123 research outputs found

    Negative index fishnet with nanopillars formed by direct nano-imprint lithography

    Get PDF
    In this paper we demonstrate the ability to fabricate fishnets by nanoimprinting directly into a pre-deposited three layer metal–dielectric–metal stack, enabling us to pattern large areas in two minutes. We have designed and fabricated two different fishnet structures of varying dimensions using this method and measured their resonant wavelengths in the near-infrared at 1.45 ÎŒm and 1.88 ÎŒm. An important by-product of directly imprinting into the metal–dielectric stack, without separation from the substrate, is the formation of rectangular nanopillars that sit within the rectangular apertures between the fishnet slabs. Simulations complement our measurements and suggest a negative refractive index real part with a magnitude of 1.6. Further simulations suggest that if the fishnet were to be detached from the supporting substrate a refractive index real part of 5 and FOM of 2.74 could be obtained

    Hot-wire chemical vapour deposition for silicon nitride waveguides

    No full text
    In this work, we demonstrate the use of HWCVD as an alternative technique to grow SiN layers for photonic waveguides at temperatures <400ÂșC. In particular, the effect of the ammonia flow and the filament temperature on the material structure, optical properties and propagation losses of the deposited films was investigated. SiN layers with good thickness uniformity, roughness as low as 0.61nm and H concentration as low as 10.4×1021 atoms/cm3 were obtained. Waveguides fabricated on the studied materials exhibited losses as low as 7.1 and 12.3 dB/cm at 1310 and 1550nm respectively

    Integrated 3D Hydrogel Waveguide Out-Coupler by Step-and-Repeat Thermal Nanoimprint Lithography: A Promising Sensor Device for Water and pH

    Get PDF
    Hydrogel materials offer many advantages for chemical and biological sensoring due to their response to a small change in their environment with a related change in volume. Several designs have been outlined in the literature in the specific field of hydrogel-based optical sensors, reporting a large number of steps for their fabrication. In this work we present a three-dimensional, hydrogel-based sensor the structure of which is fabricated in a single step using thermal nanoimprint lithography. The sensor is based on a waveguide with a grating readout section. A specific hydrogel formulation, based on a combination of PEGDMA (Poly(Ethylene Glycol DiMethAcrylate)), NIPAAm (N-IsoPropylAcrylAmide), and AA (Acrylic Acid), was developed. This stimulus-responsive hydrogel is sensitive to pH and to water. Moreover, the hydrogel has been modified to be suitable for fabrication by thermal nanoimprint lithography. Once stimulated, the hydrogel-based sensor changes its topography, which is characterised physically by AFM and SEM, and optically using a specific optical set-up

    Suspended silicon integrated platform for the long-wavelength mid-infrared band

    Get PDF
    The atmospheric-transmission window and the fingerprint region of many substances overlaps with the long-wave infrared band. This has enabled the emergence of a new path for photonic integrated circuits, which could exploit the potential applications of this wavelength range, including chemical and bio sensing. In this work we review our latest advances in the suspended silicon platform with subwavelength grating lateral cladding at 7.7-”m wavelength. Suspended waveguides only require one lithographic etch step and can be specifically designed to maximize sensitivity when used as sensors. Waveguides with propagation loss of 3.1±0.3 dB/cm are demonstrated, as well as bends with less than 0.1 dB/bend. Suspended waveguides based on shifted Bragg grating lateral cladding are also reported, with propagation loss of 5.1±0.6 dB/cm. These results prepare the ground for the development of a platform capable of covering the entire mid-infrared band. Keywords: suspended silicon, mid-infrared, long-wave infrared, subwavelength grating, Bragg.Universidad de Målaga. Campus de Excelencia Internacional Andalucía Tech

    Low-loss slot waveguides with silicon (111) surfaces realized using anisotropic wet etching

