26 research outputs found

    Y-chromosome polymorphisms in southern Arabia

    Get PDF
    In order to explore south Arabia\u27s role in the migratory episodes leaving Africa to Eurasia and back, high-resolution Y-chromosome analyses of males from the United Arab Emirates (164), Qatar (72) and Yemen (62) were performed. The distribution of specific haplogroups (E3bl-M35 and J1-M267) and their microsatellite-based age estimates in southern Arabia offer additional insight on their dissemination. With the exception of Yemen, southern Arabia displays high diversity in its Y-haplogroup substructure and share similarities with populations along the eastern coast of the Gulf of Oman, possibly serving as a coastal corridor for migrations. Elevated rates of consanguinity may have had an impact in Yemen and Qatar, which experience deficiencies in their ratios of observed to expected heterozygosity at 15 hypervariable autosomal STR loci. Higher diversity along the Gulf of Oman may be due to trade emanating from the kingdom of Oman involving East Africa, southern Pakistan and western India

    Simultaneous purifying selection on the ancestral MC1R allele and positive selection on the melanoma-risk allele V60L in South Europeans

    Get PDF
    In humans, the geographical apportionment of the coding diversity of the pigmentary locus melanocortin-1 receptor (MC1R) is, unusually, higher in Eurasians than in Africans. This atypical observation has been interpreted as the result of purifying selection due to functional constraint on MC1R in high UV-B radiation environments. By analyzing 3,142 human MC1R alleles from different regions of Spain in the context of additional haplotypic information from the 1000 Genomes (1000G) Project data, we show that purifying selection is also strong in southern Europe, but not so in northern Europe. Furthermore, we show that purifying and positive selection act simultaneously on MC1R. Thus, at least in Spain, regions at opposite ends of the incident UV-B radiation distribution show significantly different frequencies for the melanoma-risk allele V60L (a mutation also associated to red hair and fair skin and even blonde hair), with higher frequency of V60L at those regions of lower incident UV-B radiation. Besides, using the 1000G south European data, we show that the V60L haplogroup is also characterized by an extended haplotype homozygosity (EHH) pattern indicative of positive selection. We, thus, provide evidence for an adaptive value of human skin depigmentation in Europe and illustrate how an adaptive process can simultaneously help to maintain a disease-risk allele. In addition, our data support the hypothesis proposed by Jablonski and Chaplin (Human skin pigmentation as an adaptation to UVB radiation. Proc Natl Acad Sci U S A. 2010;107:8962-8968), which posits that habitation of middle latitudes involved the evolution of partially depigmented phenotypes that are still capable of suitable tanning.This works was supported by the former Spanish Ministerio de Ciencia e Innovación, project CGL2008-04066/BOS to S.A.; by the Dpt. Educacion, Universidades e Investigación of the Basque Government, project IT542-10; by program UFI11/09 by the University of the Basque Country, by "Programa de Investigacion Cientifica de la Universidad de La Laguna" (boc-a- 2010-255-7177), and by grants from the Health Institute “Carlos III” (FIS PI08/1383, FIS PI11/00623) to C.F. and co-financed by the European Regional Development Funds, “A way of making Europe” from the European Union. M.P.Y. was supported by a postdoctoral fellowship from Fundación Ramón Areces. We thank the Spanish Banco Nacional de AND (BNADN) (http://www.bancoadn.org/) for providing us with DNA samples from all over Spain. We also thank the Spanish Agencia Estatal de Meteorología (AEMET) (http://www.aemet.es/) for kindly providing us with the UV-B radiation data

    Habitat properties are key drivers of Borrelia burgdorferi (s.l.) prevalence in Ixodes ricinus populations of deciduous forest fragments

    Get PDF
    Background: The tick Ixodes ricinus has considerable impact on the health of humans and other terrestrial animals because it transmits several tick-borne pathogens (TBPs) such as B. burgdorferi (sensu lato), which causes Lyme borreliosis (LB). Small forest patches of agricultural landscapes provide many ecosystem services and also the disservice of LB risk. Biotic interactions and environmental filtering shape tick host communities distinctively between specific regions of Europe, which makes evaluating the dilution effect hypothesis and its influence across various scales challenging. Latitude, macroclimate, landscape and habitat properties drive both hosts and ticks and are comparable metrics across Europe. Therefore, we instead assess these environmental drivers as indicators and determine their respective roles for the prevalence of B. burgdorferi in I. ricinus. Methods: We sampled I. ricinus and measured environmental properties of macroclimate, landscape and habitat quality of forest patches in agricultural landscapes along a European macroclimatic gradient. We used linear mixed models to determine significant drivers and their relative importance for nymphal and adult B. burgdorferi prevalence. We suggest a new prevalence index, which is pool-size independent. Results: During summer months, our prevalence index varied between 0 and 0.4 per forest patch, indicating a low to moderate disservice. Habitat properties exerted a fourfold larger influence on B. burgdorferi prevalence than macroclimate and landscape properties combined. Increasingly available ecotone habitat of focal forest patches diluted and edge density at landscape scale amplified B. burgdorferi prevalence. Indicators of habitat attractiveness for tick hosts (food resources and shelter) were the most important predictors within habitat patches. More diverse and abundant macro- and microhabitat had a diluting effect, as it presumably diversifies the niches for tick-hosts and decreases the probability of contact between ticks and their hosts and hence the transmission likelihood.[br/] Conclusions: Diluting effects of more diverse habitat patches would pose another reason to maintain or restore high biodiversity in forest patches of rural landscapes. We suggest classifying habitat patches by their regulating services as dilution and amplification habitat, which predominantly either decrease or increase B. burgdorferi prevalence at local and landscape scale and hence LB risk. Particular emphasis on promoting LB-diluting properties should be put on the management of those habitats that are frequently used by humans. In the light of these findings, climate change may be of little concern for LB risk at local scales, but this should be evaluated further

