38 research outputs found

    Visualizing regulatory interactions in metabolic networks

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Direct visualization of data sets in the context of biochemical network drawings is one of the most appealing approaches in the field of data evaluation within systems biology. One important type of information that is very helpful in interpreting and understanding metabolic networks has been overlooked so far. Here we focus on the representation of this type of information given by the strength of regulatory interactions between metabolite pools and reaction steps.</p> <p>Results</p> <p>The visualization of such interactions in a given metabolic network is based on a novel concept defining the regulatory strength (RS) of effectors regulating certain reaction steps. It is applicable to any mechanistic reaction kinetic formula. The RS values are measures for the strength of an up- or down-regulation of a reaction step compared with the completely non-inhibited or non-activated state, respectively. One numerical RS value is associated to any effector edge contained in the network. The RS is approximately interpretable on a percentage scale where 100% means the maximal possible inhibition or activation, respectively, and 0% means the absence of a regulatory interaction. If many effectors influence a certain reaction step, the respective percentages indicate the proportion in which the different effectors contribute to the total regulation of the reaction step. The benefits of the proposed method are demonstrated with a complex example system of a dynamic <it>E. coli </it>network.</p> <p>Conclusion</p> <p>The presented visualization approach is suitable for an intuitive interpretation of simulation data of metabolic networks under dynamic as well as steady-state conditions. Huge amounts of simulation data can be analyzed in a quick and comprehensive way. An extended time-resolved graphical network presentation provides a series of information about regulatory interaction within the biological system under investigation.</p

    Quantitative Metabolomics and Instationary 13C-Metabolic Flux Analysis Reveals Impact of Recombinant Protein Production on Trehalose and Energy Metabolism in Pichia pastoris

    Get PDF
    Pichia pastoris has been recognized as an effective host for recombinant protein production. In this work, we combine metabolomics and instationary 13C metabolic flux analysis (INST 13C-MFA) using GC-MS and LC-MS/MS to evaluate the potential impact of the production of a Rhizopus oryzae lipase (Rol) on P. pastoris central carbon metabolism. Higher oxygen uptake and CO2 production rates and slightly reduced biomass yield suggest an increased energy demand for the producing strain. This observation is further confirmed by 13C-based metabolic flux analysis. In particular, the flux through the methanol oxidation pathway and the TCA cycle was increased in the Rol-producing strain compared to the reference strain. Next to changes in the flux distribution, significant variations in intracellular metabolite concentrations were observed. Most notably, the pools of trehalose, which is related to cellular stress response, and xylose, which is linked to methanol assimilation, were significantly increased in the recombinant strain

    Resource allocation explains lactic acid production in mixed‐culture anaerobic fermentations

    Get PDF
    Lactate production in anaerobic carbohydrate fermentations with mixed cultures of microorganisms is generally observed only in very specific conditions: the reactor should be run discontinuously and peptides and B vitamins must be present in the culture medium as lactic acid bacteria (LAB) are typically auxotrophic for amino acids. State‐of‐the‐art anaerobic fermentation models assume that microorganisms optimise the adenosine triphosphate (ATP) yield on substrate and therefore they do not predict the less ATP efficient lactate production, which limits their application for designing lactate production in mixed‐culture fermentations. In this study, a metabolic model taking into account cellular resource allocation and limitation is proposed to predict and analyse under which conditions lactate production from glucose can be beneficial for microorganisms. The model uses a flux balances analysis approach incorporating additional constraints from the resource allocation theory and simulates glucose fermentation in a continuous reactor. This approach predicts lactate production is predicted at high dilution rates, provided that amino acids are in the culture medium. In minimal medium and lower dilution rates, mostly butyrate and no lactate is predicted. Auxotrophy for amino acids of LAB is identified to provide a competitive advantage in rich media because less resources need to be allocated for anabolic machinery and higher specific growth rates can be achieved. The Matlab™ codes required for performing the simulations presented in this study are available at https://doi.org/10.5281/zenodo.4031144The authors would like to acknowledge the support of the Spanish Ministry of Education (FPU14/05457), project BIOCHEM (ERA‐IB‐2 7th call, ERA‐IB‐16‐052) funded by MINECO (PCIN 2016‐102) and the Soenghen Institute for Anaerobic Microbiology (SIAM), SIAM gravitation grant (the Netherlands Organization for Scientific Research, 024.002.002). Alberte Regueira would like to thank the CRETUS Strategic Partnership (ED431E 2018/01), for a research stay grant. Alberte Regueira, Miguel Mauricio‐Iglesias, and Juan M. Lema belong to the Galician Competitive Research Group (ED431C 2017/029) and to the CRETUS Strategic Partnership, both programmes are co‐funded by ERDF (EU)S

