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a b s t r a c t

Spectrum sensing is an essential component in cognitive radios (CR). Machine learning (ML) algorithms
are powerful techniques for designing a promising spectrum sensing model. In this work, the supervised
ML algorithms, support vector machine (SVM), k-nearest neighbor (kNN), and decision tree (DT) are
applied to detect the existence of primary users (PU) over the TV band. Moreover, the Principal
Component Analysis (PCA) is incorporated to speed up the learning of the classifiers. Furthermore, the
ensemble classification-based approach is employed to enhance the classifier predictivity and perfor-
mance. Simulation results have shown that the highest performance is achieved by the ensemble classi-
fier. Moreover, simulation results have shown that employing PCA reduces the duration of training while
maintaining the performance.
� 2021 The Authors. Production and hosting by Elsevier B.V. on behalf of Ain Shams University. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

With the rising usage of dynamic mobile applications, it is
becoming decisive for wireless devices to learn from the surround-
ing environment. Cognitive radio (CR) is described as a radio device
able to learn and adapt to radio environment. Spectrum sensing is
the key functional component of CR. In the last decades, spectrum
surveys over many countries showed the possibility of improving
the spectrum efficiency by utilizing the white space in TV band
(TVWS). IEEE 802.22 wireless regional area network (WRAN) stan-
dard was developed to facilitate designing cognitive engines to
opportunistically utilize the TVWS while protecting the primary
users (PU) [1,2]. Therefore, several sensing techniques have been
proposed based on energy detection (ED) [3], pilot detection (PD)
[4], matched filtering techniques (MF) [5]. Furthermore, estimating
the power spectrum density of detected signal has been utilized in
[6]. On the other hand, combining or integrating two different
detection techniques significantly improves the local detection of

TVWS [7–9]. For instance, the authors in [9] proposed to combine
ED and cyclosationary feature detection (CFD) to improve sensing
the advanced television standard committee (ATSC) channel. How-
ever, severe radio conditions, i.e., hidden terminal problem, or
noise uncertainty remarkably deteriorate the detection perfor-
mance and sensing accuracy of such local spectrum approaches.
In addition, some of spectrum sensing approach incur a high
implementation complexity and require full or partial knowledge
of the PU’s signal features, e.g., MF and CFD techniques [10,11].
Therefore, cooperative spectrum sensing advocated as a means to
improve sensing accuracy by tackling the inherent hidden terminal
problems in wireless networks. The key element of CR is the will-
ingness to program themselves or to learn autonomously. As a
result, CR is anticipated to be intelligent by nature. Learning is a
substantial component of any intelligent system, which justifies
it being designated as a fundamental requirement of CRs [12,13].
Therefore, CR must be equipped with the capability of learning
from its experience by interacting with its RF environment by
attempting to make use of machine learning (ML) algorithms to
coordinate the CR actions. In recent years, there has been a grow-
ing interest in adopting ML algorithms to CRs as a potential solu-
tion for enhancing the accuracy of spectrum sensing by
employing spectrum measurements history, especially, in low sig-
nal to noise ratio (SNR) scenarios [14,15], since ML algorithms are
considered as efficient ways of sensing the spectrum without prior
knowledge of the radio frequency (RF) environment. In adition, ML
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techniques can be utilized to improve detection in different recent
aspects and applications, such as cognitive radio vehicular net-
works (VANET) and internet of things (IoT) as described in [16–
18]. Furthermore, ML can periodically be learned to adapt to the
changing RF environment. However, incorporating ML techniques
with conventional spectrum sensing approaches, such as energy
detection and pilot detection techniques, results in a significant
increase in processing time and implementation complexity, since
developing such spectrum sensing models are mainly used for big
data and large spectrum sensing datasets which are generated
from spectrum measurement campaigns. This fact should be taken
in a consideration when designing such spectrum sensing models.
Therefore, adopting dimensionality reduction (DR) technique can
significantly alleviate this dilemma. Principal component analysis
(PCA) technique has been employed in [19–21] to enhance the effi-
ciency of the cooperative spectrum sensing in cognitive radio net-
work. On the other hand, the authors of [22] uses a different
technique, they formulated spectrum sensing process as multi-
class classification problem, adapting to unknown SNR variations,
the results of the learning in one-off, regardless of the SNR varia-
tions. Moreover, a novel ML-based approach to approximate the
distributions of the aggregated interference power in wireless net-
works was developed in [23]. The authors focused on spatial spec-
trum sensing in user centric networks where Poisson cluster
process is used to model the primary users.

