47 research outputs found
Assessment of Asthma Control and Severity among Children According to Global Initiative for Asthma Guidelines in Sulaimani City-Iraq
Background: Asthma is a common and potentially serious chronic disease that imposes a substantial burden on patients, their families and the community. Objective: Assessment of the level of asthma control and severity in asthmatic children in Sulaimani city according to the global initiative for asthma (GINA) guidelines. Methods: A cross-sectional study of 82 patients who are known cases of asthma, aged 5 – 15 years , from 1st of March 2014 to 1st of August 2014. Results: Out of 82 patients in our study, 20.8%were classified as having intermittent asthma all of them have well controlled asthma, 42.7% of those classified as having mild persistent asthma 65.7% of them have well controlled asthma, 26.8% of those classified as having moderate persistent asthma 54.5% of them have partly controlled asthma, and 9.8%of those classified as having severe persistent asthma the majority of them 87.5% have uncontrolled asthma and none of them reached to the controlled asthma level according to GINA guidelines. Regarding the peak expiratory flow (PFT) we notice that 58.8% of asthmatic children who were classified as having intermittent severity, their PEF measurements ranged between 160- 250 l/min while those with severe persistent asthma 75% of them have readings between 50-150 l/min. Conclusion: Current levels of asthma control in the Sulaimani city fall far short of the goals specified in the GINA guidelines for asthma management. Also there is a strong correlation between PEF measurements and the level of asthma severity
MIR376A is a regulator of starvation-induced autophagy
Background: Autophagy is a vesicular trafficking process responsible for the degradation of long-lived, misfolded or abnormal proteins, as well as damaged or surplus organelles. Abnormalities of the autophagic activity may result in the accumulation of protein aggregates, organelle dysfunction, and autophagy disorders were associated with various diseases. Hence, mechanisms of autophagy regulation are under exploration.
Methods: Over-expression of hsa-miR-376a1 (shortly MIR376A) was performed to evaluate its effects on autophagy. Autophagy-related targets of the miRNA were predicted using Microcosm Targets and MIRanda bioinformatics tools and experimentally validated. Endogenous miRNA was blocked using antagomirs and the effects on target expression and autophagy were analyzed. Luciferase tests were performed to confirm that 3’ UTR sequences in target genes were functional. Differential expression of MIR376A and the related MIR376B was compared using TaqMan quantitative PCR.
Results: Here, we demonstrated that, a microRNA (miRNA) from the DlkI/Gtl2 gene cluster, MIR376A, played an important role in autophagy regulation. We showed that, amino acid and serum starvation-induced autophagy was blocked by MIR376A overexpression in MCF-7 and Huh-7 cells. MIR376A shared the same seed sequence and had overlapping targets with MIR376B, and similarly blocked the expression of key autophagy proteins ATG4C and BECN1 (Beclin 1). Indeed, 3’ UTR sequences in the mRNA of these autophagy proteins were responsive to MIR376A in luciferase assays. Antagomir tests showed that, endogenous MIR376A was participating to the control of ATG4C and BECN1 transcript and protein levels. Moreover, blockage of endogenous MIR376A accelerated starvation-induced autophagic activity. Interestingly, MIR376A and MIR376B levels were increased with different kinetics in response to starvation stress and tissue-specific level differences were also observed, pointing out to an overlapping but miRNA-specific biological role.
Conclusions: Our findings underline the importance of miRNAs encoded by the DlkI/Gtl2 gene cluster in stress-response control mechanisms, and introduce MIR376A as a new regulator of autophagy
HPLC–DAD–ESI-MS/MS screening of bioactive components from Rhus coriaria L. (Sumac) fruits
This research was partly funded by the European Union under the ENPI CBC MED Program and is a collaborative international project ref. no. I-B/1.1/288. This work was also supported by the project AGL2011-29857-C03-02 (Spanish Ministry of Science and Innovation), as well as P10-FQM-6563 and P11-CTS-7625 (Andalusian Regional Government Council of Innovation and Science), and A1/041035/11 (Spanish Agency for International Development Cooperation).Rhus coriaria L. (sumac) is an important crop widely used in the Mediterranean basin as a food spice, and also in folk medicine, due to its health-promoting properties. Phytochemicals present in plant foods are in part responsible for these consequent health benefits. Nevertheless, detailed information on these bioactive compounds is still scarce. Therefore, the present work was aimed at investigating the phytochemical components of sumac fruit epicarp using HPLC–DAD–ESI-MS/MS in two different ionisation modes. The proposed method provided tentative identification of 211 phenolic and other phyto-constituents, most of which have not been described so far in R. coriaria fruits. More than 180 phytochemicals (tannins, (iso)flavonoids, terpenoids, etc.) are reported herein in sumac fruits for the first time. The obtained results highlight the importance of R. coriaria as a promising source of functional ingredients, and boost its potential use in the food and nutraceutical industries.European Union (EU)Spanish Government
AGL2011-29857-C03-02Andalusian Regional Government Council of Innovation and Science
P10-FQM-6563
P11-CTS-7625Spanish Agency for International Development Cooperation
A1/041035/1
IBMPFD disease-causing mutant VCP/p97 proteins are targets of autophagic-lysosomal degradation
