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Abstract. Semi-analytical solutions for cubic autocatalytic reactions are considered in a circularly symmetric reaction-
diffusion annulus. The Galerkin method is used to approximate the spatial structure of the reactant and autocatalyst

concentrations. Ordinary differential equations are then obtained as an approximation to the governing partial differential

equations and analyzed to obtain semi-analytical results for this novel geometry. Singularity theory is used to determine
the regions of parameter space in which the different types of steady-state diagram occur. The region of parameter

space, in which Hopf bifurcations can occur, is found using a degenerate Hopf bifurcation analysis. A novel feature of

this geometry is the effect, of varying the width of the annulus, on the static and dynamic multiplicity. The results show
that for a thicker annulus, Hopf bifurcations and multiple steady-state solutions occur in a larger portion of parameter

space. The usefulness and accuracy of the semi-analytical results are confirmed by comparison with numerical solutions

of the governing partial differential equations.
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Keywords. reaction-diffusion equations; Gray-Scott scheme; singularity theory; Hopf bifurcations; semi-analytical solu-
tions.

1. Introduction

Many chemical systems display oscillatory solutions and multiple steady-state solutions; examples include the Belousov-

Zhabotinskii (BZ), Bray-Liebhafsky and Briggs-Rausher systems. These systems undergo periodic concentration vari-

ations and have the added interest that these oscillations can be visualized via colour changes, see Corbel et al. [1].
A wide range of phenomena is possible including multi-stability, chaos, bursting, reaction-diffusion patterns and waves

and feedback control, see Sagues and Epstein [2] for a comprehensive review of these phenomena for chemical systems.

Gray-Scott is a classical theoretical scheme, which represents cubic autocatalysis with linear catalyst decay. It has
been widely considered over many years, because of its variety of steady-state responses and oscillatory solutions. The
scheme is

A+ 2B → 3B, rate = βab2, B→ C, rate = βγb, (1)

where the concentrations of the reactant and autocatalyst are a and b, respectively. The catalyst is not stable, but
undergoes a simple linear decay. This generates a much wider variety of behavior than does the cubic reaction alone.

Gray and Scott [3, 4] analyzed the cubic autocatalytic reaction (1) in a continuous stirred tank reactor (CSTR). They
found that the model has three types of steady-state bifurcation diagrams (the unique, mushroom and isola patterns).

They also mapped the parameter region where Hopf bifurcations occur. Numerical simulations of the governing ordinary

differential equations (odes) showed the evolution of the system to stable or unstable limit-cycles and oscillatory decay
to a stable steady state. Kay et al. [5] showed that, when an uncatalysed conversion step is added, the number of

steady-state diagrams increases to five. However, the new breaking-wave and isola breaking-wave patterns only occurred

in very small regions of parameter space.

In the non-stirred case chemical systems are governed by a system of partial differential equations (pdes). Scott [6]

and Kay and Scott [7] obtained numerical results for the Gray-Scott reaction-diffusion cell and identified four steady-

state patterns. Again a Hopf-bifurcation parameter map was drawn. Marchant [8] considered semi-analytical solutions
for the Gray-Scott reaction-diffusion cell. The Galerkin method was used to obtain a lower-order ode model, as an

approximation to the governing pde system. Semi-analytical bifurcation patterns and Hopf bifurcation parameter maps

were found. A good comparison was found between the results of the semi-analytical method and the numerical solutions
of the governing pdes. Extensive experimental work has also been performed using reaction-diffusion cells. An inert gel

medium is used which prevents convective motion but allows diffusion of the chemical species. The gel medium is

coupled to a CSTR hence the boundary concentrations can be controlled via flow of reactants in the CSTR. Tam et
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al. [9] considered an experimental reaction-diffusion cell to analyse the spatial patterns forming for a BZ reaction while

Bagyan et al. [10] and Lavrova et al. [11] considered glycolytic reactions using a similar experimental set-up.

