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Summary

Plant growth involves the integration of many environmental
and endogenous signals that together with the intrinsic

genetic program determine plant size. At the cellular level,
growth rate is regulated by the combined activity of two

processes: cell proliferation and expansion. Gibberellins
(GA) are plant-specific hormones that play a central role in

the regulation of growth and development with respect to
environmental variability [1–3]. It is well established that

GA promote growth through cell expansion by stimulating
the destruction of growth-repressing DELLA proteins

(DELLAs) [1, 4–6]; however, their effects on cell proliferation

remain unknown. Kinematic analysis of leaf and root meri-
stem growth revealed a novel function of DELLAs in restrain-

ing cell production. Moreover, by visualizing the cell cycle
marker cyclinB1::b-glucuronidase in GA-signaling mutants,

we show that GA modulate cell cycle activity in the root
meristem via a DELLA-dependent mechanism. Accordingly,

expressing gai (a nondegradable DELLA protein [4]) solely
in root meristem reduced substantially the number of

dividing cells. We also show that DELLAs restrain cell
production by enhancing the levels of the cell cycle inhibi-

tors Kip-related protein 2 (KRP2) and SIAMESE (SIM). There-
fore, DELLAs exert a general plant growth inhibitory activity

by reducing both cell proliferation and expansion rates,
enabling phenotypic plasticity.

Results and Discussion

GA promote important processes of plant growth through
cell elongation by promoting the disappearance of nuclear
DELLAs [1, 6]. Binding of GA to the GA receptors GID1
promotes interaction of GID1 with the DELLAs [7–9], subse-
quent polyubiquitination of the DELLAs via the E3 ubiquitin-
ligase SCFSLY1, and eventual destruction of DELLAs by the
26S proteasome [10–13]. Thus, mutants that stabilize DELLAs,
such as the GA-deficient ga1-3 or the F box mutant sly1-10, are
dwarf, a phenotype that is reverted by the lack of DELLA
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function [1, 12, 13]. Although it is clear that DELLAs are impor-
tant regulators of plant growth by restraining cell expansion, it
remains unknown whether they also act on cell proliferation.
To investigate this issue, we performed a kinematic analysis
of leaf growth [14–16]. For this purpose, we determined the
leaf blade area, the average cell area, and total cell number
of abaxial epidermal cells of the first true leaf pair of sly1-10,
gai-t6 rga-t2 rgl1-1 rgl2-1 (also called quadruple-DELLA
mutant [2]) and wild-type plants grown side by side under
the same growth conditions (Figure 1; Figure S1 available on-
line). Under these experimental conditions, leaf growth can be
subdivided in three developmental phases (Figure S1). First,
until 10 days after sowing, leaf growth is associated mainly
with proliferation, where cell division and expansion is
balanced, resulting in stable cell size [17]. In the second phase,
between days 10 and w17, the division rate decreases faster
than expansion rates, causing average cell size to increase.
Finally, after day 18, both cell division and expansion have
stopped. Thus, final leaf size depends on rates and duration
of cell proliferation and subsequent expansion [16, 17].

We found that at 10 days after sowing, sly1-10 plants ex-
hibited a reduction of 41% of the leaf blade area compared
to wild-type plants, whereas in the quadruple-DELLA mutant,
we observed an increase of 35% (Figure 1). The mutations
did not affect the cell size during proliferation; therefore, the
difference in leaf area was due to a difference in cell number
(Figure 1B). Indeed, in comparison to wild-type leaves,
average leaf cell number was decreased by 42% in sly1-10
and increased by 38% in the quadruple-DELLA mutant,
respectively. Supporting this observation, the cell division
rate representing the total number of cells produced per unit
of time and per meristematic cell [15] was, respectively, lower
in sly1-10 leaves and higher in quadruple-DELLA mutant
leaves than in wild-type leaves at earliest time points
(Figure S1E). Thus, DELLAs slow down early leaf growth by re-
straining the cell division rate (Figures S1B and S1E). Interest-
ingly, we also found that the cell division rate decreased slower
in sly1-10 leaves and faster in the quadruple-DELLA mutant
compared to wild-type leaves (Figure S1E). The prolonged
cell division activity observed in sly1-10 and shortened activity
in quadruple-DELLA mutant leaves could be explained by
a compensatory mechanism for the respective mutant’s deficit
or excess cell production [16].