The main objective of this case study is to develop and inves-
tigate the design of spectrum sensing models (SSM) based on
supervised ML techniques and DR technique to assess the spec-
trum occupancy over the TV bands. This work proposes and
develops novel TV SSMs based supervised ML techniques sup-
ported by a DR technique to accelerate the training and testing
of the classifiers of the employed ML techniques [24,25]. This
work proposes to adopt PCA as a DR technique for its ability to
minimize the dimensions of the gathered datasets, to limit the
risk of overfitting, and to minimize the processing time of training
and testing [26,27]. In other words, incorporating ML techniques
leads to a significant increase of the computational burden and
consumes extra time, therefore, PCA is adopted in the proposed
model to reduce the computational burden and time. The pro-
posed model is trained and tested using real data gathered over
ten different locations across Windsor-Essex County as in [28–
30]. The performances of the proposed models are evaluated
and compared based on accuracy, F-measure, and Receiver Oper-
ating Characteristic (ROC).

The contributions of this work are summarized as:

� Developing a TV SSM based on different supervised ML algo-
rithms to accurately assess the spectrum occupancy over the
TV channels and determine the identity of the user whether it
is a PU or a secondary user (SU). The proposed models adopt
three supervised ML techniques; they are support vector
machine (SVM) [31], decision tree (DT) [32], k-nearest neighbor
(kNN) [33] and Ensemble classifier in work [34].

� Improving the proposed SSMs by adopting PCA as a DR tech-
nique. Furthermore, the detection performance of the proposed
models are assessed and investigated by comparing the perfor-
mances of the proposed models with each other, with and with-
out PCA technique, to determine the best adopted supervised
ML technique.

The rest of this work is organized as follows, Section 2 describes
the adopted spectrum sensing database. Section 3 presents the sys-
tem model and the proposed framework while Section 4 discusses
the simulation results of the proposed models. Finally Section 5
provides the conclusions.

2. Description of the employed datasets

This work is considered as a complementary research work of
our previous works [28–30] where a spectrum occupancy survey
was performed to scan a UHF frequency band, i.e., 490 MHz to
740 MHz, which contains 32 ATSC channels, i.e., from channel
number 19 to channel number 52, for a couple of days, to detect
the existence of ATSC channels over a border city at different loca-
tions in the city. It is well-known that an ATSC channel has 6 MHz
bandwidth with an ATSC pilot located at about 1.25 MHz from the
lower frequency bound of the ATSC channel [35]. The work mea-
sured the occupancy of those ATSC channel using ED based on
the sensing threshold determined in our previous works [28–30],
i.e., the sensing threshold was determined according to WRAN,
and detected ASTC pilots over the scanned frequency band. How-
ever, the impact of surrounding radio frequency condition, such
as noise, shadowing, multipath fading, and interference caused
by SUs, deteriorates the ATSC pilot detection and results in mis-
detecting the ATSC channels. However, it is noticed that the
strength of ATSC pilot is existed in many cases but fainted due to
interference and other RF environmental condition. Therefore, in
this work, the ATSC pilot strength is classified into different classes
accordingly, ML techniques are used to investigate their existence
as described in the Section 3.

The adopted datasets cover the above-mentioned frequency
band. The datasets were collected at ten different sites across
Windsor-Essex County, Ontario, Canada, as illustrated in Fig. 1.
The spectrum measurements were mainly collected to detect TV
channels using a combination of ED and PD techniques.