    Prospects for multi-omics in the microbial ecology of water engineering

    Get PDF
    Advances in high-throughput sequencing technologies and bioinformatics approaches over almost the last three decades have substantially increased our ability to explore microorganisms and their functions – including those that have yet to be cultivated in pure isolation. Genome-resolved metagenomic approaches have enabled linking powerful functional predictions to specific taxonomical groups with increasing fidelity. Additionally, related developments in both whole community gene expression surveys and metabolite profiling have permitted for direct surveys of community-scale functions in specific environmental settings. These advances have allowed for a shift in microbiome science away from descriptive studies and towards mechanistic and predictive frameworks for designing and harnessing microbial communities for desired beneficial outcomes. Water engineers, microbiologists, and microbial ecologists studying activated sludge, anaerobic digestion, and drinking water distribution systems have applied various (meta)omics techniques for connecting microbial community dynamics and physiologies to overall process parameters and system performance. However, the rapid pace at which new omics-based approaches are developed can appear daunting to those looking to apply these state-of-the-art practices for the first time. Here, we review how modern genome-resolved metagenomic approaches have been applied to a variety of water engineering applications from lab-scale bioreactors to full-scale systems. We describe integrated omics analysis across engineered water systems and the foundations for pairing these insights with modeling approaches. Lastly, we summarize emerging omics-based technologies that we believe will be powerful tools for water engineering applications. Overall, we provide a framework for microbial ecologists specializing in water engineering to apply cutting-edge omics approaches to their research questions to achieve novel functional insights. Successful adoption of predictive frameworks in engineered water systems could enable more economically and environmentally sustainable bioprocesses as demand for water and energy resources increases.BT/Industriele Microbiologi

    Simultaneous Quantification of the Concentration and Carbon Isotopologue Distribution of Polar Metabolites in a Single Analysis by Gas Chromatography and Mass Spectrometry

    Get PDF
    13C-isotope tracing is a frequently employed approach to study metabolic pathway activity. When combined with the subsequent quantification of absolute metabolite concentrations, this enables detailed characterization of the metabolome in biological specimens and facilitates computational time-resolved flux quantification. Classically, a 13C-isotopically labeled sample is required to quantify 13C-isotope enrichments and a second unlabeled sample for the quantification of metabolite concentrations. The rationale for a second unlabeled sample is that the current methods for metabolite quantification rely mostly on isotope dilution mass spectrometry (IDMS) and thus isotopically labeled internal standards are added to the unlabeled sample. This excludes the absolute quantification of metabolite concentrations in 13C-isotopically labeled samples. To address this issue, we have developed and validated a new strategy using an unlabeled internal standard to simultaneously quantify metabolite concentrations and 13C-isotope enrichments in a single 13C-labeled sample based on gas chromatography-mass spectrometry (GC/MS). The method was optimized for amino acids and citric acid cycle intermediates and was shown to have high analytical precision and accuracy. Metabolite concentrations could be quantified in small tissue samples (≥20 mg). Also, we applied the method on 13C-isotopically labeled mammalian cells treated with and without a metabolic inhibitor. We proved that we can quantify absolute metabolite concentrations and 13C-isotope enrichments in a single 13C-isotopically labeled sample. BT/Industrial Microbiolog

