8 research outputs found

    E2F modulates keratinocyte squamous differentiation. Implications for E2F inhibition in squamous cell carcinoma

    Get PDF
    E2F regulation is essential for normal cell cycle progression. Therefore, it is not surprising that squamous cell carcinoma cell lines (SCC) overexpress E2F1 and exhibit deregulated E2F activity when compared with normal keratinocytes. Indeed, deliberate E2F1 deregulation has been shown to induce hyperplasia and skin tumor formation. In this study, we report on a dual role for E2F as a mediator of keratinocyte proliferation and modulator of squamous differentiation. Overexpression of E2F isoforms in confluent primary keratinocyte cultures resulted in suppression of differentiation-associated markers. Moreover, we found that the DNA binding domain and the trans-activation domain of E2F1 are important in mediating suppression of differentiation. Use of a dominant/negative form of E2F1 ( E2F d/n) found that E2F inhibition alone is sufficient to suppress the activity of proliferation-associated markers but is not capable of inducing differentiation markers. However, if the E2F d/n is expressed in differentiated keratinocytes, differentiation marker activity is further induced, suggesting that E2F may act as a modulator of squamous differentiation. We therefore examined the effects of E2F d/n in a differentiation- insensitive SCC cell line. We found that treatment with the differentiating agent, 12-O-tetradecanoyl- phorbol-13-acetate (TPA), or expression of E2F d/n alone had no effect on differentiation markers. However, a combination of E2F d/n + TPA induced the expression of differentiation markers. Combined, these data indicate that E2F may play a key role in keratinocyte differentiation. These data also illustrate the unique potential of anti-E2F therapies in arresting proliferation and inducing differentiation of SCCs

    Histone hyperacetylation induced by histone deacetylase inhibitors is not sufficient to cause growth inhibition in human dermal fibroblasts

    Get PDF
    Use of specific histone deacetylase inhibitors has revealed critical roles for the histone deacetylases (HDAC) in controlling proliferation. Although many studies have correlated the function of HDAC inhibitors with the hyperacetylation of histones, few studies have specifically addressed whether the accumulation of acetylated histones, caused by HDAC inhibitor treatment, is responsible for growth inhibition. In the present study we show that HDAC inhibitors cause growth inhibition in normal and transformed keratinocytes but not in normal dermal fibroblasts, This was despite the observation that the HDAC inhibitor, suberic bishydroxamate (SBHA), caused a kinetically similar accumulation of hyperacetylated histones, This cell type-specific response to SBHA was not due to the inactivation of SBHA by fibroblasts, nor was it due to differences in the expression of specific HDAC family members. Remarkably, overexpression of HDACs 1, 4, and 6 in normal human fibroblasts resulted in cells that could be growth-inhibited by SBHA. These data suggest that, although histone acetylation is a major target for HDAC inhibitors, the accumulation of hyperacetylated histones is not sufficient to cause growth inhibition in all cell types, This suggests that growth inhibition, caused by HDAC inhibitors, may be the culmination of histone hyperacetylation acting in concert with other growth regulatory pathways

    E2F1 messenger RNA is destabilized in response to a growth inhibitor in normal human keratinocytes but not in a squamous carcinoma cell line

    No full text
    Keratinocyte growth arrest is characterized by a reduction in the activity and expression of E2F1. Here, we examine the role posttranscriptional processing plays in the down-regulation of E2F1 during keratinocyte growth arrest. E2F1 mRNA levels were undetectable within 8 h of exposure to the protein kinase C activator, 12-O-tetradecanoyl-phorbol-13- acetate (TPA). Assays of transcript stability indicated that, in untreated keratinocytes, the t(1/2) of E2F1 mRNA was 6.1 h and in TPA-treated cells, it was 1.7 h. This destabilization was protein synthesis-dependent. In contrast, a growth inhibitor-resistant carcinoma cell line, SCC25, had a very stable E2F1 half-life that was only moderately reduced following TPA treatment. These data demonstrate that the initiation of keratinocyte growth arrest is associated with a rapid destabilization of E2F1 mRNA. These data are consistent with the proposition that inactivation of the posttranscriptional processing of important growth regulatory genes (e.g., E2F1) may contribute to neoplasia

    E2F suppression and Sp1 overexpression are sufficient to induce the differentiation-specific marker, transglutaminase type 1, in a squamous cell carcinoma cell line

    No full text
    Recently, E2F function has expanded to include the regulation of differentiation in human epidermal keratinocytes (HEKs). We extend these findings to report that in HEKs, Sp1 is a differentiation-specific activator and a downstream target of E2F-mediated suppression of the differentiation-specific marker, transglutaminase type 1 (TG-1). Deletion of elements between -0.084 to -0.034 kb of the TG-1 promoter disabled E2F1-induced suppression of promoter activity. Electrophoretic mobility shift assays (EMSAs) demonstrated that Sp1 and Sp3 bound this region. Protein expression analysis suggested that squamous differentiation was accompanied by increased Sp1/Sp3 ratio. Cotransfection of proliferating HEKs or the squamous cell carcinoma (SCC) cell line, KJD-1/SV40, with an E2F inhibitor (E2Fd/n) and Sp1 expression plasmid was sufficient to activate the TG-1 promoter. The suppression of Sp1 activity by E2F in differentiated cells appeared to be indirect since we found no evidence of an Sp1/E2F coassociation on the TG-1 promoter fragment. Moreover, E2F inhibition in the presence of a differentiation stimulus induced Sp1 protein. These data demonstrate that (i) Sp1 can act as a differentiation stimulus, (ii) E2F-mediated suppression of differentiation-specific markers is indirect via Sp1 inhibition and (iii) a combination of E2F inhibition and Sp1 activation could form the basis of a differentiation therapy for SCCs