As a case study in this work, spectrum measurements at Site 1,
town of Amherstburg, were selected to investigate and assess the
proposed TV spectrum sensing models, using simulations, for the
following reasons; first, almost all sites in the spectrum measure-
ment campaign reflect almost the same spectrum analysis. More-
over, describing all spectrum analysis for all sites will create
redundancy. Second, the geographic location of the site 1 provides
different received signal strengths, since it is a rural region and
closed to the US borders.

3. System model and proposed framework

The spectrum power analysis of measured TV spectrum at Site 1
using waterfall technique showed various power spectrum behav-
iors of the collected spectrum measurements. This motivates us to
categorize the measured power spectrum into five various ATSC
channel classes according to their received signal strength. The
proposed classes will be used for our proposed spectrum sensing
model as ML classifiers to improve the detection performance.
The five proposed ATSC channel classes are identifies as follows:

� Unoccupied channel (Class 0): it corresponds to a case where
neither PU nor secondary user (SU), i.e., unlicensed user or CR,
is found to exist in the channel. In this case, the channel is avail-
able to be used by CR. The channel in Fig. 2a represents this
class.

� Strong ATSC (Class 1): it corresponds to the presence of a PU (i.e.
a broadcast television station). The signal spectrum appears rel-
atively uniform and flat across the bandwidth with a pilot tone
located at the left edge of the channel as shown in Fig. 2b. The
channel is considered unavailable for use and the CR must not
transmit in this band in this condition.

� Weak ATSC (Class 2): this class corresponds to situations where
an ATSC signal is found to be very faintly visible over the band-
width. The channel in Fig. 2c exhibits a pilot tone with a weaker
amplitude.
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� Strong interference (Class 3): this class corresponds to the pres-
ence of SUs whose amplitudes are sufficiently large over the
channel bandwidth as exhibited in Fig. 2d.

� Weak interference (Class 4): it corresponds to the presence of
SUs whose amplitudes are small over the channel bandwidth
as illustrated in Fig. 2e.

The five proposed ATSC channel classes can be summarized as
in Table 1.

Fig. 2 shows the spectrum power measured, in dB full scale
(dBFS), at Site 1 for five different ATSC channels. Note that the ATSC
channels illustrated in the figure were selected to present the five
proposed ATSC channel classes.

3.1. Model description

The ATSC channels of the licensed users, in the frequency band
from 490 to 740 MHz, are considered as PUs. The scanned spec-
trum might consist of M channels occupied by PUs, or by SUs,
i.e., interference.

The channel m is available only for the CR network to exploit
when there is no PU or unknown signals in the active state in that
channel. If A denotes channel availability:

A ¼ þ1 if Cm ¼ 0; 8m
�1 otherwise

�
ð1Þ

where Cm denotes the class of channel m.

3.2. Proposed framework of spectrum sensing model

The main goal of the proposed ML models is to correctly assess
the availability of channels. Since the suggested algorithms are
supervised learning. The FFT samples for each channel will be used
with their labels to train the classifiers.

The ML model will be able to detect the presence of PU by
observing the pilot signal. In Fig. 3, the framework of the proposed
ML models is demonstrated. The dotted blocks show that the PCA
technique is employed as a DR technique before the classification.

Let Y represents the set of measured samples for training data-
set after normalization, i.e., the input:

Y ¼
y11 � � � y1N

..

. . .
. ..

.

yT1 � � � yTN

0
BB@

1
CCA; ð2Þ

where N and T represent the number of FFT samples for each chan-
nel and the scanning duration for the channels, respectively. Let C
represents the class of the channels, i.e. the output, corresponding
to Y:

C ¼
c1

..

.

cT

0
BB@

1
CCA ð3Þ

Let Z is the output of the PCA that represent the transformation
of Y into a lower dimension:

Z ¼
z11 � � � z1n

..

. . .
. ..

.

zT1 � � � zTn

0
BB@

1
CCA; ð4Þ

where n < N.
In Fig. 3, the proposed framework for SSM based on ML models

is demonstrated, comprising of the data preprocessing, DR tech-
nique, classification training, and testing. The dotted blocks illus-
trate using PCA as a DR technique before the classification.