    Current state and challenges for dynamic metabolic modeling

    Get PDF
    While the stoichiometry of metabolism is probably the best studied cellular level, the dynamics in metabolism can still not be well described, predicted and, thus, engineered. Unknowns in the metabolic flux behavior arise from kinetic interactions, especially allosteric control mechanisms. While the stoichiometry of enzymes is preserved in vitro, their activity and kinetic behavior differs from the in vivo situation. Next to this challenge, it is infeasible to test the interaction of each enzyme with each intracellular metabolite in vitro exhaustively. As a consequence, the whole interacting metabolome has to be studied in vivo to identify the relevant enzymes properties. In this review we discuss current approaches for in vivo perturbation experiments, that is, stimulus response experiments using different setups and quantitative analytical approaches, including dynamic carbon tracing. Next to reliable and informative data, advanced modeling approaches and computational tools are required to identify kinetic mechanisms and their parameters.The authors EV, AT, KN, IR, MO, DM and AW are part of the ERA-IB funded consortium DYNAMICS (ERA-IB-14-081, NWO 053.80.724)

    13C labeling experiments at metabolic nonstationary conditions: An exploratory study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Stimulus Response Experiments to unravel the regulatory properties of metabolic networks are becoming more and more popular. However, their ability to determine enzyme kinetic parameters has proven to be limited with the presently available data. In metabolic flux analysis, the use of <sup>13</sup>C labeled substrates together with isotopomer modeling solved the problem of underdetermined networks and increased the accuracy of flux estimations significantly.</p> <p>Results</p> <p>In this contribution, the idea of increasing the information content of the dynamic experiment by adding <sup>13</sup>C labeling is analyzed. For this purpose a small example network is studied by simulation and statistical methods. Different scenarios regarding available measurements are analyzed and compared to a non-labeled reference experiment. Sensitivity analysis revealed a specific influence of the kinetic parameters on the labeling measurements. Statistical methods based on parameter sensitivities and different measurement models are applied to assess the information gain of the labeled stimulus response experiment.</p> <p>Conclusion</p> <p>It was found that the use of a (specifically) labeled substrate will significantly increase the parameter estimation accuracy. An overall information gain of about a factor of six is observed for the example network. The information gain is achieved from the specific influence of the kinetic parameters towards the labeling measurements. This also leads to a significant decrease in correlation of the kinetic parameters compared to an experiment without <sup>13</sup>C-labeled substrate.</p

    Methoden zur integrierten Analyse metabolischer Netzwerke unter stationären und instationären Bedingungen

    No full text
    In biological organisms a variety of enzyme catalyzed reactions are taking place that deliver energy as well as precursors for biomass and products . These reactions are modeled by metabolic networks . The simulation and analysis of these networks is getting more important especially for „Metabolic Engineering" approaches. Current models are very detailed and nowadays can only be handled with computer techniques. Metabolic analyses are performed under different experimental conditions depending an the aim of the studies. Firstly metabolic stationary conditions are applied to quantify metabolic fluxes under e .g . production conditions. Secondly non-stationary conditions that aim at a kinetic characterization of the metabolic interactions . Kinetic models can in contrast to stationary fluxes be used for prediction of further states. The modeling approaches differ depending an the available measurements. In literature up to now there is no systematic approach that could be applied to the different conditions . Nevertheless there are several overlaps and the approaches are based an the same chemical and physical laws. In Gase of stationary metabolic analyses relatively simple linear equation systems are used . There are a variety of methods for analysis available . Nevertheless, these theoretical concepts are often not applied for the interpretation of measured data. In the presented work a method is developed that enables to use a theoretic method for the interpretation of a measured flux distribution. Kinetic models are muck more evolved . The information needed for modeling is only partly available and sometimes even contradictorily. Therefore in this work a concept was developed that enables to extract hypotheses an reaction mechanisms from measured time-series data. Based an these hypotheses a variety of possible models are set up and fitted to the data . It was observed that several models are able to reproduce the measured data. Fortunately these models share common characteristics that seem to be essential for the correct reproduction of the data. Several approaches are discussed how the identiflcation of kinetic parameters can be improved . It is shown that the simultaneous evaluation of experiments with two genetically different strains does improve the statistical accuracy. From a simulative study it is derived that an additional labeling pulse will further increase the statistical accuracy up to a factor of ten
    corecore