During the second phase of leaf development, growth
is mainly driven by cell expansion [17]. During this phase,
DELLAs repress leaf growth through their effects on cell elon-
gation (Figure 1). Hence, mature cells of sly1-10 were signifi-
cantly smaller than those of wild-type. However, because of
the prolonged division, mature sly1-10 leaves contained 30%
more cells than wild-type leaves, indicating that DELLAs
modify the balance between cell division and expansion and
that reduced epidermal cell size is partially compensated by
an increase in the cell number. It is noteworthy that we found
similar kinetics of the appearance of stomatal complexes in
wild-type, sly1-10, and quadruple-DELLA mutant leaves, indi-
cating that guard cell differentiation proceeded normally
(Figure S1F). Taken together, these data show that accumula-
tion of DELLAs restrains leaf growth by a dual mechanism, first
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by altering cell division rate during the proliferation phase of
leaf development, then by altering cell expansion rate during
the expansion phase.

We next determined whether DELLAs constitute a mecha-
nism generally controlling cell production rates. Plant growth
is maintained and regulated through the activity of apical meri-
stems, where a balance between cell production and differen-
tiation needs to be properly coordinated. For example, root
growth occurring from the distal end as a result of both cell
division and elongation depends on the continuous function
of the root meristem [18]. Root meristem originates from

Figure 1. DELLAs Restrain Both Cell Proliferation and Expansion Rates in

Leaves

(A) Representative wild-type (Ler), gai-t6 rga-t2 rgl1-1 rgl2-1 (quadruple-

DELLA), and sly1-10 mutant plants 10 days and 22 days after sowing

(das). Arrowheads indicate a leaf of the first true leaf pair on which the kine-

matic analysis was performed (Figure S1). Scale bars represent 5 mm.

(B) Leaf blade area, average cell area, and total cell number of abaxial

epidermal cells of the first true leaf pair of wild-type (Ler; light gray),

quadruple-DELLA (dark gray), and sly1-10 (white) mutant 10 days and

22 days after sowing (das). Data represent average 6 SE.
a group of undifferentiated stem cells, which generate cells
that divide several times before elongating and differentiating
[18, 19]. The root meristem organization is completed when the
balance between cell division and cell differentiation rates is
established, resulting in the formation of a meristem of stable
size [20].

Previous experiments identified a key role for DELLAs in
controlling root growth [21]. To specifically investigate
whether DELLAs play a critical role in the control of root meri-
stem activity, we followed the size of the root apical meristem
of wild-type, GA-deficient ga1-3 mutant, and ga1-3 quadruple-
DELLA mutant seedlings throughout their development
(Figure 2). Root meristem size was expressed as the length
of the meristematic zone and the number of cortex cells in
a file extending from the quiescent center (QC; a small group
of organizing cells defining together with the stem cells the
stem cell niche [18]) to the first elongated cell exhibiting vacuo-
lization [20]. We found that accumulation of DELLAs repressed
root meristem size. Although the growth of wild-type and
ga1-3 quadruple-DELLA mutant root meristem was indistin-
guishable throughout their development, the size increase of
ga1-3 mutant root meristem was severely retarded (Figures
2B and 2C). Thus, the root meristem size of 5 days postim-
bibed (dpi) ga1-3 mutant was significantly reduced compared
to wild-type, and the absence of DELLA function in ga1-3
quadruple-DELLA mutant suppressed the growth restraint
conferred by ga1-3 (Figures 2A–2C). We also found that the
growth of the GA-insensitive gai root meristem (a mutant that
is relatively resistant to the effects of GA [4]) was also signifi-
cantly retarded in comparison to wild-type and quadruple-
DELLA mutant (Figure S2). Altogether, these results (which
are consistent with those reported in the accompanying manu-
script by Ubeda-Tomás et al. [22] in this issue of Current
Biology) suggest that DELLAs affect root meristem activity
by acting on the rate of meristematic cell division.

To further substantiate the role of DELLAs in controlling
root cell division, we introgressed a pCYCB1;1:Dbox-GUS
construct into ga1-3 and gai-t6 rga-24 (lacking both GAI and
RGA) mutants. The cyclin B1-GUS reporter allows us to visu-
alize cells at the G2-M phase of the cell cycle and thus to
monitor mitotic activity in the root meristem [23]. We found
that the number of dividing cells was reduced in ga1-3
compared to wild-type or gai-t6 rga-24 mutant roots (Figures
3A and 3B). In the presence of paclobutrazol (PAC), an inhibitor
of GA biosynthesis [1], the number of dividing cells was
reduced in wild-type root meristem to a similar level than
ga1-3, but was unchanged in gai-t6 rga-24 root meristem. In
contrast, GA treatment increased the number of dividing cells
in ga1-3 root meristem (Figures 3A and 3B). The kinetic of
response to GA was within 1 hr time (Figure S3). Furthermore,
expressing gai solely in root meristem (in RCH1-driven gai-
GFP expression line; RCH1 promoter is active only in the
root mersitem [20]) reduced dramatically the number of
dividing cells (Figures 3C–3E). Overall, these results demon-
strate that GA signaling controls cell division activity in root
meristem, thereby contributing in the regulation of root meri-
stem growth [19].

