10 research outputs found

    MDM2 Associates with Polycomb Repressor Complex 2 and Enhances Stemness-Promoting Chromatin Modifications Independent of p53

    Get PDF
    SummaryThe MDM2 oncoprotein ubiquitinates and antagonizes p53 but may also carry out p53-independent functions. Here we report that MDM2 is required for the efficient generation of induced pluripotent stem cells (iPSCs) from murine embryonic fibroblasts, in the absence of p53. Similarly, MDM2 depletion in the context of p53 deficiency also promoted the differentiation of human mesenchymal stem cells and diminished clonogenic survival of cancer cells. Most of the MDM2-controlled genes also responded to the inactivation of the Polycomb Repressor Complex 2 (PRC2) and its catalytic component EZH2. MDM2 physically associated with EZH2 on chromatin, enhancing the trimethylation of histone 3 at lysine 27 and the ubiquitination of histone 2A at lysine 119 (H2AK119) at its target genes. Removing MDM2 simultaneously with the H2AK119 E3 ligase Ring1B/RNF2 further induced these genes and synthetically arrested cell proliferation. In conclusion, MDM2 supports the Polycomb-mediated repression of lineage-specific genes, independent of p53

    Targeted Deletion of p73 in Mice Reveals Its Role in T Cell Development and Lymphomagenesis

    Get PDF
    Transcriptional silencing of the p73 gene through methylation has been demonstrated in human leukemias and lymphomas. However, the role of p73 in the malignant process remains to be explored. We show here that p73 acts as a T cell-specific tumor suppressor in a genetically defined mouse model, and that concomitant ablation of p53 and p73 predisposes mice to an increased incidence of thymic lymphomas compared to the loss of p53 alone. Our results demonstrate a causal role for loss of p73 in progression of T cell lymphomas to the stage of aggressive, disseminated disease. We provide evidence that tumorigenesis in mice lacking p53 and p73 proceeds through mechanisms involving altered patterns of gene expression, defects in early T cell development, impaired apoptosis, and the ensuing accumulation of chromosomal aberrations. Collectively, our data imply that tumor suppressive properties of p73 are highly dependent on cellular context, wherein p73 plays a major role in T cell development and neoplasia

    A Tautomerase-Null Macrophage Migration-Inhibitory Factor (MIF) Gene Knock-In Mouse Model Reveals That Protein Interactions and Not Enzymatic Activity Mediate MIF-Dependent Growth Regulationâ–¿

    No full text
    Macrophage migration-inhibitory factor (MIF) is an upstream regulator of innate immunity and a potential molecular link between inflammation and cancer. The unusual structural homology between MIF and certain tautomerases, which includes both a conserved substrate-binding pocket and a catalytic N-terminal proline (Pro1), has fueled speculation that an enzymatic reaction underlies MIF's biologic function. To address the functional role of the MIF tautomerase activity in vivo, we created a knock-in mouse in which the endogenous mif gene was replaced by one encoding a tautomerase-null, Pro1→Gly1 MIF protein (P1G-MIF). While P1G-MIF is completely inactive catalytically, it maintains significant, albeit reduced, binding to its cell surface receptor (CD74) and to the intracellular binding protein JAB1/CSN5. P1G-MIF knock-in mice (mifP1G/P1G) and cells derived from these mice show a phenotype in assays of growth control and tumor induction that is intermediate between those of the wild type (mif+/+) and complete MIF deficiency (mif−/−). These data provide genetic evidence that MIF's intrinsic tautomerase activity is dispensable for this cytokine's growth-regulatory properties and support a role for the N-terminal region in protein-protein interactions

    MDM2 Associates with Polycomb Repressor Complex 2 and Enhances Stemness-Promoting Chromatin Modifications Independent of p53

    No full text
    SummaryThe MDM2 oncoprotein ubiquitinates and antagonizes p53 but may also carry out p53-independent functions. Here we report that MDM2 is required for the efficient generation of induced pluripotent stem cells (iPSCs) from murine embryonic fibroblasts, in the absence of p53. Similarly, MDM2 depletion in the context of p53 deficiency also promoted the differentiation of human mesenchymal stem cells and diminished clonogenic survival of cancer cells. Most of the MDM2-controlled genes also responded to the inactivation of the Polycomb Repressor Complex 2 (PRC2) and its catalytic component EZH2. MDM2 physically associated with EZH2 on chromatin, enhancing the trimethylation of histone 3 at lysine 27 and the ubiquitination of histone 2A at lysine 119 (H2AK119) at its target genes. Removing MDM2 simultaneously with the H2AK119 E3 ligase Ring1B/RNF2 further induced these genes and synthetically arrested cell proliferation. In conclusion, MDM2 supports the Polycomb-mediated repression of lineage-specific genes, independent of p53

    The development and functions of multiciliated epithelia

    No full text
    corecore