364 research outputs found
Circular polarization switching and bistability in an optically injected 1300 nm spin-vertical cavity surface emitting laser
We report the experimental observation of circular polarization switching (PS) and polarization bistability (PB) in a 1300 nm dilute nitride spin-vertical cavity surface emitting laser (VCSEL). We demonstrate that the circularly polarized optical signal at 1300 nm can gradually or abruptly switch the polarization ellipticity of the spin-VCSEL from right-to-left circular polarization and vice versa. Moreover, different forms of PS and PB between right- and left-circular polarizations are observed by controlling the injection strength and the initial wavelength detuning. These results obtained at the telecom wavelength of 1300 nm open the door for novel uses of spin-VCSELs in polarization sensitive applications in future optical systems
Power Consumption and Energy Estimation in Smartphones
A developer needs to evaluate software performance metrics such as power consumption at an early stage of design phase to make a device or a software efficient especially in real-time embedded systems. Constructing performance models and evaluation techniques of a given system requires a significant effort. This paper presents a framework to bridge between a Functional Modeling Approach such as FSM, UML etc. and an Analytical (Mathematical) Modeling Approach such as Hierarchical Performance Modeling (HPM) as a technique to find the expected average power consumption for different layers of abstractions. A Hierarchical Generic FSM “HGFSM” is developed to be used in order to estimate the expected average power. A case study is presented to illustrate the concepts of how the framework is used to estimate the average power and energy produced
Control of emitted light polarization in a 1310 nm dilute nitride spin-vertical cavity surface emitting laser subject to circularly polarized optical injection
We experimentally demonstrate the control of the light polarization emitted by a 1310 nm dilute nitride spin-Vertical Cavity Surface Emitting Laser (VCSEL) at room temperature. This is achieved by means of a combination of polarized optical pumping and polarized optical injection. Without external injection, the polarization of the optical pump controls that of the spin-VCSEL. However, the addition of the externally injected signal polarized with either left- (LCP) or rightcircular polarization (RCP) is able to control the polarization of the spin-VCSEL switching it at will to left- or right-circular polarization. A numerical model has been developed showing a very high degree of agreement with the experimental findings
An Analysis of the Binding Characteristics of a Panel of Recently Selected ICAM-1 Binding Plasmodium falciparum Patient Isolates.
The basis of severe malaria pathogenesis in part includes sequestration of Plasmodium falciparum-infected erythrocytes (IE) from the peripheral circulation. This phenomenon is mediated by the interaction between several endothelial receptors and one of the main parasite-derived variant antigens (PfEMP1) expressed on the surface of the infected erythrocyte membrane. One of the commonly used host receptors is ICAM-1, and it has been suggested that ICAM-1 has a role in cerebral malaria pathology, although the evidence to support this is not conclusive. The current study examined the cytoadherence patterns of lab-adapted patient isolates after selecting on ICAM-1. We investigated the binding phenotypes using variant ICAM-1 proteins including ICAM-1Ref, ICAM-1Kilifi, ICAM-1S22/A, ICAM-1L42/A and ICAM-1L44/A using static assays. The study also examined ICAM-1 blocking by four anti-ICAM-1 monoclonal antibodies (mAb) under static conditions. We also characterised the binding phenotypes using Human Dermal Microvascular Endothelial Cells (HDMEC) under flow conditions. The results show that different isolates have variant-specific binding phenotypes under both static and flow conditions, extending our previous observations that this variation might be due to variable contact residues on ICAM-1 being used by different parasite PfEMP1 variants
Cubic autocatalysis in a reaction-diffusion annulus: semi-analytical solutions
Semi-analytical solutions for cubic autocatalytic reactions are considered in a circularly symmetric reaction-diffusion annulus. The Galerkin method is used to approximate the spatial structure of the reactant and autocatalyst concentrations. Ordinary differential equations are then obtained as an approximation to the governing partial differential equations and analyzed to obtain semi-analytical results for this novel geometry. Singularity theory is used to determine the regions of parameter space in which the different types of steady-state diagram occur. The region of parameter space, in which Hopf bifurcations can occur, is found using a degenerate Hopf bifurcation analysis. A novel feature of this geometry is the effect, of varying the width of the annulus, on the static and dynamic multiplicity. The results show that for a thicker annulus, Hopf bifurcations and multiple steady-state solutions occur in a larger portion of parameter space. The usefulness and accuracy of the semi-analytical results are confirmed by comparison with numerical solutions of the governing partial differential equations