    SARS-CoV-2 susceptibility and COVID-19 disease severity are associated with genetic variants affecting gene expression in a variety of tissues

    Get PDF
    Variability in SARS-CoV-2 susceptibility and COVID-19 disease severity between individuals is partly due to genetic factors. Here, we identify 4 genomic loci with suggestive associations for SARS-CoV-2 susceptibility and 19 for COVID-19 disease severity. Four of these 23 loci likely have an ethnicity-specific component. Genome-wide association study (GWAS) signals in 11 loci colocalize with expression quantitative trait loci (eQTLs) associated with the expression of 20 genes in 62 tissues/cell types (range: 1:43 tissues/gene), including lung, brain, heart, muscle, and skin as well as the digestive system and immune system. We perform genetic fine mapping to compute 99% credible SNP sets, which identify 10 GWAS loci that have eight or fewer SNPs in the credible set, including three loci with one single likely causal SNP. Our study suggests that the diverse symptoms and disease severity of COVID-19 observed between individuals is associated with variants across the genome, affecting gene expression levels in a wide variety of tissue types

    Stroke genetics informs drug discovery and risk prediction across ancestries

    Get PDF
    Previous genome-wide association studies (GWASs) of stroke - the second leading cause of death worldwide - were conducted predominantly in populations of European ancestry(1,2). Here, in cross-ancestry GWAS meta-analyses of 110,182 patients who have had a stroke (five ancestries, 33% non-European) and 1,503,898 control individuals, we identify association signals for stroke and its subtypes at 89 (61 new) independent loci: 60 in primary inverse-variance-weighted analyses and 29 in secondary meta-regression and multitrait analyses. On the basis of internal cross-ancestry validation and an independent follow-up in 89,084 additional cases of stroke (30% non-European) and 1,013,843 control individuals, 87% of the primary stroke risk loci and 60% of the secondary stroke risk loci were replicated (P < 0.05). Effect sizes were highly correlated across ancestries. Cross-ancestry fine-mapping, in silico mutagenesis analysis(3), and transcriptome-wide and proteome-wide association analyses revealed putative causal genes (such as SH3PXD2A and FURIN) and variants (such as at GRK5 and NOS3). Using a three-pronged approach(4), we provide genetic evidence for putative drug effects, highlighting F11, KLKB1, PROC, GP1BA, LAMC2 and VCAM1 as possible targets, with drugs already under investigation for stroke for F11 and PROC. A polygenic score integrating cross-ancestry and ancestry-specific stroke GWASs with vascular-risk factor GWASs (integrative polygenic scores) strongly predicted ischaemic stroke in populations of European, East Asian and African ancestry(5). Stroke genetic risk scores were predictive of ischaemic stroke independent of clinical risk factors in 52,600 clinical-trial participants with cardiometabolic disease. Our results provide insights to inform biology, reveal potential drug targets and derive genetic risk prediction tools across ancestries.</p

