRIM(i+1,2)+':',N_ELEMENTS(record[0,*]) 

            PRINT, 'Record Info:' 

            PRINT, record 

            ENDFOR 

               

              ; Get record info (assuming one record in EVF) 

              record=ENVI_EVF_READ_RECORD(evf_id,0) 

               

              ;  Result[0, *] contains the x values, and Result[1, *] contains the y values 

              xMap=record[0,*]  

              yMap=record[1,*] 
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              roi_id = ENVI_CREATE_ROI(COLOR=4, NAME='rotCLIP_roi', NS=ns, 

NL=nl)  

              ; Define the roi 

              ENVI_DEFINE_ROI, roi_id, /POLYGON, XPTS=xMap, YPTS=yMap  

              ;roi_data = ENVI_GET_ROI_DATA(roi_id,POS=pos,FID=t_fid) 

             

              ;Convert record to xy pixel coordinates of the image to be subsetted 

              ENVI_CONVERT_FILE_COORDINATES,fid,xf,yf,xMap,yMap 

               

              ;Prepare the subset dimensions 

              dims[0]= ENVI_GET_ROI_DIMS_PTR(roi_id) ;-1L ; A Pointer to the 

Opened ROI 

              dims[1]=min(xf)-1 ; The starting sample number, the first x pixel is 0 

              dims[2]=max(xf)-1 ; The Ending sample number 

              dims[3]=min(yf)-1 ; The starting line number, the first y pixel is 0 

              dims[4]=max(yf)-1 ; The ending line number. 

              

               

              ;Use copyfile_doit to copy input file with new dimensions 

              

ENVI_DOIT,'CF_DOIT',FID=t_fid,POS=pos,DIMS=dims,REMOVE=0,OUT_

NAME=path_filename+'\'+filename+'_b5DN_rotS.img',R_FID=r_fid 

               

              envi_file_mng, id=fid, /remove 

              envi_file_mng, id=r_fid, /remove 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;  

   

            envi_open_file, imagelist(7), r_fid=fid                                       

            ENVI_FILE_QUERY,fid,DIMS=dims,NS=ns,NL=nl,NB=nb 

            t_fid=LONARR(nb)+fid 

            pos=LINDGEN(nb)               

               

            ;open the EVF file 

            evf_file = 'E:\LANDSAT_6stxts\clipS.evf' 

            evf_id=ENVI_EVF_OPEN(evf_file) 

               

            ;get the vector information 

            

ENVI_EVF_INFO,evf_id,NUM_RECS=num_recs,DATA_TYPE=data_type,P

ROJECTION=projection,$ 

            LAYER_NAME=layer_name 

               

            ;print information about each record 

            PRINT, 'Number of records:',num_recs 

            FOR i=0,num_recs-1 DO BEGIN 

            record=ENVI_EVF_READ_RECORD(evf_id,i) 

            PRINT, 'Number of nodes in Record 

'+STRTRIM(i+1,2)+':',N_ELEMENTS(record[0,*]) 
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            PRINT, 'Record Info:' 

            PRINT, record 

            ENDFOR 

               

              ; Get record info (assuming one record in EVF) 

              record=ENVI_EVF_READ_RECORD(evf_id,0) 

               

              ;  Result[0, *] contains the x values, and Result[1, *] contains the y values 

              xMap=record[0,*]  

              yMap=record[1,*] 

               

              roi_id = ENVI_CREATE_ROI(COLOR=4, NAME='rotCLIP_roi', NS=ns, 

NL=nl)  

              ; Define the roi 

              ENVI_DEFINE_ROI, roi_id, /POLYGON, XPTS=xMap, YPTS=yMap  

              ;roi_data = ENVI_GET_ROI_DATA(roi_id,POS=pos,FID=t_fid) 

             

              ;Convert record to xy pixel coordinates of the image to be subsetted 

              ENVI_CONVERT_FILE_COORDINATES,fid,xf,yf,xMap,yMap 

               

              ;Prepare the subset dimensions 

              dims[0]= ENVI_GET_ROI_DIMS_PTR(roi_id) ;-1L ; A Pointer to the 

Opened ROI 

              dims[1]=min(xf)-1 ; The starting sample number, the first x pixel is 0 

              dims[2]=max(xf)-1 ; The Ending sample number 

              dims[3]=min(yf)-1 ; The starting line number, the first y pixel is 0 

              dims[4]=max(yf)-1 ; The ending line number. 

