8 research outputs found

    Organelle trafficking of chimeric ribozymes and genetic manipulation of mitochondria

    Get PDF
    With the expansion of the RNA world, antisense strategies have become widespread to manipulate nuclear gene expression but organelle genetic systems have remained aside. The present work opens the field to mitochondria. We demonstrate that customized RNAs expressed from a nuclear transgene and driven by a transfer RNA-like (tRNA-like) moiety are taken up by mitochondria in plant cells. The process appears to follow the natural tRNA import specificity, suggesting that translocation indeed occurs through the regular tRNA uptake pathway. Upon validation of the strategy with a reporter sequence, we developed a chimeric catalytic RNA composed of a specially designed trans-cleaving hammerhead ribozyme and a tRNA mimic. Organelle import of the chimeric ribozyme and specific target cleavage within mitochondria were demonstrated in transgenic tobacco cell cultures and Arabidopsis thaliana plants, providing the first directed knockdown of a mitochondrial RNA in a multicellular eukaryote. Further observations point to mitochondrial messenger RNA control mechanisms related to the plant developmental stage and culture conditions. Transformation of mitochondria is only accessible in yeast and in the unicellular alga Chlamydomonas. Based on the widespread tRNA import pathway, our data thus make a breakthrough for direct investigation and manipulation of mitochondrial genetics

    The Cold-Inducible CBF1 Factor–Dependent Signaling Pathway Modulates the Accumulation of the Growth-Repressing DELLA Proteins via Its Effect on Gibberellin Metabolism[W]

    No full text
    Plants have evolved robust mechanisms to respond and adapt to unfavorable environmental conditions, such as low temperature. The C-repeat/drought-responsive element binding factor CBF1/DREB1b gene encodes a transcriptional activator transiently induced by cold that controls the expression of a set of genes responding to low temperature (the CBF regulon). Constitutive expression of CBF1 confers freezing tolerance but also slows growth. Here, we propose that low temperature–induced CBF1 expression restrains growth at least in part by allowing the accumulation of DELLAs, a family of nuclear growth-repressing proteins, the degradation of which is stimulated by gibberellin (GA). We show that cold/CBF1 enhances the accumulation of a green fluorescent protein (GFP)–tagged DELLA protein (GFP-RGA) by reducing GA content through stimulating expression of GA-inactivating GA 2-oxidase genes. Accordingly, transgenic plants that constitutively express CBF1 accumulate less bioactive GA and as a consequence exhibit dwarfism and late flowering. Both phenotypes are suppressed when CBF1 is expressed in a line lacking two DELLA proteins, GA-INSENSITIVE and REPRESSOR OF GA1-3. In addition, we show that DELLAs contribute significantly to CBF1-induced cold acclimation and freezing tolerance by a mechanism that is distinct from the CBF regulon. We conclude that DELLAs are components of the CBF1-mediated cold stress response

    Coupling of Denaturing High-Performance Liquid Chromatography and Terminal Restriction Fragment Length Polymorphism with Precise Fragment Sizing for Microbial Community Profiling and Characterization ▿ †

    No full text
    Terminal restriction fragment length polymorphism (T-RFLP) is used to monitor the structural diversity of complex microbial communities in terms of richness, relative abundance, and distribution of the major subpopulations and individual members. However, discrepancies of several nucleotides between expected and experimentally observed lengths of terminal restriction fragments (T-RFs), together with the difficulty of obtaining DNA sequence information from T-RFLP profiling, often prevent accurate phylogenetic characterization of the microbial community of interest. In this study, T-RFLP analysis of DNA from an artificial assembly of five bacterial strains was carried out with a combination of two size markers with different fluorescent tags. Precise sizing of T-RFs in the 50- to 500-nucleotide range was achieved by using the same dye for both samples and size markers. Phylogenetic assignment of the component microbial strains was facilitated by coupling T-RFLP to denaturing high-performance liquid chromatography (D-HPLC) of 16S RNA gene fragments followed by direct sequencing. The proposed coupling of D-HPLC and T-RFLP provides unambiguous characterization of microbial communities containing less than 15 microbial strains

    Gibberellin signaling controls cell proliferation rate in Arabidopsis

    Get PDF
    Plant growth involves the integration of many environmental and endogenous signals that together with the intrinsic genetic program determine plant size. At the cellular level, growth rate is regulated by the combined activity of two processes: cell proliferation and expansion. Gibberellins (GA) are plant-specific hormones that play a central role in the regulation of growth and development with respect to environmental variability [1-3]. It is well established that GA promote growth through cell expansion by stimulating the destruction of growth-repressing DELLA proteins (DELLAs) [1, 4-6]; however, their effects on cell proliferation remain unknown. Kinematic analysis of leaf and root meristem growth revealed a novel function of DELLAs in restraining cell production. Moreover, by visualizing the cell cycle marker cyclinB1::beta-glucuronidase in GA-signaling mutants, we show that GA modulate cell cycle activity in the root meristem via a DELLA-dependent mechanism. Accordingly, expressing gai (a nondegradable DELLA protein [4]) solely in root meristem reduced substantially the number of dividing cells. We also show that DELLAs restrain cell production by enhancing the levels of the cell cycle inhibitors Kip-related protein 2(KRP2) and SIAMESE (SIM). Therefore, DELLAs exert a general plant growth inhibitory activity by reducing both cell proliferation and expansion rates, enabling phenotypic plasticity

    The Arabidopsis CUL4-DDB1 complex interacts with MSI1 and is required to maintain MEDEA parental imprinting

    Full text link
    Protein ubiquitylation regulates a broad variety of biological processes in all eukaryotes. Recent work identified a novel class of cullin-containing ubiquitin ligases (E3s) composed of CUL4, DDB1, and one WD40 protein, believed to act as a substrate receptor. Strikingly, CUL4-based E3 ligases (CRL4s) have important functions at the chromatin level, including responses to DNA damage in metazoans and plants and, in fission yeast, in heterochromatin silencing. Among putative CRL4 receptors we identified MULTICOPY SUPPRESSOR OF IRA1 (MSI1), which belongs to an evolutionary conserved protein family. MSI1-like proteins contribute to different protein complexes, including the epigenetic regulatory Polycomb repressive complex 2 (PRC2). Here, we provide evidence that Arabidopsis MSI1 physically interacts with DDB1A and is part of a multimeric protein complex including CUL4. CUL4 and DDB1 loss-of-function lead to embryo lethality. Interestingly, as in fis class mutants, cul4 mutants exhibit autonomous endosperm initiation and loss of parental imprinting of MEDEA, a target gene of the Arabidopsis PRC2 complex. In addition, after pollination both MEDEA transcript and protein accumulate in a cul4 mutant background. Overall, our work provides the first evidence of a physical and functional link between a CRL4 E3 ligase and a PRC2 complex, thus indicating a novel role of ubiquitylation in the repression of gene expression
    corecore