The DELLA-mediated decrease in root meristematic cell
division rate could be the consequence of reduced stem cell
niche activity [18–20]. In root, the stem cell niche is formed
by the QC, which acts as a stem cell organizer, surrounded
by the stem cells [18]. QC specification and stem cell activity
were shown to depend on the combinatorial action of a set
of transcription factors, PLETHORA1 (PLT1), SCARECROW
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(SCR), and SHORT-ROOT (SHR) [24, 25]. Therefore, we
investigated the effects of GA and PAC treatments on the
expression of the QC-expressed promoter trap (QC-46), the
expression of SCR and SHR proteins (pSCR:SCR-GFP and
pSHR:SHR-GFP), and the PLT1 promoter activity (pPLT1:CFP)
in the root [20] (Figure S4). Both treatments had no effect on
either the localization or the expression levels of each reporter
lines. Thus, these results suggest that GA signaling controls
root meristematic cell division rate without interfering with
stem cell niche specification or activity. These results are
consistent with the lack of effect of ectopic gai expression in
initial cells on root meristem size reported in the accompa-
nying manuscript by Ubeda-Tomás et al. [22].

Finally, it is noteworthy that we found by a similar approach
that DELLAs also restrain cell division activity in the shoot
meristematic zone and early developing leaves (Figure S5),
supporting the kinematic data presented in Figure 1, and
thereby suggesting that the GA signaling provides a general
mechanism to control plant cell proliferation.

To gain insight into the molecular basis of that regulatory
mechanism, we next determined the expression levels of key
core cell cycle regulators in 7-day-old wild-type, ga1-3, and
ga1-3 quadruple-DELLA mutant seedlings. Eukaryotic cell
division is driven by the consecutive action of cyclin/cyclin-
dependent kinase (CYC/CDK) complexes, whose activity
controls two major cell cycle phase transitions, the G1/S and
G2/M boundaries [26]. Interestingly, among the positive and
negative cell cycle regulators tested, we found that the tran-
script levels of CDK inhibitors (CKIs) were increased in ga1-3
mutant compared to wild-type seedlings (Figure 4A; Figure

Figure 2. DELLAs Slow Root Meristem Growth

(A) Representative wild-type (Ler), ga1-3, and ga1-3

quadruple-DELLA mutant root meristems at 5 days postim-

bibition (dpi). The insert shows a close-up of elongating cells

exiting from the meristem at the transition zone. The QC and

the transition zone between cortex meristematic and differ-

entiated cells are indicated by blue and red arrowheads,

respectively. Scale bars represent 100 mm.

(B and C) Means (n > 15, 6 SE) root meristem length (B) and

root meristem cell number (C) of wild-type (Ler; blue), ga1-3

(red), and ga1-3 quadruple-DELLA mutant (green) seedlings

from 2 to 8 dpi. For monitoring root meristem growth, the

length of the meristematic zone and the number of cortex

meristematic cells enclosed between the blue and red arrow-

heads in (A) were determined.

S6). CKIs negatively regulate the cell cycle by
binding to and inhibiting CYC/CDK complexes
[26]. Plants contain both conserved and plant-
specific classes of CKIs, known as Kip-related
proteins (KRP) and SIAMESE (SIM), respectively
[14, 27]. Here we found that transcript levels of
KRP2 and 3 members of the SIM family (SIM,
SMR1, and SMR2) were increased by a factor of
w2 in ga1-3 mutant compared to wild-type seed-
lings (Figure 4A). Moreover, GA treatment or lack
of DELLA function (in ga1-3 quadruple-DELLA
mutant) suppressed the CKI increased transcript
accumulation conferred by ga1-3. Thus, DELLAs
promote the expression of KRP2 and members
of the SIM family whereas GA repress their expres-
sion by overcoming DELLA-mediated promotion.
Accordingly, we show that KRP2 protein

accumulates to higher levels in ga1-3 seedlings compared to
wild-type or ga1-3 quadruple-DELLA mutant seedlings (Fig-
ure 4B). Similar results were obtained on dissected root tips
material, suggesting that the DELLA-dependent control of
KRP2 and SIM genes expression occurs in root meristematic
cells (Figure S7).