              

              ;Use copyfile_doit to copy input file with new dimensions 

              

ENVI_DOIT,'CF_DOIT',FID=t_fid,POS=pos,DIMS=dims,REMOVE=0,OUT_

NAME=path_filename+'\'+filename+'_b7DN_rotS.img',R_FID=r_fid 

               

              envi_file_mng, id=fid, /remove 

              envi_file_mng, id=r_fid, /remove 

               

              print,  filename  

 

ENDFOR 

  

  ; Exit Envi 

  ENVI_BATCH_EXIT 

END 

PRO landsat_rad_sixsin_gen 

ENVI, /RESTORE_BASE_SAVE_FILES 

  ENVI_BATCH_INIT, LOG_FILE='batch.txt' 
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;pi=!DPI 

 

input_dir = 'C:\Users\mat\Documents\LANDSAT\rotnorthETM\' 

input_dir_name_lenght=STRLEN(input_dir) 

 

flist=FILE_SEARCH('C:\Users\mat\Documents\LANDSAT\rotnorthETM\LE*', 

COUNT=count) 

 

FOR h=0, count-1 Do Begin 

 

            path_filename=flist[h] 

            imagelist=FILE_SEARCH(path_filename+'\*DN_rot.img') 

            mtlfile=FILE_SEARCH(path_filename+'\*MTL.txt') 

            filename=STRMID(path_filename,input_dir_name_lenght) 

            pathfilenamelength=STRLEN(path_filename) 

            imagebasename=STRMID(imagelist(0),pathfilenamelength+1,21) 

 

;*************************************************************** 

; Convert from DC to at-sensor radiances to TOA reflectances 

 

openr, lun, mtlfile, /get_lun 

     ;print, mtl_file 

     nll=file_lines(mtlfile) 

     data=strarr(nll) 

     readf,lun,data 

     ; String to find: LMIN_BAND2/3/4 

     str1=strmatch(data, '*LMIN_BAND2*')  ;returns lmin_band2 and qcalmin_band2 

     w1=where(str1 eq 1, c1) 

     str1s=strsplit(data(w1[0]),/EXTRACT) 

     lmin_b2=float(str1s[2]) 

     str1=strmatch(data, '*LMAX_BAND2*')  ;returns lmin_band2 and 

qcalmin_band2 

     w1=where(str1 eq 1, c1) 

     str1s=strsplit(data(w1[0]),/EXTRACT) 

     lmax_b2=float(str1s[2]) 

     gain2=((lmax_b2-lmin_b2)/(254.))^(-1.)   ;units = (W/(m2 sr um))^-1 = (m2 sr 

um)/W 

     ;-------------- 

     str1=strmatch(data, '*LMIN_BAND3*')  ;returns lmin_band2 and qcalmin_band2 

     w1=where(str1 eq 1, c1) 

     str1s=strsplit(data(w1[0]),/EXTRACT) 

     lmin_b3=float(str1s[2]) 

     str1=strmatch(data, '*LMAX_BAND3*')  ;returns lmin_band2 and 

qcalmin_band2 

     w1=where(str1 eq 1, c1) 

     str1s=strsplit(data(w1[0]),/EXTRACT) 

     lmax_b3=float(str1s[2]) 

     gain3=((lmax_b3-lmin_b3)/(254.))^(-1.)   ;units = (W/(m2 sr um))^-1 = (m2 sr 

um)/W 
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     ;-------------- 

     str1=strmatch(data, '*LMIN_BAND4*')  ;returns lmin_band2 and qcalmin_band2 

     w1=where(str1 eq 1, c1) 

     str1s=strsplit(data(w1[0]),/EXTRACT) 

     lmin_b4=float(str1s[2]) 

     str1=strmatch(data, '*LMAX_BAND4*')  ;returns lmin_band2 and 

qcalmin_band2 

     w1=where(str1 eq 1, c1) 

     str1s=strsplit(data(w1[0]),/EXTRACT) 

     lmax_b4=float(str1s[2]) 

     gain4=((lmax_b4-lmin_b4)/(254.))^(-1.)   ;units = (W/(m2 sr um))^-1 = (m2 sr 

um)/W 

      

     ;----------------------------- 

     ;-------------- 

     str1=strmatch(data, '*LMIN_BAND1*')  ;returns lmin_band2 and qcalmin_band2 

     w1=where(str1 eq 1, c1) 

     str1s=strsplit(data(w1[0]),/EXTRACT) 

     lmin_b1=float(str1s[2]) 

     str1=strmatch(data, '*LMAX_BAND1*')  ;returns lmin_band2 and 

qcalmin_band2 

     w1=where(str1 eq 1, c1) 

     str1s=strsplit(data(w1[0]),/EXTRACT) 

     lmax_b1=float(str1s[2]) 

     gain1=((lmax_b1-lmin_b1)/(254.))^(-1.)   ;units = (W/(m2 sr um))^-1 = (m2 sr 

um)/W 

     ;-------------- 

     str1=strmatch(data, '*LMIN_BAND5*')  ;returns lmin_band2 and qcalmin_band2 

     w1=where(str1 eq 1, c1) 

     str1s=strsplit(data(w1[0]),/EXTRACT) 

     lmin_b5=float(str1s[2]) 