    Stroke genetics informs drug discovery and risk prediction across ancestries

    Get PDF
    Previous genome-wide association studies (GWASs) of stroke — the second leading cause of death worldwide — were conducted predominantly in populations of European ancestry1,2. Here, in cross-ancestry GWAS meta-analyses of 110,182 patients who have had a stroke (five ancestries, 33% non-European) and 1,503,898 control individuals, we identify association signals for stroke and its subtypes at 89 (61 new) independent loci: 60 in primary inverse-variance-weighted analyses and 29 in secondary meta-regression and multitrait analyses. On the basis of internal cross-ancestry validation and an independent follow-up in 89,084 additional cases of stroke (30% non-European) and 1,013,843 control individuals, 87% of the primary stroke risk loci and 60% of the secondary stroke risk loci were replicated (P < 0.05). Effect sizes were highly correlated across ancestries. Cross-ancestry fine-mapping, in silico mutagenesis analysis3, and transcriptome-wide and proteome-wide association analyses revealed putative causal genes (such as SH3PXD2A and FURIN) and variants (such as at GRK5 and NOS3). Using a three-pronged approach4, we provide genetic evidence for putative drug effects, highlighting F11, KLKB1, PROC, GP1BA, LAMC2 and VCAM1 as possible targets, with drugs already under investigation for stroke for F11 and PROC. A polygenic score integrating cross-ancestry and ancestry-specific stroke GWASs with vascular-risk factor GWASs (integrative polygenic scores) strongly predicted ischaemic stroke in populations of European, East Asian and African ancestry5. Stroke genetic risk scores were predictive of ischaemic stroke independent of clinical risk factors in 52,600 clinical-trial participants with cardiometabolic disease. Our results provide insights to inform biology, reveal potential drug targets and derive genetic risk prediction tools across ancestries

    A first update on mapping the human genetic architecture of COVID-19

    Get PDF
    peer reviewe

    Plant metabolic response to stress in an arid zone is mediated by the presence of neighbors

    No full text
    The file data.zip contains: “Data.xlsx”: This file includes data from the 183 individuals sampled. The information provided includes the tag of the vegetation patch in which each plant was growing (“patch”), the species identity (“focal”), whether the closest-related species from the same patch (“taxodist”) was within the same species, genus, family, class or phylum, the concentration, in ng/g of fresh weigh, of the different metabolites: abscisic acid (ABA), proline accumulation, jasmonic acid (JA) and salicylic acid (SA) in plants growing “associated” or “solitary”, the physical distance between the associated and solitary plant of each pair (“dist_cm”), the difference in the log-transformed-volumes between the associated plant and the solitary one (“difvolumenfocal_A_S”), the area of the patch in cm2 (“Area_patch_cm2”), the volume of the largest plant in the vegetation patch (“volumenurse”), the mean (“mean_ind_phylo_dist”) and minimum (“min_phylo_dist”) phylogenetic distance between the focal plant and the rest of individuals in its patch, and the largest plant in the patch (“phydist_nursefocal”). Finally, the number of individuals (“nind”) and species (“nsp”) in each vegetation patch is also provided. “Petrer_tree.nwk”: Phylogenetic relationships between the plant species recorded in this study “Clima.xlsx”: This file includes monthly average temperature (“Temperature”) and precipitation (“Precipitation”), and also minimum (“Min_T”) and maximum (“Max_T”) temperatures of each month (1-12) in the closest meteorological station to the study site (“Petrer”). Data provided by the Valencian Society of Meteorology (AVAMET) (https://www.avamet.org/). R code: “R_code_Plant_Metab_Neigh.R” includes all the code required to reproduce the analyses conducted and figures included in this paper using the data described above

    The Himalayas as a Directional Barrier to Gene Flow

    Get PDF
    High-resolution Y-chromosome haplogroup analyses coupled with Y–short tandem repeat (STR) haplotypes were used to (1) investigate the genetic affinities of three populations from Nepal—including Newar, Tamang, and people from cosmopolitan Kathmandu (referred to as “Kathmandu” subsequently)—as well as a collection from Tibet and (2) evaluate whether the Himalayan mountain range represents a geographic barrier for gene flow between the Tibetan plateau and the South Asian subcontinent. The results suggest that the Tibetans and Nepalese are in part descendants of Tibeto-Burman–speaking groups originating from Northeast Asia. All four populations are represented predominantly by haplogroup O3a5-M134–derived chromosomes, whose Y-STR–based age (±SE) was estimated at 8.1±2.9 thousand years ago (KYA), more recent than its Southeast Asian counterpart. The most pronounced difference between the two regions is reflected in the opposing high-frequency distributions of haplogroups D in Tibet and R in Nepal. With the exception of Tamang, both Newar and Kathmandu exhibit considerable similarities to the Indian Y-haplogroup distribution, particularly in their haplogroup R and H composition. These results indicate gene flow from the Indian subcontinent and, in the case of haplogroup R, from Eurasia as well, a conclusion that is also supported by the admixture analysis. In contrast, whereas haplogroup D is completely absent in Nepal, it accounts for 50.6% of the Tibetan Y-chromosome gene pool. Coalescent analyses suggest that the expansion of haplogroup D derivatives—namely, D1-M15 and D3-P47 in Tibet—involved two different demographic events (5.1±1.8 and 11.3±3.7 KYA, respectively) that are more recent than those of D2-M55 representatives common in Japan. Low frequencies, relative to Nepal, of haplogroup J and R lineages in Tibet are also consistent with restricted gene flow from the subcontinent. Yet the presence of haplogroup O3a5-M134 representatives in Nepal indicates that the Himalayas have been permeable to dispersals from the east. These genetic patterns suggest that this cordillera has been a biased bidirectional barrier
    corecore