Plant CKIs inhibit cell cycle progression by interacting with
D-type CYC and A-type CDK subunits [26]. Overexpression
of D-type CYC increases mitotic activity and suppresses the
mutant phenotype conferred by ectopic expression of CKIs
[26, 28, 29]. If the DELLA-mediated growth restraint phenotype
exhibited during the proliferation phase is the consequence of
CKI accumulation, we speculated that overexpression of
CYCD3;1 could revert, at least in part, this phenotype. Hence,
whereas ga1-3 plants exhibited a reduction of 57% of the leaf
blade area compared to wild-type plants because of a deficit in
cell number, overexpression of CYCD3;1 rescued the growth
of ga1-3 plants (Figure 4C; Figure S8). As a consequence, at
10 days after sowing, leaves of CYCD3;1 OE and CYCD3;1
OE ga1-3 plants are indistinguishable. Altogether, these
results indicate that GA signaling, by modulating the expres-
sion levels of KRP2 and members of SIM gene family, controls
the cell proliferation rate.

Although it has long been known that GA promote growth
through cell expansion by stimulating the destruction of
growth-repressing DELLA proteins [1], their effects on plant
growth through the regulation of cell production is novel. We
established that GA control both cell proliferation and expan-
sion rates, processes that both rely on the destruction of
DELLAs. Thus, throughout plant development, DELLAs restrain
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Figure 3. DELLAs Restrain Cell Division in Root

Meristem

(A) Effects of gibberellin (GA) and paclobutrazol

(PAC) treatments on Dbox CYCB1;1-GUS cell-

division marker in wild-type (Ler), ga1-3, and

gai-t6 rga-24 mutant roots. Photographs show

representative 8-day-old root seedlings grown

for 4 days on 2 mM GA or 1 mM PAC. Black dots

indicate the distance between the first and last

dividing cells in the longitudinal axis of the root

meristem as shown by b-glucuronidase staining.

Scale bars represent 80 mm.

(B) Mean (n > 20, 6 SE) length of the Dbox

CYCB1;1-GUS staining in the longitudinal axis

of the root meristem.

(C–E) Effect of RCH1-driven gai expression on

cell division.

(C) Expression of gai-GFP in pRCH1:gai-GFP,

pCYCB1;1:Dbox-GUS root meristem.

(D) Dbox CYCB1;1-GUS activity in pRCH1:gai-

GFP, pCYCB1;1:Dbox-GUS root meristem.

(E) Dbox CYCB1;1-GUS activity in pCYCB1;1:

Dbox-GUS root meristem. Numbers indicate

average length (n > 20, 6 SE) of Dbox CYCB1;

1-GUS staining, as in (B). Scale bars represent

100 mm.
growth of organs such as leaves and primary root, by first
decreasing the rate of division of proliferating cells, then by
altering the rate of elongation of differentiated cells. Moreover,
we showed that DELLAs restrain cell cycle activity by
enhancing the accumulation of cell cycle inhibitors, particularly
members of the plant-specific SIM gene family.

Interestingly, it has recently been shown that expression of
the SIM gene family responds to diverse biotic and abiotic
stress treatments [30]. It was thus suggested that this class
of CKIs couples the cell cycle to (adverse) environmental
conditions [30], in contrast to KRPs that respond to intrinsic
developmental signals [14]. Moreover, recent advances re-
vealed that DELLA restraint provides a general mechanism
permitting flexible and appropriate growth in response to
changes in natural environment [2, 3]. Overall, these observa-
tions suggest that DELLA-mediated control of SIM expression
provides such a mechanism, enabling plants to modulate their
growth (by modulating their cell proliferation rate) according to
surrounding environments.