     str1=strmatch(data, '*LMAX_BAND5*')  ;returns lmin_band2 and 

qcalmin_band2 

     w1=where(str1 eq 1, c1) 

     str1s=strsplit(data(w1[0]),/EXTRACT) 

     lmax_b5=float(str1s[2]) 

     gain5=((lmax_b5-lmin_b5)/(254.))^(-1.)   ;units = (W/(m2 sr um))^-1 = (m2 sr 

um)/W 

     ;-------------- 

     str1=strmatch(data, '*LMIN_BAND7*')   

     w1=where(str1 eq 1, c1) 

     str1s=strsplit(data(w1[0]),/EXTRACT) 

     lmin_b7=float(str1s[2]) 

     str1=strmatch(data, '*LMAX_BAND7*')   

     w1=where(str1 eq 1, c1) 

     str1s=strsplit(data(w1[0]),/EXTRACT) 

     lmax_b7=float(str1s[2]) 

     gain7=((lmax_b7-lmin_b7)/(254.))^(-1.)   ;units = (W/(m2 sr um))^-1 = (m2 sr 

um)/W 
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     ;-------------- 

      

envi_open_file, imagelist(0), r_fid=fid,NO_REALIZE=1 

ENVI_FILE_QUERY,fid,DIMS=dims,NS=ns,NL=nl,NB=nb 

map_info=envi_get_map_info(fid=fid) 

b1    = ENVI_GET_DATA(FID=fid, dims=dims, pos=0) 

envi_file_mng, id=fid, /remove 

ns=n_elements(b1[*,0]) 

nl=n_elements(b1[0,*]) 

b1r=fltarr(ns,nl) 

b1r = ((b1)-1.)/gain1 + lmin_b1 

envi_write_envi_file, b1r, map_info=map_info, 

out_name=input_dir+filename+'\'+imagebasename+'_b1_rad.img', r_fid=fid 

envi_file_mng, id=fid, /remove 

b1    = 0 

b1r = 0 

 

envi_open_file, imagelist(1), r_fid=fid,NO_REALIZE=1 

ENVI_FILE_QUERY,fid,DIMS=dims,NS=ns,NL=nl,NB=nb 

map_info=envi_get_map_info(fid=fid) 

b2    = ENVI_GET_DATA(FID=fid, dims=dims, pos=0) 

envi_file_mng, id=fid, /remove 

b2r=fltarr(ns,nl) 

filename_lenght=STRLEN(imagelist(1)) 

output_rootname = STRMID(imagelist(1),0,filename_lenght-4) 

b2r = ((b2)-1.)/gain2 + lmin_b2 

envi_write_envi_file, b2r, map_info=map_info, 

out_name=input_dir+filename+'\'+imagebasename+'_b2_rad.img', r_fid=fid 

envi_file_mng, id=fid, /remove 

close,lun  

free_lun, lun 

b2    = 0 

b2r    = 0 

 

envi_open_file, imagelist(2), r_fid=fid,NO_REALIZE=1 

ENVI_FILE_QUERY,fid,DIMS=dims,NS=ns,NL=nl,NB=nb 

map_info=envi_get_map_info(fid=fid) 

b3    = ENVI_GET_DATA(FID=fid, dims=dims, pos=0) 

envi_file_mng, id=fid, /remove 

b3r=fltarr(ns,nl) 

filename_lenght=STRLEN(imagelist(2)) 

output_rootname = STRMID(imagelist(2),0,filename_lenght-4) 

b3r = ((b3)-1.)/gain3 + lmin_b3 

envi_write_envi_file, b3r, 

map_info=map_info,out_name=input_dir+filename+'\'+imagebasename+'_b3_r

ad.img', r_fid=fid 

envi_file_mng, id=fid, /remove 

close,lun  

free_lun, lun 
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b3    = 0 

b3r    = 0 

 

envi_open_file, imagelist(3), r_fid=fid,NO_REALIZE=1 

ENVI_FILE_QUERY,fid,DIMS=dims,NS=ns,NL=nl,NB=nb 

map_info=envi_get_map_info(fid=fid) 

b4    = ENVI_GET_DATA(FID=fid, dims=dims, pos=0) 

envi_file_mng, id=fid, /remove 

b4r=fltarr(ns,nl) 

filename_lenght=STRLEN(imagelist(3)) 

output_rootname = STRMID(imagelist(3),0,filename_lenght-4) 

b4r = ((b4)-1.)/gain4 + lmin_b4 

envi_write_envi_file, b4r, map_info=map_info, 

out_name=input_dir+filename+'\'+imagebasename+'_b4_rad.img', r_fid=fid 

envi_file_mng, id=fid, /remove 

b4    = 0 

b4r    = 0 

 

envi_open_file, imagelist(4), r_fid=fid,NO_REALIZE=1 

ENVI_FILE_QUERY,fid,DIMS=dims,NS=ns,NL=nl,NB=nb 

map_info=envi_get_map_info(fid=fid) 