The ubiquitin-proteasome system (UPS) degrades soluble proteins and small aggregates, whereas macroautophagy (autophagy herein) eliminates larger protein aggregates, tangles and even whole organelles in a lysosome-dependent manner. VCP/p97 was implicated in both pathways. VCP/p97 mutations cause a rare multisystem disease called IBMPFD (Inclusion Body Myopathy with Paget's Disease and Frontotemporal Dementia). Here, we studied the role IBMPFD-related mutants of VCP/p97 in autophagy. In contrast with the wild-type VCP/p97 protein or R155C or R191Q mutants, the P137L mutant was aggregate-prone. We showed that, unlike commonly studied R155C or R191Q mutants, the P137L mutant protein stimulated both autophagosome and autolysosome formation. Moreover, P137L mutant protein itself was a substrate of autophagy. Starvation- and mTOR inhibition-induced autophagy led to the degradation of the P137L mutant protein, while preserving the wild-type and functional VCP/p97. Strikingly, similar to the P137L mutant, other IBMPFD-related VCP/p97 mutants, namely R93C and G157R mutants induced autophagosome and autolysosome formation; and G157R mutant formed aggregates that could be cleared by autophagy. Therefore, cellular phenotypes caused by P137L mutant expression were not isolated observations, and some other IBMPFD disease-related VCP/p97 mutations could lead to similar outcomes. Our results indicate that cellular mechanisms leading to IBMPFD disease may be various, and underline the importance of studying different disease-associated mutations in order to better understand human pathologies and tailor mutation-specific treatment strategies
Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19
IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19.
Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19.
DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022).
INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days.
MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes.
RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively).
CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes.
TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570
Effect of injection angle, density ratio, and viscosity on droplet formation in a microfluidic T-junction
cited By 7The T-junction microchannel device makes available a sharp edge to form micro-droplets from bio-material solutions. This article investigates the effects of injection angle, flow rate ratio, density ratio, viscosity ratio, contact angle, and slip length in the process of formation of uniform droplets in microfluidic T-junctions. The governing equations were solved by the commercial software. The results show that contact angle, slip length, and injection angles near the perpendicular and parallel conditions have an increasing effect on the diameter of generated droplets, while flow rate, density and viscosity ratios, and other injection angles had a decreasing effect on the diameter. © 2017 The Author(s
Wettability alterations and magnetic field effects on the nucleation of magnetic nanofluids: a molecular dynamics simulation
In this study, the effects of surface wettability and nanoparticle concentration on boiling of ferrofluids were investigated with the application of magnetic field using molecular dynamics simulations. Liquid argon was considered as the base fluid with the use of Lennard-Jones fluid model. Two different surfaces (hydrophilic with contact angle of 40.5 degrees and hydrophobic with contact angle of 130.6 degrees) were taken into consideration to investigate the effect of nanoparticle presence on bubble formation over a uniformly heated wall. According to the obtained results, vapor film formation and nucleation depend on the interfacial wettability of nanoparticles and substrate. Compared to the pure liquid, film boiling does not easily happen in the ferrofluid containing hydrophilic nano particles, while it is easy to have vapor film in the nanofluid with hydrophobic nanoparticles. It was found that the momentum change due to external magnetic field dramatically alters the evaporation mechanism, resulting in lower liquid film temperature
Effect of electrostatic stabilization on thermal radiation transfer in nanosuspensions: Photo-thermal energy conversion applications
Solar thermal collectors are among the most important photo-thermal energy conversion systems. Effectiveness of these systems is measured by the ability of working fluid to absorb incident radiative energy. Although nanosuspensions are considered very promising for this purpose, there is a concern about their stability and their long-term use. Electrostatic and steric stabilization methods are among the two approaches used for colloidal suspensions. In thermal applications, electrostatic stabilization is usually preferred; especially in high temperature applications. The aim of this study is to investigate, both experimentally and numerically, the effect of electrostatic stabilization on the thermal radiation transfer mechanisms in TiO2 and Al2O3 nanosuspensions. The experimental section covers nano suspensions preparation and characterization, where the effects of electrostatic stabilization (pH and zeta potential values) on the increasing effective particle size due to agglomeration behaviour are explored. The numerical part covers the estimation of radiative properties and thermal radiation transfer based on the average particle agglomerate size obtained from the particle size distributions in the experimental part. The radiative properties are assessed using the single scattering approximation technique based on the Lorenz-Mie theory. The thermal radiation transfer is obtained by solving the radiative transfer equation by the discrete ordinate method. The results show remarkable stability behaviour under the effect of the pH value for the two nanosuspensions types. The effect of the different particle agglomerate size shows a considerable enhancement in the radiative properties specifically in the UV/Vis spectrum, which has a significant impact on the thermal radiative transfer phenomena, due to the solar spectrum. It is also shown that nanosuspensions with different particle agglomerate sizes have a significant effect on the volumetric radiative heat flux, where the radiative energy losses decrease in comparison to those of pure water