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Abstract. This paper discusses an approach for fast learning in big data. The proposed 

approach combines momentum factor and training rate, where the momentum is a dynamic 

function of the training rate in order to avoid overshoot weight to speed up training time of the 

back propagation neural network engine. The two factors are adjusted dinamically to assure the 

fast convergence of the training process. Experiments on 2-bit XOR parity problem were 

conducted using Matlab and a sigmoid function. Experiments results show that the proposed 

approach signifcantly performs better compare to the standard back propagation neural 

network in terms of training time. Both, the maximum training time and the minimum training 

time are significantly faster than the standard algorithm at error threshold of 10-5.   

 

1.  Introduction 

Recently, we are entering the era of “big-data”, and as the development of high-speed signal 

processing, fast and efficient learning and signal representation is becoming an emergent research 

topic. Extreme learning machine (ELM) [1] is one of the leading trends for fast learning. Unlike the 

other traditional learning algorithms, for example, Back Propagation-based neural networks, or 

support vector machine (SVM)], the parameters of hidden layers of ELM are randomly established 

and need not be tuned, thus the training of hidden nodes can be established before the inputs are 

acquired.  

Feedforward neural networks have been widely used in various areas of machine learning. Hidden 

nodes in a neural network architecture work as universal approximation provided that all the 

parameters of the networks are adjustable. The most representative training method for Artificial 

Neural Networks is back propagation (BP) algorithm. BP calculates the gradient of a loss function 

with respect to all the weights in the network and updates the weights for minimizing the loss function. 

Nevertheless, the parameter tuning of BP-based neural networks is usually time consuming and cannot 

handle the overfitting problem. 
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2.  Related Works 

Research on fast learning started from back-propagation algorithm, introduced by Werbos [2], and 

later popularized by Rumelhart et al. [3], which calculates the error function based on the weights of 

every data in the neural network, and then updates the weight with a new value, based on the 

activation function, in order to minimize the value of error function. However, back-propagation is 

known for the slow computing time, also inefficient for maintaining data in big size [4]. 

Researches have been done to improve learning time in neural network. Chandra and Sharma [5] 

introduces parameterized multilayer perceptron to process big data, with trigonometric functions.They 

also proposed parameterized deep neural network to reduce time usage of the learning process, by 

applying periodic function to parameterize the neural network weights [6]. Wong and Xu proposed 

hierarchical fast learning artificial neural network, which process data using feature compression 

based on canonical covariance [7]. Hinton and Teh [8] proposed a learning algorithm to improve 

learning speed of deep belief nets. Another strategy to improve learning time also proposed by Pasha 

[9] and Rahmat [10] by using distributed adaptive nested neural network. 

3.  Proposed Design 

This paper uses standard back propagation artificial neural network (BP-ANN) as illustrated inf Figure 

1. The input layer has i neurons. The hidden layer consists of four neurons with two weights, while the 

output layer has one neurons with one weights. A sigmoid function is used as activation function. 

 

 
Figure 1. The BP-ANN model. 

3.1.  Momentum factor and traninig rate 
Computing  weights changes in neuron k of output layer and neuron j of hidden in BP-ANN involves 
two parameters; momentum factor (α) and training rate η. The larger value of η  the faster the ANN 
converges. Usually, the value for η is randomly chosen by try and error from the value between 0 and 1. 
However, too big value of η may lead to oscillated training curve. The value of momentum factor α is 
also chosen  randomly between 0 and 1. New weight adjustment  Δwjk at time t for each neuron j of 
hidden layer and neuron k of output layer is defined in equation (1). 

                                     (1) 

One important factor to speed up BP algorithm is the monotonicity of the error function during 

training for every epoch or iteration [11]. This paper uses an exponential function of error E for the 

dynamic training rate   as defined in equation (2). 

 

                                                                                          (2) 

Furthermore, in order to avoid overshoot weight in applying the training rate and momentum term 

as a dynamic function, a new approach is proposed by defining a relationship between the dynamic 
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training rate and the dynamic momentum factor [12]. The momentum factor αDM as an explicit 

function of training rate ηDR is defined in (3). 

                                                           (3) 

where ,  is the first derivation of activation function  which is defined as  

) and ε is an absolute value, .  We have investigated the best value of ε is 
0.73. Substituting ηDR in equation (2) into equation (3) yield a new dynamic momentum factor as shown 
in equation (4). 

                                   (4) 

This approach maintains the weights are small as possible. Meanwhile, the momentum factor α and 

he training rate standard back propagation, SBP, manually train the training rate and momentum, 

where η and α are in the range of [0, 1]. 