b5    = ENVI_GET_DATA(FID=fid, dims=dims, pos=0) 

envi_file_mng, id=fid, /remove 

b5r=fltarr(ns,nl) 

filename_lenght=STRLEN(imagelist(4)) 

output_rootname = STRMID(imagelist(4),0,filename_lenght-4) 

b5r = ((b5)-1.)/gain5 + lmin_b5 

envi_write_envi_file, b5r, map_info=map_info, 

out_name=input_dir+filename+'\'+imagebasename+'_b5_rad.img', r_fid=fid 

envi_file_mng, id=fid, /remove 

b5=0 

b5r=0 

 

envi_open_file, imagelist(5), r_fid=fid,NO_REALIZE=1 

ENVI_FILE_QUERY,fid,DIMS=dims,NS=ns,NL=nl,NB=nb 

map_info=envi_get_map_info(fid=fid) 

b7    = ENVI_GET_DATA(FID=fid, dims=dims, pos=0) 

envi_file_mng, id=fid, /remove 

b7r=fltarr(ns,nl) 

filename_lenght=STRLEN(imagelist(5)) 

output_rootname = STRMID(imagelist(5),0,filename_lenght-4) 

b7r = ((b7)-1.)/gain7 + lmin_b7 

envi_write_envi_file, b7r, map_info=map_info, 

out_name=input_dir+filename+'\'+imagebasename+'_b7_rad.img', r_fid=fid 

envi_file_mng, id=fid, /remove 

b7=0 

b7r=0 

 

;wg=where(b1 ne 0 and b3 ne 0 and b4 ne 0 and b5 ne 0, $ 
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;         cmask)  ; the gaps m 

;          

;b1(wg) = (b1(wg)-1.)/gain1 + lmin_b1 

;b3(wg) = (b3(wg)-1.)/gain3 + lmin_b3 

;b4(wg) = (b4(wg)-1.)/gain4 + lmin_b4 

;b5(wg) = (b5(wg)-1.)/gain5 + lmin_b5 

 

; Convert to TOA reflectances 

 

; Get acquisition date (mm and day) 

     str1=strmatch(data, '*ACQUISITION_DATE*') 

     w1=where(str1 eq 1, c1) 

     str1s=strsplit(data(w1[0]),/EXTRACT) 

     mm_str=strmid(str1s[2],5,2) 

     dd_str=strmid(str1s[2],8,2) 

     yy_str=strmid(str1s[2],0,4) 

     timem=strmatch(data, '*SCENE_CENTER_SCAN_TIME*') 

     w1=where(timem eq 1, c1) 

     timeex=strsplit(data(w1[0]),/EXTRACT) 

     hr=strmid(timeex[2],0,2) 

     min=strmid(timeex[2],6,2) 

     sec=strmid(timeex[2],9,2) 

     decsec=(float(sec)/60)/100 

     decmin=float(min)/60 

     decmin=decmin+decsec 

     utcdechr=decmin+hr 

     latlongm=strmatch(data, '*SCENE_CENTER_SCAN_TIME*') 

     w1=where(timem eq 1, c1) 

     timeex=strsplit(data(w1[0]),/EXTRACT) 

     hr=strmid(timeex[2],0,2)          

      

Convert_to_DOY, float(mm_str), float(dd_str), float(yy_str), DOY 

      

YRDOY= float(yy_str)*1000+DOY 

 

str1=strmatch(data, '*SUN_ELEVATION*') 

     w1=where(str1 eq 1, c1) 

     str1s=strsplit(data(w1[0]),/EXTRACT) 

     selev=double(str1s[2]) 

     sza=90.-selev 

                

; Earth-sun-distance 

get_dist, doy, distv 

 

;b1_toa=fltarr(ns,nl) 

;b3_toa=fltarr(ns,nl) 

;b4_toa=fltarr(ns,nl) 

;b5_toa=fltarr(ns,nl) 

;b1_toa(wg) = pi*b1(wg)*distv^(2.0)/(1997.*cos(sza*pi/180.)) 
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;b3_toa(wg) = pi*b3(wg)*distv^(2.0)/(1533.*cos(sza*pi/180.)) 

;b4_toa(wg) = pi*b4(wg)*distv^(2.0)/(1039.*cos(sza*pi/180.)) 

;b5_toa(wg) = pi*b5(wg)*distv^(2.0)/(230.8*cos(sza*pi/180.)) 

 

;b1_toa = pi*b1*distv^(2.0)/(1997.*cos(sza*pi/180.)) 

;b3_toa = pi*b3*distv^(2.0)/(1533.*cos(sza*pi/180.)) 

;b4_toa = pi*b4*distv^(2.0)/(1039.*cos(sza*pi/180.)) 