Cylindrical and spherical geometries are also used to model many processes governed by reaction-diffusion systems,

such as tumor growth and tissue development via morphogenesis, see [12, 13, 14]. Protein trafficking in cells was modelled
in a two-dimensional reaction-diffusion annulus, see Jiangguo and Simon [15]. Moreover, the reaction-diffusion annulus

is a novel geometry used to consider rotating chemical waves. Farr and Golubitsky [16] considered the Gray-Scott model
in a circular geometry, and the stability of rotating wave solutions that formed via Hopf bifurcations. It was found that

stable rotating waves exist over broad ranges of parameter values and that the bifurcation behavior of this relatively

simple model can be quite complex, with two- and three-frequency motions existing. Lubkin and Rand [17] studied
the behavior of rotating spiral waves in a reaction-diffusion circular disk. They found a condition for the existence of

spiral waves and also studied the effect of diffusivity and disk size on the properties of the spiral waves. Bar et al. [18]

considered a simple activator-inhibitor model in a circular domain and considered the bifurcation and stability analysis
of rotating spiral waves numerically. This study showed that the domain size affects the stability of this model, in

small domains the waves are subject to a meandering instability while in large domains the meandering instability is

suppressed and at a critical radius the spiral rotation became rigid. Tsai [19] investigate how the diffusivity, the domain
size and the reaction kinetics affect the properties of spiral waves in a reaction-diffusion disk with a no-flux boundary

condition. The study showed that the rotational frequency increases with increasing domain size.

In this paper, the Gray-Scott scheme (1) is examined in a circularly symmetric annulus. The Galerkin method is
used to apply the semi-analytical method to the annulus geometry. This is one of the first studies to consider reactions in

an annulus geometry and allows us to explore geometric effects on the static and dynamic stability. In §2 the governing

equations are presented and the Galerkin method is used to obtain the odes which represent the semi-analytical model.
In §3 both steady-state concentration profiles and bifurcation patterns are presented and described in detail. In §4
singularity theory is used to calculate the hysteresis and isola bifurcation points. The loci of these singularities are

plotted and the regions of parameter space are identified in which the four generic steady-state diagrams occur. In
§5 a local stability analysis of the semi-analytical model is performed. The double-zero eigenvalue and transversally

degenerate Hopf points are found; hence the parameter region in which Hopf bifurcations occur is identified. A key focus

is the effect of varying the width of the annulus, on the static and dynamic stability. Comparisons are made between the
semi-analytical results and numerical solutions of the governing pdes. Appendix A details the ode model for a special

case.

2. The semi-analytical model

2.1. The governing equations

b = b0

r = 1

a = 1a = 1
r = r1

Figure 1. The geometry of the reaction-diffusion annulus, a is the reactant and b is
the autocatalyst.
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The Gray-Scott scheme (1) is considered in a circularly symmetric annulus. The governing pdes are

at = arr +
1

r
ar − βab2, bt = brr +

1

r
br + βab2 − βγb,

a = 1, b = 0 at r = 1 and a = 0, b = b0 at r = r1, r1 6 r 6 1. (2)

a = 1−
lnr

lnr1
, b = b0

lnr

lnr1
at t = 0.

The system (2) is in non-dimensional form with the concentrations of the reactant and autocatalyst given by a and b,

respectively. It is an open system; the annulus has permeable boundaries at r = 1 and r = r1, joined to reservoirs which
contains a and b at constant concentrations. This geometry allow the influx of the reactant at the outer boundary and

the autocatalyst at the inner boundary. Experimentally this can be achieved using a diffusive gel coupled to CSTR’s,

which represents the inner and outer reservoirs, see [9, 10, 11]. By using high flow rates the concentrations in the CSTR’s
remain close to the input values as any reactions can be neglected.

A novel aspect of this geometry is the ability to vary the inner radius of the annulus. Note that r1 ∈ (0, 1),
and as r1 → 0, a disk is obtained. In this limit there is no inner reservoir and hence no supply of autocatalyst b.

In the limit r1 → 1, the annulus is vanishing thin. The initial condition satisfies the boundary conditions and is the

steady-state solution of the system when there are no reaction terms (when β = 0). The system is characterized by four
non-dimensional parameters; b0 is the autocatalyst concentration in the reservoir, β is a measure of the importance of

the reaction terms, γ is a measure of the importance of autocatalyst decay, and r1 is the radius of the inner edge of the

annulus, as shown in figure 1. Two ways to adjust the non-dimensional parameters experimentally would be to vary the
reservoir concentration b0 or alter the inner radius r1.