    Get PDF
    We demonstrate low-loss slot waveguides on silicon-on-insulator (SOI) platform. Waveguides oriented along the (11-2) direction on the Si (110) plane were first fabricated by a standard e-beam lithography and dry etching process. A TMAH based anisotropic wet etching technique was then used to remove any residual side wall roughness. Using this fabrication technique propagation loss as low as 3.7dB/cm was realized in silicon slot waveguide for wavelengths near 1550nm. We also realized low propagation loss of 1dB/cm for silicon strip waveguides

    Self-folding nano- and micropatterned hydrogel tissue engineering scaffolds by single step photolithographic process

    Get PDF
    Current progress in tissue engineering is focused on the creation of environments in which cultures of relevant cells can adhere, grow and form functional tissue. We propose a method for controlled chemical and topographical cues through surface patterning of self-folding hydrogel films. This provides a conversion of 2D patterning techniques into a viable method of manufacturing a 3D scaffold. While similar bilayers have previously been demonstrated, here we present a faster and high throughput process for fabricating self-folding hydrogel devices incorporating controllable surface nanotopographies by serial hot embossing of sacrificial layers and photolithography

    Increased efficiency of direct nanoimprinting on planar and curved bulk titanium through surface modification

    Get PDF
    In this work the direct transfer of nanopatterns into titanium is demonstrated. The nanofeatures are imprinted at room temperature using diamond stamps in a single step. We also show that the imprint properties of the titanium surface can be altered by anodisation yielding a significant reduction in the required imprint force for pattern transfer. The anodisation process is also utilised for curved titanium surfaces where a reduced imprint force is preferable to avoid sample deformation and damage. We finally demonstrate that our process can be applied directly to titanium rods

    Hepatocellular carcinoma in Pakistan: where do we stand?

    Get PDF
    Context: From the 1970s till the mid 1990s, hepatitis B was the most common etiological factor for hepatocellular carcinoma (HCC) in Pakistan. Afterwards, a shift in HCC etiology was observed with a steady rise in hepatitis C virus (HCV) related HCC cases. HCV-3a, which is the most prevalent genotype, is also most frequent in HCV related HCC. There was an increase in the proportion of non-B non-C (NBNC) HCC cases as well, which might be attributed to an increase in non-alcoholic fatty liver disease. Evidence Acquisition: The age-standardized rate for HCC is 7.64/100 000 in males and 2.8/100 000 in females. Male to female ratio is 3.6:1. Usual age of presentation is in the fifth and sixth decade. Most patients present with advanced disease, as they are not in a regular surveillance program. This is more so for patients with NBNC chronic liver disease. As many sonologists in Pakistan are practicing without sufficient training to pick up early lesions, alpha-fetoprotein is still recommended to compliment ultrasound in the surveillance of HCC. Results: Majority of HCC patients present with nonresectable disease. Interventions such as transarterial chemoembolization, radiofrequency ablation, resection and chemotherapy including sorafenib are available in selected centers. Pakistan appears to be in an area of intermediate endemicity for HCC. There is a need for population based epidemiological studies to estimate the exact disease burden. Conclusions: Measures to prevent the spread of hepatitis C and B can slow down the epidemic rise in the incidence of HCC in the coming decades. There is a need to implement a proper surveillance program to identify HCC cases at an early stage

    Silicon Photonic Waveguides and Devices for Near- and Mid-IR Applications

    Get PDF
    Silicon photonics has been a very buoyant research field in the last several years mainly because of its potential for telecom and datacom applications. However, prospects of using silicon photonics for sensing in the mid-IR have also attracted interest lately. In this paper, we present our recent results on waveguide-based devices for near- and mid-infrared applications. The silicon-on-insulator platform can be used for wavelengths up to 4 ÎŒm; therefore, different solutions are needed for longer wavelengths. We show results on passive Si devices such as couplers, filters, and multiplexers, particularly for extended wavelength regions and finally present integration of photonics and electronics integrated circuits for high-speed applications
    • 

    corecore