;b5_toa = pi*b5*distv^(2.0)/(230.8*cos(sza*pi/180.)) 

 

;b1=0 

;b3=0 

;b4=0 

;b5=0 

output_rootname_i = STRMID(imagelist(0),34,21) 

 

;yrdoy=STRMID(filename,7,7) 

;             yr=STRMID(filename,7,4) 

;             doy=STRMID(filename,11,3) 

;             hr=STRMID(filename,15,2) 

;             yrdoyR=double(yrdoy) 

;             dom=date_conv_dayofmonth( yrdoyR,'F') 

;             monthn=date_conv_month_n( yrdoyR,'F') 

              

restore, 'C:\Users\mat\Documents\LANDSAT\AtcorParamsLandsatRot.sav' 

 

at_dateindex=where(atdata.field1 EQ YRDOY) 

   

print, atdata.field1(at_dateindex) 

 

aod=atdata.field4(at_dateindex) 

 

ozone=atdata.field3(at_dateindex) 

 

wat_vap=atdata.field2(at_dateindex) 

 

aods=string(aod) 

ozones=string(ozone) 

wat_vaps=string(wat_vap) 

 

wo=wat_vaps + ozones 

 

print, aod, ozone, wat_vap 

 

sixsinfilepath='C:\Users\mat\Documents\LANDSAT\sixsin\' 

 

fname_inb1 = sixsinfilepath+filename+'_b1_6sin.txt' 

   

  OPENW,1,fname_inb1, width=300 
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PRINTF, 1, '7' 

PRINTF, 1, mm_str,' ',dd_str,' ',utcdechr,' ','176.37 -38.90'  

PRINTF, 1, '8 option for Water Vapor and Ozone' 

PRINTF, 1, wo 

PRINTF, 1, '2 cont Model' 

PRINTF, 1, '0' 

PRINTF, 1, aods 

PRINTF, 1, '-0.3  (target level, negative value)' 

PRINTF, 1, '-705 (sensor level)' 

PRINTF, 1, '138 (chosen band)' 

PRINTF, 1, '1 (Non homogeneous surface)' 

PRINTF, 1, '4 1 5 (ro1 ro2 radius)'  

PRINTF, 1, '1 BRDF' 

PRINTF, 1, '50 radiance (positive value)' 

 

CLOSE,1 

 

fname_inb2 = sixsinfilepath+filename+'_b2_6sin.txt' 

   

  OPENW,2,fname_inb2, width=300 

   

PRINTF, 2, '7' 

PRINTF, 2, mm_str,' ',dd_str,' ',utcdechr,' ','176.37 -38.90'  

PRINTF, 2, '8 option for Water Vapor and Ozone' 

PRINTF, 2, wo 

PRINTF, 2, '2 cont Model' 

PRINTF, 2, '0' 

PRINTF, 2, aods 

PRINTF, 2, '-0.3  (target level, negative value)' 

PRINTF, 2, '-705 (sensor level)' 

PRINTF, 2, '139 (chosen band)' 

PRINTF, 2, '1 (Non homogeneous surface)' 

PRINTF, 2, '4 1 5 (ro1 ro2 radius)'  

PRINTF, 2, '1 BRDF' 

PRINTF, 2, '50 radiance (positive value)' 

 

CLOSE,2 

 

fname_inb3 = sixsinfilepath+filename+'_b3_6sin.txt' 

   

  OPENW,3,fname_inb3, width=300 

   

PRINTF, 3, '7' 

PRINTF, 3, mm_str,' ',dd_str,' ',utcdechr,' ','176.37 -38.90'  

PRINTF, 3, '8 option for Water Vapor and Ozone' 

PRINTF, 3, wo 

PRINTF, 3, '2 cont Model' 

PRINTF, 3, '0' 

PRINTF, 3, aods 



Appendix 

 

198 

 

PRINTF, 3, '-0.3  (target level, negative value)' 

PRINTF, 3, '-705 (sensor level)' 

PRINTF, 3, '140 (chosen band)' 

PRINTF, 3, '1 (Non homogeneous surface)' 

PRINTF, 3, '4 1 5 (ro1 ro2 radius)'  

PRINTF, 3, '1 BRDF' 

PRINTF, 3, '50 radiance (positive value)' 

 

CLOSE,3 

 

fname_inb4 = sixsinfilepath+filename+'_b4_6sin.txt' 

   

  OPENW,4,fname_inb4, width=300 

   

PRINTF, 4, '7' 

PRINTF, 4, mm_str,' ',dd_str,' ',utcdechr,' ','176.37 -38.90'  

PRINTF, 4, '8 option for Water Vapor and Ozone' 

PRINTF, 4, wo 

PRINTF, 4, '2 cont Model' 

PRINTF, 4, '0' 

PRINTF, 4, aods 

PRINTF, 4, '-0.3  (target level, negative value)' 