Experimental Procedures

Plant Lines

GA biosynthesis and signaling mutant seeds used in this study were derived

from Landsberg erecta (Ler) ecotype. Arabidopsis mutants sly1-10, ga1-3,

gai, gai-t6 rga-24, quadruple-DELLA (gai-t6 rga-t2 rgl1-1 rgl2-1), ga1-3

quadruple-DELLA; and Arabidopsis transgenic lines pCYCB1;1:Dbox-

GUS, QC-46, pPLT1:CFP, pSCR:SCR-GFP, pSHR:SHR-GFP and lines

were as described previously [2, 13, 20, 21, 23–25]. The CYCD3;1 OE line

(35S:CYCD3;1) drives a constitutive expression of CYCD3;1 leading to an

increase in cell proliferation [28]. ga1-3 pCYCB1;1:Dbox-GUS, gai-t6 rga-24

pCYCB1;1:Dbox-GUS and ga1-3 CYCD3;1 OE lines were isolated from F3

progeny of the appropriate crosses. Growth analysis, genomic PCR, and

GUS staining were used to confirm the ga1-3 or gai-t6 rga-24 genotypes

[2] and the presence of CYCD3;1 OE or pCYCB1;1:Dbox-GUS transgene,

respectively.

Kinematic Analysis of Leaf Growth

Seeds were plated on MS-agar growth medium [14] and placed at 4�C for

5 days to synchronize germination. Plates were then placed horizontally in

a growth chamber (22�C; 16 hr photoperiod), and only seeds germinating
at the same time (same day) were selected for the analysis. Kinematic anal-

ysis was performed essentially as described earlier [14] by measuring whole

leaf blade area and drawing 30–50 cells from abaxial epidermis of the first

leaf pair harvested daily on 4 to 7 plants for each genotype from days 5 to

24 after sowing. The drawings were scanned and analyzed by an automated

image analysis routine that measures total area of the drawn cells and

counts number of pavement and guard cells and performs the mathematics

to calculate average leaf area, average cell area, number of cells per leaf,

relative rates of cell expansion (RLER), cell division rates, and Stomatal

Index in function of time.

Root Meristem Size Analyses

Seeds were plated on half concentrated MS-agar growth medium and

placed at 4�C for 5 days to synchronize germination. Plates were then

placed vertically in a growth chamber (22�C; 16 hr photoperiod). Meristem

size was expressed as the number of cells in cortex files from the QC to

the first elongated cell exhibiting vacuolization [20]. Measurements were

performed every day by microscopy (AxioImager Z1, Zeiss) from days 2 to

8 after imbibition on at least 15 roots for each genotype. Root meristem

length was measured with Image J software (http://rsb.info.nih.gov).

Ectopic Expression of gai

RCH1 (AT5g48940) promoter (a 847 bp fragment [20]) and gai-GFP cDNA

were obtained by PCR amplification from the pRCH1:AtCKX1 construct

(provided by S. Sabatini) and the 35S:gai-GFP construct (provided by

N. Harberd), respectively. The pRCH1:gai-GFP construct was engineered

by mobilizing pRCH1 in plasmid pDONR221-P4P1r (Invitrogen) and gai-

GFP in plasmid pDONR207-P1P2 (Invitrogen) into the destination vector

pH7m24GW,3 (Plant Genetic, psb-vib, Gent, Belgium) via a gateway cloning

approach (Invitrogen). The pRCH1:gai-GFP construct was introduced into

Agrobacterium tumefaciens GV3101 by electroporation. pCYCB1;1:Dbox-

GUS Arabidopsis plants were transformed by floral dip.

Detection of Dbox CYCB1;1-GUS Activity

Seeds were plated on MS-agar growth medium. After 5 days of stratification

at 4�C, plates were placed vertically in a growth chamber (22�C; 16 hr photo-

period) for 4 days. Subsequently, seedlings were transferred to MS-agar

plates containing 2 mM GA or 1 mM PAC (paclobutrazol, an inhibitor of GA-

biosynthesis) for further 4 days. Histochemical detection of GUS activity

was carried out with 5-bromo-4-chloro-3-indolyl-b-D-glucuronide (X-Gluc)

as a substrate. Seedlings were placed in 90% acetone on ice for 15 min

and then in X-Gluc buffer solution (500 mg/ml X-Gluc, 50 mM NaPO4

[pH 7], 10 mM EDTA, 0.01% Triton X-100, 2 mM K3F3(CN)3) under vacuum

(600 mm Hg) for 10 min, and then placed at 37�C overnight. For observation,

http://rsb.info.nih.gov
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stained roots were transferred to small Petri dishes containing 0.24 N HCl in

20% methanol and incubated at 57�C for 15 min. This solution was replaced

with 7% NaOH, 7% hydroxylamine-HCl in 60% ethanol for 15 min at room

temperature. Roots were then rehydrated for 5 min each in 40%, 20%,

and 10% ethanol and infiltrated for 15 min in 5% ethanol 25% glycerol.