2.2. The Galerkin method

The Galerkin method assumes the spatial structure of the concentration profiles, which then allows the governing pdes

(2) to be approximated by odes. The method requires that the concentrations be approximated by a series of orthogonal
basis functions. The expansion

a(r, t) = 1−
ln r

ln r1
+ a1(t) sin θ1 + a2(t) sin 2θ1, (3)

b(r, t) = b0
ln r

ln r1
+ b1(t) sin θ1 + b2(t) sin 2θ1, θ1 =

π(r − r1)

1− r1
represents the two-term method used here. The trial functions include the steady-state solution of the governing equa-
tions without reaction terms, as these are needed to satisfy the boundary conditions. Expansion (3) satisfies the boundary

conditions in (2), but not the governing pdes. The free parameters in (3) are found by evaluating averaged versions of

the governing equations, weighted by the basis functions, which are sin θ1 and sin 2θ1. This procedure gives a system of
odes for any fixed value of r1.

In the Appendix, equations (12)-(15) show the ode system when r1 = 0.25. For a given value of inner radius r1
the ode model is relatively straightforward to analyse. However, the reactor geometry is not fixed, so as r1 varies, the

range of integration changes and the coefficients must be numerically recalculated for each value of r1. Hence many
different ode models must be considered to examine the effect of varying the inner radius r1.

3. Steady-state solutions

The steady-state versions of the odes are represented by a set of four transcendental equations, which are solved
numerically using Maple. Figure 2 shows steady-state concentration profiles of the reactant and the autocatalyst, a and

b, versus r for (a) β = 40 and (b) β = 2000. The parameters are r1 = 0.5, b0 = 0.2 and γ = 0.05. The concentrations
are shown at the centre of the annulus,

a = 1−
ln rc

ln r1
+ a1, b =

b0 ln rc

ln r1
+ b1, rc =

1 + r1

2
(4)

The two-term semi-analytical and numerical solutions of (2) are shown. The concentration profiles are monotonic and
qualitatively similar to the diffusion only (when β = 0) ln r type profiles. It can be seen that the two-term expression
gives a good approximation to the numerical solution of the governing pdes. At the centre of the annulus, r = rc, the

errors are only about 1%. In figure 2(a), when β is small, the steady-state concentration profiles are close to the diffusion
only profile but, for larger β, as shown in figure 2(b), the concentration profiles deviate from this ln r type profile. For

example, in figure 2 the autocatalyst concentration at rc is b = 0.021 compared to b = 0.082 for a diffusion only system.

Figure 3 shows steady-state diagrams for the four generic patterns for r1 = 0.1. They are the (a) unique (b0 = 0.3

and γ = 0.02), (b) breaking-wave (b0 = 0.1 and γ = 0.01),(c) mushroom (b0 = 0.12 and γ = 0.018) and (d) isola
(b0 = 0.03 and γ = 0.015) patterns. The steady-state diagrams show the autocatalyst concentration b at the centre

of the annulus, r = rc, versus the bifurcation parameter β. The two-term semi-analytical solutions plus the numerical

solution of (2) are shown. There are Hopf points when β = 980 and 524 in figure 3(c) and 3(d) respectively, so no
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 0.25

 0.5

 0.75

 1

 0.5  0.6  0.7  0.8  0.9  1

a,
b

r

(a)

 0.25

 0.5

 0.75

 1

 0.5  0.6  0.7  0.8  0.9  1

a,
b

r

(b)

Figure 2. (Color online) Steady-state reactant and autocatalyst concentration pro-
files, a and b versus r. The parameters are r1 = 0.5, b0 = 0.2 and γ = 0.05, with
β = 40 in (a) and β = 2000 in (b). The two-term (red large dashes) semi-analytical
solutions and the numerical solution of (2) (blue small dashes) are shown.

numerical steady-state solutions exist beyond these points, on these branches. It can be seen that the two-term solution

is very close to the numerical solution of the pdes with less than 6% error.