PRINTF, 4, '-705 (sensor level)' 

PRINTF, 4, '141 (chosen band)' 

PRINTF, 4, '1 (Non homogeneous surface)' 

PRINTF, 4, '4 1 5 (ro1 ro2 radius)'  

PRINTF, 4, '1 BRDF' 

PRINTF, 4, '50 radiance (positive value)' 

 

CLOSE,4 

 

fname_inb5 = sixsinfilepath+filename+'_b5_6sin.txt' 

   

  OPENW,5,fname_inb5, width=300 

   

PRINTF, 5, '7' 

PRINTF, 5, mm_str,' ',dd_str,' ',utcdechr,' ','176.37 -38.90'  

PRINTF, 5, '8 option for Water Vapor and Ozone' 

PRINTF, 5, wo 

PRINTF, 5, '2 cont Model' 

PRINTF, 5, '0' 

PRINTF, 5, aods 

PRINTF, 5, '-0.3  (target level, negative value)' 

PRINTF, 5, '-705 (sensor level)' 

PRINTF, 5, '142 (chosen band)' 

PRINTF, 5, '1 (Non homogeneous surface)' 

PRINTF, 5, '4 1 5 (ro1 ro2 radius)'  

PRINTF, 5, '1 BRDF' 

PRINTF, 5, '50 radiance (positive value)' 
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CLOSE,5 

 

fname_inb7 = sixsinfilepath+filename+'_b7_6sin.txt' 

   

  OPENW,7,fname_inb7, width=300 

   

PRINTF, 7, '7' 

PRINTF, 7, mm_str,' ',dd_str,' ',utcdechr,' ','176.37 -38.90'  

PRINTF, 7, '8 option for Water Vapor and Ozone' 

PRINTF, 7, wo 

PRINTF, 7, '2 cont Model' 

PRINTF, 7, '0' 

PRINTF, 7, aods 

PRINTF, 7, '-0.3  (target level, negative value)' 

PRINTF, 7, '-705 (sensor level)' 

PRINTF, 7, '143 (chosen band)' 

PRINTF, 7, '1 (Non homogeneous surface)' 

PRINTF, 7, '4 1 5 (ro1 ro2 radius)'  

PRINTF, 7, '1 BRDF' 

PRINTF, 7, '50 radiance (positive value)' 

 

CLOSE,7 

 

ENDFOR 

END 

 

PRO sixsauto_landsat 

 

ENVI, /RESTORE_BASE_SAVE_FILES 

 

input_dir = 'C:\Users\mat\Documents\LANDSAT\rotnorthETM\' 

input_dir_name_lenght=STRLEN(input_dir) 

sixsinput_dir = 'C:\Users\mat\Documents\LANDSAT\LANDSAT_6stxts\sixsout\' 

output_location = 'C:\Users\mat\Documents\LANDSAT\rotnorthETM\sixs_images\' 

ENVI, /RESTORE_BASE_SAVE_FILES 

  ENVI_BATCH_INIT, LOG_FILE='batch.txt' 

;pi=!DPI 

 

flist=FILE_SEARCH('C:\Users\mat\Documents\LANDSAT\rotnorthETM\LE*2002

024*', COUNT=count) 

 

FOR h=0, count-1 Do Begin 

 

             path_filename=flist[h] 

             imagelist=FILE_SEARCH(path_filename+'\*rotrad.img')            
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             path_filename_lenght=STRLEN(path_filename) 

             filename=STRMID(path_filename,input_dir_name_lenght) 

             filename_lenght=STRLEN(filename)      

             fname_inb1 = sixsinput_dir+filename+'_b1_6sin.txtout'  

             fname_inb2 = sixsinput_dir+filename+'_b2_6sin.txtout'  

             fname_inb3 = sixsinput_dir+filename+'_b3_6sin.txtout'  

             fname_inb4 = sixsinput_dir+filename+'_b4_6sin.txtout'  

             fname_inb5 = sixsinput_dir+filename+'_b5_6sin.txtout'  

             fname_inb7 = sixsinput_dir+filename+'_b7_6sin.txtout'  

 

n_header_lines = 169 

 

ssdatab1=read_ascii(fname_inb1, header=sixsjunk1, $ 

  data_start=n_header_lines, count=n_records) 

   

  xa1 = ssdatab1.field01(6,0) 

  xb1 = ssdatab1.field01(7,0) 

  xc1 = ssdatab1.field01(8,0) 

   

ssdatab2=read_ascii(fname_inb2, header=sixsjunk2, $ 

  data_start=n_header_lines, count=n_records) 

   

  xa2 = ssdatab2.field01(6,0) 

  xb2 = ssdatab2.field01(7,0) 

  xc2 = ssdatab2.field01(8,0) 

   

ssdatab3=read_ascii(fname_inb3, header=sixsjunk3, $ 

  data_start=n_header_lines, count=n_records) 

