236 research outputs found

    Distributed Turbo Product Coding Techniques Over Cooperative Communication Systems

    Get PDF
    In this dissertation, we propose a coded cooperative communications framework based on Distributed Turbo Product Code (DTPC). The system uses linear block Extended Bose-Chaudhuri-Hochquenghem (EBCH) codes as component codes. The source broadcasts the EBCH coded frames to the destination and nearby relays. Each relay constructs a product code by arranging the corrected bit sequences in rows and re-encoding them vertically using EBCH as component codes to obtain an Incremental Redundancy (IR) for source\u27s data. Under this frame, we have investigated a number of interesting and important issues. First, to obtain, independent vertical parities from each relay in the same code space, we propose circular interleaving of the decoded EBCH rows before reencoding vertically. We propose and derive a novel soft information relay for the DTPC over cooperative network based on EBCH component codes. The relay generates Log-Likelihood Ratio (LLR) values for the decoded rows are used to construct a product code by re-encoding the matrix along the columns using a novel soft block encoding technique to obtain soft parity bits with different reliabilities that can be used as soft IR for source\u27s data which is forwarded to the destination. To minimize the overall decoding errors, we propose a power allocation method for the distributed encoded system when the channel attenuations for the direct and relay channels are known. We compare the performance of our proposed power allocation method with the fixed power assignments for DTPC system. We also develop a power optimization algorithm to check the validity of our proposed power allocation algorithm. Results for the power allocation and the power optimization prove on the potency of our proposed power allocation criterion and show the maximum possible attainable performance from the DTPC cooperative system. Finally, we propose new joint distributed Space-Time Block Code (STBC)-DTPC by generating the vertical parity on the relay and transmitting it to the destination using STBC on the source and relay. We tested our proposed system in a fast fading environment on the three channels connecting the three nodes in the cooperative network

    Factors Influencing Internet Financial Reporting Among Libyan Organisations

    Get PDF
    This study is aimed at examining the factors influencing Internet Financial Reporting among Libyan organisations. In this study, a number of 139 respondents participate in the study. The study used the quantitative survey questionaire in data collection. To this end, various method of analysis were used. The first analysis was the descriptive analysis on the personal information of the respondents under study. The second analysis is the correlation between the independent variables and the dependent variable to which all the relationships i.e. between all the constructs of the independent variables (firm size, level of technology and profitability) were found to be significantly related to the dependent variable (internet financial reporting) a multiple regression was conducted to ascertain the contribution of the independent variables on the dependent variable. Finally, discussion, recommendation and conclusions were also considered at the final chapter

    Electron impact excitation-ionization of molecules

    Get PDF
    In the last few decades, the study of atomic collisions by electron-impact has made significant advances. The most difficult case to study is electron impact ionization of molecules for which many approximations have to be made and the validity of these approximations can only be checked by comparing with experiment. In this thesis, I have examined the Molecular three-body distorted wave (M3DW) or Molecular four-body distorted wave (M4DW) approximations for electron-impact ionization. These models use a fully quantum mechanical approach where all particles are treated quantum mechanically and the post collision interaction (PCI) is treated to all orders of perturbation. These electron impact ionization collisions play central roles in the physics and chemistry of upper atmosphere, biofuel, the operation of discharges and lasers, radiation induced damage in biological material like damage to DNA by secondary electrons, and plasma etching processes. For the M3DW model, I will present results for electron impact single ionization of small molecules such as Water, Ethane, and Carbon Dioxide and the much larger molecules Tetrahydrofuran, phenol, furfural, 1-4 Benzoquinone. I will also present results for the four-body problem in which there are two target electrons involved in the collision. M4DW results will be presented for dissociative excitation-ionization of orientated D2. I will show that M4DW calculations using a variational wave function for the ground state that included s- and p- orbital states give better agreement to the experimental measurements than a ground state approximated as a product of two 1s-type Dyson orbitals --Abstract, page iv

    Multicenter Distorted-Wave Approach for Electron-Impact Ionization of Molecules

    Get PDF
    We have previously used the molecular three-body distorted-wave model to examine electron-impact single ionization of molecules. One of the possible weaknesses of this approach lies in the fact that the continuum electron wave functions do not depend on the orientation of the molecule. Here we introduce a model called the multicenter molecular three-body distorted-wave (MCM3DW) approach, for which the continuum electron wave functions depend on the orientation of the molecule at the time of ionization. The MCM3DW results are compared with experimental data taken from work by Dorn and colleagues [Ren, Phys. Rev. A 91, 032707 (2015)10.1103/PhysRevA.91.032707; Phys. Rev. A 93, 062704 (2016)10.1103/PhysRevA.93.062704; Phys. Rev. A 95, 022701 (2017)10.1103/PhysRevA.95.022701; Phys. Rev. Lett. 109, 123202 (2012)10.1103/PhysRevLett.109.123202; Gong, Phys. Rev. A 98, 042710 (2018)10.1103/PhysRevA.98.042710] in which they measured triple differential cross sections for single ionization of molecular hydrogen while simultaneously determining the orientation of the H2+ ion at the time of ionization. Comparisons are also made with previous theoretical calculations. It is found that orientation effects are important for low incident energy electrons. Very nice agreement with experiment and the time-dependent close coupling results is found for an incident electron energy of 26 eV. Orientation effects become relatively unimportant by the time the incident electron energy is 54 eV