    E2F-1 induces proliferation-specific genes and suppresses squamous differentiation-specific genes in human epidermal keratinocytes

    No full text
    Squamous differentiation of keratinocytes is associated with decreases in E2F-1 mRNA expression and E2F activity, and these processes are disrupted in squamous cell carcinoma cell lines. We now show that E2F-1 mRNA expression is increased in primary squamous cell carcinomas of the skin relative to normal epidermis, To explore the relationship between E2F-1 and squamous differentiation further, we examined the effect of altering E2F activity in primary human keratinocytes induced to differentiate. Promoter activity for the proliferation-associated genes, cdc2 and keratin 14, are inhibited during squamous differentiation. This inhibition can be inhibited by overexpression of E2F-1 in keratinocytes, Overexpression of E2F-1 also suppressed the expression of differentiation markers (transglutaminase type 1 and keratin 10) in differentiated keratinocytes, Blocking E2F activity by transfecting proliferating keratinocytes with dominant negative E2F-1 constructs inhibited the expression of cdc2 and E2F-1, but did not induce differentiation. Furthermore, expression of the dominant negative construct in epithelial carcinoma cell lines and normal keratinocytes decreased expression from the cdc2 promoter. These data indicate that E2F-1 promotes keratinocyte proliferation-specific marker genes and suppresses squamous differentiation-specific marker genes. Moreover, these data indicate that targeted disruption of E2F-1 activity may have therapeutic potential for the treatment of squamous carcinomas

    Loss of E2F7 expression is an early event in squamous differentiation and causes derepression of the key differentiation activator Sp1

    Get PDF
    Squamous differentiation is controlled by key transcription factors such as Sp1 and E2F. We have previously shown that E2F1 can suppress transcription of the differentiation-specific gene, transglutaminase type 1 (TG1), by an indirect mechanism mediated by Sp1. Transient transfection of E2F1-E2F6 indicated that E2F-mediated reduction of Sp1 transcription was not responsible for E2F-mediated suppression of squamous differentiation. However, we found that E2F4 and E2F7, but not E2Fs 1, 2, 3, 5, or 6, could suppress the activation of the Sp1 promoter in differentiated keratinocytes (KCs). E2F4-mediated suppression could not be antagonized by E2Fs 1, 2, 3, 5, or 6 and was localized to a region of the human Sp1 promoter spanning-139 to +35 bp. Chromatin immunoprecipitation analysis, as well as transient overexpression and short hairpin RNA knockdown experiments indicate that E2F7 binds to a unique binding site located between-139 and-119 bp of the Sp1 promoter, and knockdown of E2F7 in proliferating KCs leads to a derepression of Sp1 expression and the induction of TG1. In contrast, E2F4 knockdown in proliferating KCs did not alter Sp1 expression. These data indicate that loss of E2F7 during the initiation of differentiation leads to the derepression of Sp1 and subsequent transcription of differentiation-specific genes such as TG1

    Tumor-initiating activity and tumor morphology of HNSCC is modulated by interactions between clonal variants within the tumor

    No full text
    Tumor initiation (TI) in xenotransplantation models of head and neck squamous cell carcinoma (HNSCC) is an inefficient process. Poor TI could be due to (1) posttransplant cell loss, (2) a rare sub-population of cancer stem cells or (3) a requirement for specific cellular interactions, which rely on cell number. By tracking GFP-expressing HNSCC cells, we conclude that the posttransplant loss of cancer cells is minimal in the xenotransplant model. Furthermore, an examination of putative cancer stem cell markers (such as CD133, CD44, SP and label retention) in HNSCC cell lines revealed no correlation between marker expression and tumorigenicity. In addition, single-cell clones randomly isolated from HNSCC cell lines and then transplanted into mice were all capable of initiating tumors with efficiencies varying almost 34-fold. As the observed variation in the clones was both more and less tumorigenic than the parental cells, a combination of two clones, at suboptimal cell numbers for TI, was implanted into mice and was found to modulate the tumor-initiating activity, thus indicating that TI is dependent on a critical number of cells and, for the first time, that interactions between clonal variants within tumors can modulate the overall tumor-initiating activity. Put in context with previous literature on tumorigenic activity, we believe that interactions between clonal variants within a tumor as well as (1) stromal interactions, (2) angiogenic activity, (3) immunocompetence and (4) cancer stem cells may all contribute to tumorigenic potential and the propensity for tumor growth and recurrence
    corecore