   

  xa3 = ssdatab3.field01(6,0) 

  xb3 = ssdatab3.field01(7,0) 

  xc3 = ssdatab3.field01(8,0) 

   

ssdatab4=read_ascii(fname_inb4, header=sixsjunk4, $ 

  data_start=n_header_lines, count=n_records) 

   

  xa4 = ssdatab4.field01(6,0) 

  xb4 = ssdatab4.field01(7,0) 

  xc4 = ssdatab4.field01(8,0) 

   

ssdatab5=read_ascii(fname_inb5, header=sixsjunk5, $ 

  data_start=n_header_lines, count=n_records) 

   

  xa5 = ssdatab5.field01(6,0) 

  xb5 = ssdatab5.field01(7,0) 

  xc5 = ssdatab5.field01(8,0) 

   

ssdatab7=read_ascii(fname_inb7, header=sixsjunk7, $ 

  data_start=n_header_lines, count=n_records) 
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  xa7 = ssdatab7.field01(6,0) 

  xb7 = ssdatab7.field01(7,0) 

  xc7 = ssdatab7.field01(8,0) 

   

envi_open_file, imagelist(0), r_fid=fid 

   

  ; query the file and define the output file variables 

  ENVI_FILE_QUERY,fid,DIMS=dims,NS=ns,NL=nl,NB=nb,fname=fname 

  pos=LINDGEN(nb) 

 

 

num_cols=dims[2]-dims[1]+1     ;dims[1] is the starting column number (starts o), 

dims[2] is ending column number 

num_rows=dims[4]-dims[3]+1     ;dims[3] is the starting row number, dims[4] is the 

ending row number 

num_bands=n_elements(pos)      ;number of bands from the pos selected for 

processing 

                               ;or n_elements(image) meaning number of pixles in the image 

 

; Define a empty BSQ array 

image=fltarr(num_cols, num_rows, 6) 

 

image[*,*, 0]= envi_get_data(fid=fid, dims=dims, pos=pos) 

 

envi_file_mng, id=fid, /remove 

 

envi_open_file, imagelist(1), r_fid=fid 

ENVI_FILE_QUERY,fid,DIMS=dims,NS=ns,NL=nl,NB=nb,fname=fname 

pos=LINDGEN(nb) 

image[*,*, 1]= envi_get_data(fid=fid, dims=dims, pos=pos) 

envi_file_mng, id=fid, /remove 

 

envi_open_file, imagelist(2), r_fid=fid 

ENVI_FILE_QUERY,fid,DIMS=dims,NS=ns,NL=nl,NB=nb,fname=fname 

pos=LINDGEN(nb) 

image[*,*, 2]= envi_get_data(fid=fid, dims=dims, pos=pos) 

envi_file_mng, id=fid, /remove 

 

envi_open_file, imagelist(3), r_fid=fid 

ENVI_FILE_QUERY,fid,DIMS=dims,NS=ns,NL=nl,NB=nb,fname=fname 

pos=LINDGEN(nb) 

image[*,*, 3]= envi_get_data(fid=fid, dims=dims, pos=pos) 

envi_file_mng, id=fid, /remove 

 

envi_open_file, imagelist(4), r_fid=fid 

ENVI_FILE_QUERY,fid,DIMS=dims,NS=ns,NL=nl,NB=nb,fname=fname 

pos=LINDGEN(nb) 

image[*,*, 4]= envi_get_data(fid=fid, dims=dims, pos=pos) 
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envi_file_mng, id=fid, /remove 

 

envi_open_file, imagelist(5), r_fid=fid 

ENVI_FILE_QUERY,fid,DIMS=dims,NS=ns,NL=nl,NB=nb,fname=fname 

pos=LINDGEN(nb) 

image[*,*, 5]= envi_get_data(fid=fid, dims=dims, pos=pos) 

 

; Replace with CF_doit? 

 

ref=fltarr(num_cols, num_rows, 6) 

 

  

  ref(*,*,0)= (xa1*image(*,*,0)-xb1)/(1+xc1*(image(*,*,0)*(xa1)-xb1)) 

  ref(*,*,1)= (xa2*image(*,*,1)-xb2)/(1+xc2*(image(*,*,1)*(xa2)-xb2)) 

  ref(*,*,2)= (xa3*image(*,*,2)-xb3)/(1+xc3*(image(*,*,2)*(xa3)-xb3)) 

  ref(*,*,3)= (xa4*image(*,*,3)-xb4)/(1+xc4*(image(*,*,3)*(xa4)-xb4)) 

  ref(*,*,4)= (xa5*image(*,*,4)-xb5)/(1+xc5*(image(*,*,4)*(xa5)-xb5)) 

  ref(*,*,5)= (xa7*image(*,*,5)-xb7)/(1+xc7*(image(*,*,5)*(xa7)-xb7)) 