    Online handwriting Arabic recognition system using k-nearest neighbors classifier and DCT features

    Get PDF
    With advances in machine learning techniques, handwriting recognition systems have gained a great deal of importance. Lately, the increasing popularity of handheld computers, digital notebooks, and smartphones give the field of online handwriting recognition more interest. In this paper, we propose an enhanced method for the recognition of Arabic handwriting words using a directions-based segmentation technique and discrete cosine transform (DCT) coefficients as structural features. The main contribution of this research was combining a total of 18 structural features which were extracted by DCT coefficients and using the k-nearest neighbors (KNN) classifier to classify the segmented characters based on the extracted features. A dataset is used to validate the proposed method consisting of 2500 words in total. The obtained average 99.10% accuracy in recognition of handwritten characters shows that the proposed approach, through its multiple phases, is efficient in separating, distinguishing, and classifying Arabic handwritten characters using the KNN classifier. The availability of an online dataset of Arabic handwriting words is the main issue in this field. However, the dataset used will be available for research via the website

    Quantum-dot Cellular Automata: Review Paper

    Get PDF
    Quantum-dot Cellular Automata (QCA) is one of the most important discoveries that will be the successful alternative for CMOS technology in the near future. An important feature of this technique, which has attracted the attention of many researchers, is that it is characterized by its low energy consumption, high speed and small size compared with CMOS.  Inverter and majority gate are the basic building blocks for QCA circuits where it can design the most logical circuit using these gates with help of QCA wire. Due to the lack of availability of review papers, this paper will be a destination for many people who are interested in the QCA field and to know how it works and why it had taken lots of attention recentl

    Case study of TV spectrum sensing model based on machine learning techniques

    Get PDF
    Spectrum sensing is an essential component in cognitive radios (CR). Machine learning (ML) algorithms are powerful techniques for designing a promising spectrum sensing model. In this work, the supervised ML algorithms, support vector machine (SVM), k-nearest neighbor (kNN), and decision tree (DT) are applied to detect the existence of primary users (PU) over the TV band. Moreover, the Principal Component Analysis (PCA) is incorporated to speed up the learning of the classifiers. Furthermore, the ensemble classification-based approach is employed to enhance the classifier predictivity and performance. Simulation results have shown that the highest performance is achieved by the ensemble classifier. Moreover, simulation results have shown that employing PCA reduces the duration of training while maintaining the performance

    Triple Differential Cross Sections for Electron-Impact Ionization of Methane at Intermediate Energy

    Get PDF
    We report an experimental and theoretical investigation of electron-impact single ionization of the highest occupied molecular orbital 1t2 and the next highest occupied molecular orbital 2a1 states of CH4 at an incident electron energy of 250 eV. Triple differential cross sections measured in two different laboratories were compared with results calculated within the molecular 3-body distorted wave and generalized Sturmian function theoretical models. For ionization of the 1t2 state, the binary peak was observed to have a single maximum near the momentum transfer direction that evolved into a double peak for increasing projectile scattering angles, as has been seen for ionization of atomic p-states. A detailed investigation of this evolution was performed. As expected because of its s-type character, for ionization of the 2a1 state, only a single binary peak was observed. Overall, good agreement was found between experiment and theory

    A new methods of mobile object measurement by using radio frequency identification

    Get PDF
    In this study, the mobile robot conducts tag of RFID and the antennas’ reader was scattered at the indoor-outdoor environment, which represents the novelty of the study, as this has not been done in the previous studies. This protects the mobile robot from weight increase reduces the consumption of the battery. Moreover, mobile object increase demands an increase in cheap passive Radio Frequency Identification tags in the system of navigation. Techniques of Signal processing utilize both accompanied by the theories of electromagnetics in locating the robot’s position. Numerous antennas usage provides a breadth of comparisons. In this work, have been provide a new RFID tracking approach that can also be used for interior positioning. This technique employs RSS to gather the signal intensity of reference tags before they are used. The next step is to send a signal. Setting up Power Level ranges via reference tags uses strength as a setting parameter. Then, based on the intensity of the signal, you can determine how far away you are. Reference tags are used to match the signal intensity of track tags. Finally, when track tags are installed in indoor locations, they can be used to monitor the movement of people. It will use the arithmetic mean of the positions of surrounding reference tags to determine the location. Values. According to preliminary results from an experiment, our approach is more precise than the antenna system. Approximately 10 to 20 lines
    • …
    corecore