Fast Learning for Big Data Using Dynamic Function
This paper discusses an approach for fast learning in big data. The proposed approach combines momentum factor and training rate, where the momentum is a dynamic function of the training rate in order to avoid overshoot weight to speed up training time of the back propagation neural network engine. The two factors are adjusted dinamically to assure the fast convergence of the training process. Experiments on 2-bit XOR parity problem were conducted using Matlab and a sigmoid function. Experiments results show that the proposed approach signifcantly performs better compare to the standard back propagation neural network in terms of training time. Both, the maximum training time and the minimum training time are significantly faster than the standard algorithm at error threshold of 10-5
Simulated dynamics of optically pumped dilute nitride 1300 nm spin vertical-cavity surface-emitting lasers
The authors report a theoretical analysis of optically pumped 1300 nm dilute nitride spin-polarised vertical-cavity surface-emitting lasers (VCSELs) using the spin-flip model to determine the regions of stability and instability. The dependence of the output polarisation ellipticity on that of the pump is investigated, and the results are presented in twodimensional contour maps of the pump polarisation against the magnitude of the optical pump. Rich dynamics and various forms of oscillatory behaviour causing self-sustained oscillations in the polarisation of the spin-VCSEL subject to continuouswave pumping have been found because of the competition of the spin-flip processes and birefringence. The authors also reveal the importance of considering both the birefringence rate and the linewidth enhancement factor when engineering a device for high-frequency applications. A very good agreement is found with the experimental results reported by the authors' group. © The Institution of Engineering and Technology 2014
Using Orthogonal Locality Preserving Projections to Find Dominant Features for Classifying Retinal Blood Vessels
Automatically classifying retinal blood vessels appearing in fundus camera imaging into arterioles and venules can be problematic due to variations between people as well as in image quality, contrast and brightness. Using the most dominant features for retinal vessel types in each image rather than predefining the set of characteristic features prior to classification may achieve better performance. In this paper, we present a novel approach to classifying retinal vessels extracted from fundus camera images which combines an Orthogonal Locality Preserving Projections for feature extraction and a Gaussian Mixture Model with Expectation-Maximization unsupervised classifier. The classification rate with 47 features (the largest dimension tested) using OLPP on our own ORCADES dataset and the publicly available DRIVE dataset was 90.56% and 86.7% respectively
An increased fraction of circulating miR-363 and miR-16 is particle bound in patients with chronic lymphocytic leukaemia as compared to normal subjects.
In vitro culture studies have shown that miR-363 is enriched in extracellular vesicles from chronic lymphocytic leukaemia cells. We wondered whether miR-363 was detectable in plasma, which is an essential precondition for further studies to assess its usefulness as a biomarker. Using samples from two clinical trials: one enrolling patients with advanced disease and the other asymptomatic patients with early stage disease, we determined plasma miR-363 levels and secondly investigated the distribution of this miRNA between plasma and particle bound fractions in patients and normal subjects.Advanced disease (n = 95) was associated with higher levels of miR-363 than early stage disease (n = 45) or normal subjects (n = 11) but there was no association with markers of prognosis. The distribution of specific miRNA between particle bound and plasma protein fractions was investigated using size exclusion chromatography on plasma from patients (n = 4) and normal subjects (n = 3). ~ 20% of total miR-16 and miR-363 is particle bound in patients while there was no detectable particle bound material in normal subjects. Our work demonstrates that miR-363 levels are raised in chronic lymphocytic leukaemia patients and raises the possibility that distribution of circulating miRNA between plasma fractions differs in health and disease
- …