3.2.  The Proposed Training algorithm 

The training algorithm of the proposed approach is given in Figure 2. 

Figure 2.  The training algorithm. 

4.  Experimental Results and Analysis 

In this section we report the results obtained when experimenting our proposed method with 2-bits 

XOR Parity Problem. We use Matlab software running on Windows 8 machine with Intel Core i7 

processor. The weights were generated   randomly   between [-0.4, 0.6] using equations (1-4).  The 

obtained weights for w1, w2, b1, b2  of hidden layer and w3, b3 of output layer are: 

w1=[-0.3883  0.4175; -0.0872 0.2232]; w2=[0.4575 -0.4463 ;0.1567  0.3496]; b1= [0.2566; 0.2429]; 

b2=[0.1101  0.1566] ; w3=[0.4341 ;0.2878];  b3= [- 0.3266]. 

The experiments were run 10 times for each value of error threshold and the average value is taken. 

The best results is shown in Table 1.  

 

 

Step-1:  Initialize randomly the weights   
Step-2:  Input: number of the neuron, hidden layer, the patterns, error threshold E = 10-5 
Step-3: While (MSE>E) do step 5-16 
Step-4:  For each training pair do step 6-15 
Forward Propagation  
Step-5:  Compute input layer of hidden layer Z  
Step-6:  Compute input layer of hidden layer ZZ  
Step-7:  Compute input layer of output layer Or and output value  

 Back Propagation  
Step -8:   Compute the error training  
Step -9:  Compute the error signal δr   of the ANN 

Step10:   Compute the weight changes for each  and bias   
Step11:    At zzj compute the error signal δ-inj and local gradient of error signal δj, using δr 

Step12:    Compute   the weight correction for each  and the bias   
Step13:    At zh compute the   error signal δ-inh and local gradient of error signal δη using δr  

Step14:    At layer zh compute the weight correction for each , and bias   

Step15:   Update the value for each output layer , hidden layer zzj and zh   

Step16:  Compute the Mean Square Error: ),  
 where Pi number of pattern for every epoch. 
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Table 1. The Best Result 

Average 

Time (sec) 

Average 

MSE 

Average 

Epoch 

0.4598 8.77E-06 269 

 
Comparison to the standard BP training algorithm is depicted in Table 2. The value of α and η are 

varied between 0 and 1.  

Table 2. The back progagation training algorithm results. 

Time (sec) MSE Epoch Value of 

                      

588.6040 1.0000e-05 551105 0.1 0.1 

279.0730 1.0000e-05 269082 0.2 0.2 

154.2040 1.0000e-05 150827 0.3 0.3 

97.0920 1.0000e-05 91009 0.4 0.4 

63.9200 9.9999e-06 59658 0.5 0.5 

15.1220 9.9998e-06 11911 0.6 0.6 

3590 0.0657 1501828 0.7 0.7 

3590 0.0661 3250451 0.8 0.8 

57.0780 9.9999e-06 52445 0.9 0.4 

33.9220 1.0000e-05 23760 1 0.5 

27.6790 9.9998e-06 28389 0.8 0.5 

56.6350 9.9998e-06 50429 0.8 0.4 

32.0330 1.0000e-05 23765 1 0.5 

 

The best time for the standard BP is 15.1220 seconds, which means that the proposed training 

algorithm is 30 times faster than the standard BP training algorithm. 

Furthermore, the proposed training algorithm converges fast to the global minimum adn provides 

the best results at ε = 0.75 as shown in Figure 3. 

 

Figure 3. The convergence of the proposed training algorithm. 

The proposed algorithm performs much better compare to the standard BP due the fact that the 

weights are automatically adjusted for every epoch in every layers   through the dynamic dynamic 

momentum factor αDM  as defined in equation (4)  as well as training rate ηDR as defined in equation 

(2).  The use of implicit momentum function in the training rate in equation (3) makes the proposed 

algorithm able to control the growth of the weights. The dynamic momentum factor and training rate 

affect the weight for each hidden layer and output layer and eliminate the saturation training in the 
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proposed algorithm. In addition, it uses an initial weight from interval [-0.4, 0.6] that narrows the 

search space compare to the standard Back Propagation. 

5.  Conclusion 

An approach for fast learning on big data is proposed. The approach introduced a training algorithm  

to speed up the training time of Back Propagation neural network. The proposed algorithm considers a 

incorporates a dynamic function for auto-adjust two parameters: the momentum factor and the training 

rate. The proposed dynamic function eliminates the saturation of training time in Back Propagation 

artifical neural networks. In future, the proposed training algorithm can be applied for analyzing big 

data which needs extreme learning algorithm. 
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