Roots were mounted in 50% glycerol on glass microscope slides. In

Figure S3, 5-day-old ga1-3 pCYCB1;1:Dbox-GUS seedlings grown on

MS-agar medium (22�C; 16 hr photoperiod) were transferred to MS liquid

medium for 2 days then treated by 10 mM GA for the time as indicated before

the detection of GUS activity. In Figure S5, 6-day-old seedlings grown on

horizontal MS-agar plates (22�C; 16 hr photoperiod) were transferred to

MS-agar plates containing 2 mM GA or 1 mM PAC for further 4 days before

the detection of the GUS activity.

Observation of Stem Cell Niche Reporter Lines

QC-46, pSCR:SCR-GFP, and pSHR:SHR-GFP lines were grown on MS-agar

plates for 5 days in a growth chamber (22�C; 16 hr photoperiod), then trans-

ferred to MS liquid medium for 2 days before to be treated by 2 mM GA or

1 mM PAC for 24 hr. 5-day-old pPLT1:CFP were transferred to MS liquid

medium containing 2 mM GA or 1 mM PAC for 48 hr. Confocal microscopy

images were obtained with a Zeiss LSM510 inverted confocal laser micro-

scope with 203 or 403 objectives. All images were obtained with the

same modifications and intensity parameters.

Quantitative RT-PCR Analyses

Total RNA was extracted with Trizol reagent (Molecular Research Center)

from 7-day-old whole seedlings (or dissected root tips in Figure S7) treated

by 2 mM GA and controls. 2 mg of total RNA was treated first with 2 units of

DNase I (Promega) and then reverse transcribed in a total volume of 40 ml

Figure 4. DELLAs Affect the Expression Levels of Cyclin-Dependent Kinase

Inhibitors

(A) Relative levels of KRP2, SIM, SMR1, and SMR2 gene transcripts (deter-

mined by quantitative RT-PCR) in 7-day-old wild-type (Ler), ga1-3, and

ga1-3 quadruple-DELLA mutant seedlings that had been treated by 2 mM

GA (dark gray) and controls (mock, light gray). Data are means 6 SE. Similar

results were obtained in two independent experiments.

(B) Immunodetection of KRP2 (with antibody to KRP2) in 7-day-old wild-

type (Ler), ga1-3, and ga1-3 quadruple-DELLA mutant seedlings.

(C) Mean leaf blade area of the first true leaf pair of wild-type (Ler), ga1-3,

CYCD3;1 OE and ga1-3 CYCD3;1 OE plants 10 days after sowing. Data

represent average 6 SE.
with 2 mM oligo(dT)20, 0.5 mM deoxynucleotide triphosphate, 5 mM DTT,

and 200 units of Superscript III reverse transcriptase (Invitrogen). RT-PCR

was performed with gene-specific primers in a total volume of 15 ml SYBR

Green Master mix (Roche) on a Lightcycler LC480 apparatus (Roche)

according to manufacturer’s instructions. The GAPDH and At4g26410

(unknown function) genes were used as internal controls. The relative

expression level of each gene in mutants and in GA-treated seedlings was

compared with that in wild-type seedlings with GenEx Pro 4.3.5. software

(MultiD Analyses) after normalization with the GAPDH cDNA level and

average over three replicates. qRT-PCR analyses were performed on two

biological repeats.

Immunoblot Analyses

7-day-old seedlings were ground in 23 SDS-PAGE buffer followed by

boiling for 5 min. After centrifugation, the protein extracts were fractionated

on a 10% SDS-PAGE gel and blotted onto membrane. Immunoblots were

performed with a 1000-fold dilution of KRP2 antibodies [31] and a 5000-

fold dilution of horseradish peroxidase-conjugated IgG (Molecular Probes).

Signals were detected by film (within linear range of detection) with the

enhanced chemiluminescence protein gel blot analysis system (Amersham

Biosciences). The blot was subsequently stripped with 0.2 N glycine (pH 2.5)

and reprobed with cdc2 (PSTAIRE) antibody (Santa Cruz Biotechnology) for

loading control. The immunoblot assay was repeated three times.

Primer List

Gene-specific primer sequences are available in Supplemental Data.

Supplemental Data

Supplemental Data include Supplemental Experimental Procedures and

eight figures and can be found with this article online at http://www.cell.

com/current-biology/supplemental/S0960-9822(09)01194-4.
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