  

map_info=envi_get_map_info(fid=fid) 

 

envi_file_mng, id=fid, /remove 

 

;envi_write_envi_file, ref(*,*,0:3), map_info=map_info, 

out_name=outpath+output_rootname+'ell_6s.img', r_fid=fid 

 

envi_write_envi_file, ref(*,*,*), map_info=map_info, 

out_name=output_location+filename+'_rot_6s.img', r_fid=fid 

 

ref=0 

image=0 

 

envi_file_mng, id=fid, /remove 

 

ENDFOR 

 

envi_batch_exit   

 

END 

 

PRO landsat_mask 

 

ENVI, /RESTORE_BASE_SAVE_FILES 

  ENVI_BATCH_INIT, LOG_FILE='batch.txt' 

   

input_dir = 'C:\Users\mat\Documents\LANDSAT\qual\' 
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output_location = 'C:\Users\mat\Documents\LANDSAT\qual\' 

maskfile= 'C:\Users\mat\Documents\LANDSAT\masktest\classwat.img' 

 

input_dir_name_lenght=STRLEN(input_dir) 

 

ENVI, /RESTORE_BASE_SAVE_FILES 

ENVI_BATCH_INIT, LOG_FILE='batch.txt' 

 

flist=FILE_SEARCH(input_dir+'*chlN.img', COUNT=count) 

 

FOR h=0, count-1 Do Begin 

 

            path_filename=flist[h]       

            path_filename_lenght=STRLEN(path_filename) 

            filename=STRMID(path_filename,input_dir_name_lenght) 

            filenamelength=STRLEN(filename) 

            out_name=STRMID(filename,0,filenamelength-13) 

            out_nameR=output_location+out_name+'chl_M_N_NAN.img' 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

   

            envi_open_file, flist(h), r_fid=ifid 

   

  ; query the file and define the output file variables 

ENVI_FILE_QUERY,ifid,DIMS=dims,NS=ns,NL=nl,NB=nb,fname=fname 

pos=LINDGEN(nb) 

 

num_cols=dims[2]-dims[1]+1     ;dims[1] is the starting column number (starts o), 

dims[2] is ending column number 

num_rows=dims[4]-dims[3]+1     ;dims[3] is the starting row number, dims[4] is the 

ending row number 

num_bands=n_elements(pos)      ;number of bands from the pos selected for 

processing 

                               ;or n_elements(image) meaning number of pixles in the image 

 

envi_open_file, maskfile, r_fid=m_fid 

 

m_pos = [0] 

 

ENVI_MASK_APPLY_DOIT, FID = ifid, POS = pos, DIMS = dims, $  

   M_FID = m_fid, M_POS = m_pos, VALUE = 'NaN', OUT_NAME = out_nameR, 

$  

   IN_MEMORY = 0, R_FID = r_fid 

     

envi_file_mng, id=ifid, /remove 

envi_file_mng, id=m_fid, /remove 

envi_file_mng, id=r_fid, /remove 

; 

;print, out_bname 
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endfor 

 

end 

 

PRO replacebaddata 

ENVI, /RESTORE_BASE_SAVE_FILES 

  ENVI_BATCH_INIT, LOG_FILE='batch.txt' 

input_dir = 'C:\Users\mat\Documents\LANDSAT\sixsimages_rotS\' 

input_dir_name_lenght=STRLEN(input_dir) 

output_location = 'C:\Users\mat\Documents\LANDSAT\sixsimages_rotS\' 

ENVI, /RESTORE_BASE_SAVE_FILES 

ENVI_BATCH_INIT, LOG_FILE='batch.txt' 

 

flist=FILE_SEARCH('C:\Users\mat\Documents\LANDSAT\sixsimages_rotS\*6s.im

g', COUNT=count) 

 

FOR h=0, count-1 Do Begin 

 

            path_filename=flist[h]       

            path_filename_lenght=STRLEN(path_filename) 

            filename=STRMID(path_filename,input_dir_name_lenght) 

            filenamelength=STRLEN(filename) 

            out_name=STRMID(filename,0,filenamelength-4) 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

            envi_open_file, flist[h], r_fid=fid                                       

             

            ENVI_FILE_QUERY,fid, dims=dims, nb=nb 

             

            pos  = lindgen(nb) 

                               

out_name=output_location+out_name+'rbd.img' 

 

bandn=['b1', 'b2', 'b3', 'b4', 'b5', 'b7'] 

 

ENVI_DOIT, 'DEM_BAD_DATA_DOIT', DIMS=dims, FID=fid, 

MAX_THRESH=-0.000001, MIN_THRESH=-100, $ 

OUT_BNAME=bandn, OUT_NAME=out_name, POS=pos, R_FID=r_fid 

 

envi_file_mng, id=fid, /remove 

envi_file_mng, id=r_fid, /remove 

 

endfor 

 

end 