Once the classifier has been effectively trained, the samples in
the testing data are ready for evaluation of the performance of
the classifiers. Let Y 0 and Z0 denote the FFT samples for testing
and their new representations after applying the DR technique,
respectively. If C0 denotes the corresponding detected channel
classes, i.e., as indicated in Table 1 and Fig. 2, for the testing sam-
ples and P is the predicted class by the classifier, then we can write:

P ¼ C 0 detection

otherwise mis� detection

(
ð5Þ

Fig. 1. Map of TV spectrum measurement sites across Windsor-Essex County, Ontario, Canada [30].
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For instance, if the testing samples are for a channel that is occu-
piedby an active PU and the model classifies the channels as occu-
pied, it is misdetected.

For a comprehensive comparison between used ML approach in
this case study, an Ensemble classifier will be employed. The
Ensemble classification is defined as a process of effectively gener-

Fig. 2. Spectrum power in (dBFS) for some TV channels at site 1.
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ating and combining multiple classifiers to solve a specific ML
problem as illustrated in Fig. 4 [34]. The proposed Ensemble clas-
sifier consists of several decision tree classifiers and an algorithm
to combine them. Bootstrap Aggregation (Bagging) is adopted as
an algorithm to combine these weak classifiers. It generally trains
multiple independent classifiers, each trained by sampling with
replacement percentage of instances from the training data. The
diversity in the Ensemble is ensured by the variations in replicas
on which each classifier is trained and therefore it enhance the
classifier predictivity and performance [31].

3.3. Performance metrics

To evaluate the proposed SSMs, the following performance met-
rics will be used: accuracy, precision, recall, F-measure, and ROC. The
performance metrics are defined as

� Accuracy is defined as the measure of all the correctly identified
samples. It is mostly used when all the classes are equally
important and it is calculated as:

Accuracy ¼ TP þ TN
TP þ TN þ FP þ FN

ð6Þ

where TP (True Positive) is the outcome where the model correctly
predicts samples belong to the designated class, e.g., class 2, TN
(True Negative) is an outcome where the model correctly predicts
samples do not belong to that particular class, e.g., class 2, and FP
(False Positive) is an outcome where the model incorrectly predicts
samples of other classes as samples of class 2, while FN (False Nega-

tive) is an outcome where the model incorrectly predicts samples of
the designated class, e.g., class 2 as they belong to other classes.

� Recall is defined as the percentage of actual positives that are
correctly identified. It is also called the true positive rate
(TPR), the sensitivity, or the probability of detection and is cal-
culated as:

Recall ¼ TPR ¼ TP
TP þ FN

ð7Þ

� Precision is defined as the number of true positives divided by
the number of true positives plus the number of false positives.
It shows the ability of a classification model to return only
actual samples belong to the class.

Precision ¼ TP
TP þ FP

ð8Þ

� False-positive rate (FPR) is the proportion of negative samples
incorrectly identified as positive samples in the testing data. It
is also called the probability of false alarm.

FPR ¼ FP
FP þ TN

ð9Þ

� F-measure (Also called F1 score) is the harmonic mean of preci-
sion and recall and gives a better measure of the incorrectly
classified cases than the accuracy metric. It is calculated as:

F �measure ¼ 2TP
2TP þ FP þ FN

ð10Þ

Table 1
ATSC channels classes.

ATSC channels classes Class (C)

Unoccupied (PUs and SUs are inactive) 0
ATSC Present, strong (PU active) 1
ATSC Present, weak (PU active) 2
Strong interference (SU active) 3
Weak interference (SU active) 4

Fig. 3. ML-based spectrum sensing framework.
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� ROC curve is a graphical tool that illustrates the behavior of TPR
with respect to the FRP which reflects the performance of a clas-
sification model at different classification thresholds.

Moreover, it is noted that K–fold cross-validation is employed in
performance evaluation, since it usually leads to a less biased or
less optimistic estimation of the model than other techniques. In
the proposed SSM, the dataset is randomly divided into K groups
or folds, then the model is trained using (K � 1) folds and the mod-
els are tested using the remaining Kth fold. The process is repeated
until every K-fold serves as the test set. The value of K is set to 5.

This work proposes two algorithms for spectrum sensing based
on ML models as depicted in Fig. 3. Algorithm 3.3 presents an SSM
based ML techniques, while Algorithm 3.3 presents a modified SSM
that adopts the PCA technique as a DR technique. The algorithms
are described as follows:

Algorithm. Spectrum sensing model based on ML classification
techniques

1: Define Y as the normalized values of the FFT samples
collected by the sensing unit and C as the classes labeled for
the scanned channels.

2: Determine the classifier and initialize the parameters.
3: Train the classifier model using Y and C in step 1.
4: Cross validate and test the trained model using Y.
5: Predict the class of the testing data C using the trained

model.

Algorithm. Modified spectrum sensing model based on ML classi-
fication adopting DR technique

1: Define Y as the normalized values of the FFT samples
collected by the sensing unit and C as the classes labeled for
the scanned channels.

2: Compute Z as in (4) by finding the principal components of
Y as in (2) using PCA.

3: Select a suitable value n for the number of principal
components for PCA where n < N .

4: Determine the classifier and initialize the parameters.
5: Train the classifier model using Y and C in step 1.
6: Cross validate and test the trained model using Y.
7: Predict the class of the testing data C using the trained

model.

4. Simulation results and discussions

The simulation results of the proposed spectrum sensing-based
ML models using the four classifiers are evaluated employing dif-
ferent performance metrics. The performance metrics are accuracy,
F-measure, and ROC curve will be employed to evaluate the perfor-
mance of the four classifiers using 5 K-fold cross-validations. More-
over, the impact of employing the PCA technique on the detection
performance of the proposed model is discussed in this section.

Table 2 shows that the accuracy and F-measure are slightly
dropped from 0.93 and 0.83 to 0.92 and 0.8, respectively, as a result
of losing information in the dataset after implementing the PCA
technique. Moreover, it can be perceived from Table 3 that the
accuracy and F-measure have increased from 0.88 and 0.72 to
0.92 and 0.8, respectively; this is because of the fact that the
kNN classifier operates better with a small number of features,
i.e., lower dimension, than a large number of features, i.e., higher
dimension.

Table 4 shows that the averages of the accuracy and F-measure
are approximately the same for the DT classifier with and without
using the PCA technique. Therefore, using the PCA technique is
retaining the classification performance while reducing the num-
ber of features in the datasets. Similarly, Table 5 shows also that
the accuracy and F-measure have slightly decreased from 0.94
and 0.86 to 0.92 and 0.83, respectively, as a result of losing infor-
mation in the dataset after applying the PCA technique.

Fig. 4. Ensemble classifier structure.

Table 2
SVM classifier performance with and without PCA, at site 1.

Without PCA With PCA

5 K folds Accuracy F-measure Accuracy F-measure

fold 1 0.9333 0.8333 0.9215 0.8038
fold 2 0.9354 0.8385 0.9267 0.8167
fold 3 0.9297 0.8244 0.9205 0.8013
fold 4 0.9262 0.8154 0.9118 0.7795
fold 5 0.9308 0.8269 0.9108 0.7769

Table 3
kNN classifier performance with and without PCA, at site 1.

Without PCA With PCA

5 K folds Accuracy F-measure Accuracy F-measure

fold 1 0.8887 0.7218 0.9262 0.8154
fold 2 0.8892 0.7231 0.9164 0.7910
fold 3 0.8846 0.7115 0.9241 0.8103
fold 4 0.8826 0.7064 0.9103 0.7756
fold 5 0.8846 0.7115 0.9195 0.7987
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In order to develop the ROC curves for the different classifiers,
Algorithm 3.3 is executed for several attempts using different
parameters and the best results for specific parameters are shown
in Fig. 5. The figure exhibits the ROC curves of the four classifiers
without employing the PCA technique. By inspection, the Ensemble
classifier has the highest true positive rate (TPR), i. e., probability of
detection, for a given false alarm rate (FPR). For this reason, the

Ensemble classifier outperforms the other classifiers since it com-
bines multiple classifiers, while SVM classifier comes in the second
rank by finding the hyper-plane that maximizes the margin
between the classes.

Likewise, Algorithm 3.3 is executed to generate ROC curves for
different classifiers when adopting the PCA technique as a DR tech-
nique; the curves are illustrated in Figs. 6 and 7. Fig. 6 displays ROC

Table 4
DT classifier performance with and without PCA, at site 1.

Without PCA With PCA

5 K folds Accuracy F-measure Accuracy F-measure

fold 1 0.9144 0.7859 0.9128 0.7821
fold 2 0.9272 0.8179 0.8990 0.7474
fold 3 0.9164 0.7910 0.8990 0.7474
fold 4 0.9108 0.7769 0.9103 0.7756
fold 5 0.9149 0.7872 0.9010 0.7526

Table 5
Ensemble classifier performance with and without PCA, at site 1.

Without PCA With PCA

5 K folds Accuracy F-measure Accuracy F-measure

fold 1 0.9446 0.8615 0.9282 0.8205
fold 2 0.9436 0.8590 0.9328 0.8321
fold 3 0.9374 0.8436 0.9256 0.8141
fold 4 0.9441 0.8603 0.9241 0.8103
fold 5 0.9533 0.8833 0.9354 0.8385

Fig. 5. Comparison of ROC curves for all employed classifiers without the PCA technique, at site 1.

Fig. 6. Comparison of ROC curves obtained by kNN and DT classifiers with and without using the PCA technique, at site 1.
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curves of kNN and DT classifiers with and without using the PCA
technique. It can be observed for a given FPR, the TPR of the kNN
classifier with the PCA technique is higher than kNN without the
PCA technique. Consequently, the performance is enhanced after
implementing the PCA technique, since the kNN classifier works
efficiently on datasets of lower features. Furthermore, applying
the PCA technique maintains the performance of the DT classifier
by extracting features relevant to the classification problem. On
other hand, the ROC curves of Ensemble classifier and SVM classi-
fiers with and without using the PCA technique are depicted in
Fig. 7. The classification performance based on ROC curves after
utilizing the PCA technique is insignificantly declined as for
Ensemble and SVM classifiers this comes a result of information
loss during reducing the dimension.

5. Conclusions

Supervised ML algorithms based on the SVM, kNN, DT, and
Ensemble classifiers are examined to detect the presence of PU
and unknown users over the TV bands. The simulation results of
the four classifiers have been presented and demonstrated in terms
of accuracy, F-measure, and ROC. The results have shown that the
Ensemble classifier exceeds the other classifiers based on perfor-
mance metrics followed by the SVM classifier. Nevertheless, the
performance comes at the expense of greater computational
complexity.

Moreover, the SVM classifier attempts to find the hyper-plane
that maximizes the margin between the classes which results in
increasing the training duration compared with the kNN and the
DT classifiers. Furthermore, the results have shown that employing
a DR technique, such as the PCA technique, before the classifier sig-
nificantly speeds up the training process across the four classifiers
by extracting the most essential features and removing the redun-
dancy in the employed datasets. However, the PCA execution
should be examined to make sure that non- redundant information
are maintained. As a future work, developing a new spectrum sens-
ing model-based ML to classify and identify the broadcasting sta-
tion identity, i.e., to determine the identity of broadcaster, i.e.,
PU, can significantly improve the spectrum utilization. In other
words, the identification will add a potential advantage to the
spectrum sensing model to determine the best spectrum sharing

technique can be employed, i.e., interweave, underlay or overlay,
or to switch from sharing technique to another. Moreover, multi-
resolution technique-based ML technique can be employed to
incredibly improve detecting and identifying a specific PU among
multiple PUs transmitting simultaneously.
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