Figure 4 shows steady-state diagrams for two different annuli. The inner radius r1 = 0.1 in figure 4(a) and

r1 = 0.25 in figure 4(b). The other parameters are b0 = 0.25, γ = 0.03. The one-term and two-term semi-analytical
solutions plus the numerical solution of (2) are shown. For r1 = 0.1 the breaking wave pattern occurs while for r1 = 0.25,

a thinner annulus, a unique pattern occurs. Hence reducing the thickness of the annulus eliminates the multiple steady-

state solutions. The numerical bifurcation points shown in figure 4(a) are (β, b) = (108, 0.107) and (105, 0.275) and the
two-term semi-analytical bifurcation points are (β, b) = (111, 0.133) and (108, 0.241). The two-term approximation is

very close to the numerical solution of the pdes. At β = 300 the error of the two-term solution is about 1%, while for

the one term approximation, the error is about 12%.

4. Singularity theory

Singularity theory is a theoretical technique to analyse the distinct steady-state behaviour of a set of odes in a com-

prehensive manner, see Gray and Roberts [20]. The application of singularity theory to chemical reactions is described

in Balakotaiah and Luss [21]. Here we apply singularity theory to the semi-analytical ode model derived in §2. This
analysis provides semi-analytical parameter maps for each of the generic types of bifurcation pattern that can occur.

The equations corresponding to the steady-state, two-term model, have the general form

fi(b0, b1, b2, a1, a2, β, γ) = 0, i = 1 . . . 4, (5)

where β is the bifurcation parameter. For the hysteresis bifurcation pattern a a hysteresis loop occurs in the steady-state

diagram, which corresponds to
dβ

db1
=
d2β

db21
= 0. (6)

The equations (5) only give an implicit relationship for β so the conditions (6) are applied by using implicit differentiation.

The parameters γ and b0 are constant while the first condition of (6) states dβ
db1

= 0. The total derivative of (5) with

respect to b1 is
dfi

db1
(b1, b2, a1, a2) = fib1

+ fib2
db2

db1
+ fia1

da1

db1
+ fia2

da2

db1
= 0, i = 1 . . . 4. (7)

In (7) the fi are written as functions of b1, b2, a1 and a2. This notation implies that the fi depend on b1 both explicitly
and implicitly via b2,a1 and a2. The second total derivative of (5) and conditions (6) give

d2fi

db21
(b1, b2, a1, a2) = 0, i = 1 . . . 4. (8)

The two-term hysteresis bifurcation points are given by (5), (7) and (8), which represent twelve equations in the fifteen

variables b0, b1, b2, a1, a2, β, γ, b0, db2
db1

, d
2b2
db21

, da1
db1

, d
2a1
db21

, da2
db1

, d
2a2
db21

and r1. Six new variables have been introduced into
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Figure 3. (Color online) Bifurcation diagrams; the autocatalyst concentration, b
versus β for (a) r1 = 0.1 the unique pattern with b0 = 0.3 and γ = 0.02; (b) the
breaking-wave pattern with b0 = 0.1 and γ = 0.01; (c) the mushroom pattern with
b0 = 0.12 and γ = 0.018; and (d) the isola pattern with b0 = 0.03 and γ = 0.015.
The concentration b is at r = rc. The one-term (black solid lines) and two-term (red
large dashes) semi-analytical solutions plus the numerical solution of (2) (blue small
dashes) are shown.

the system, as a consequence of the implicit differentiation. We consider fixed values of r1 and consider the loci of points
in the γ-b0 plane. The hysteresis points represent a line in the γ-b0 plane which, when crossed, causes a hysteresis loop
to be created or destroyed in the steady-state diagram. Maple is used solve the equations for the hysteresis bifurcation

points. A similar method is used to translate the conditions for the isola bifurcation curve, the double-zero eigenvalue

(DZE) and transversality Hopf degeneracies into sets of transcendental equations. The isola bifurcation points are defined
by

dβ

db1
=
dγ

dβ
= 0. (9)

Crossing the degenerate isola curves leads to the creation or destruction of an isola, in the bifurcation pattern.

4.1. The effect of varying the thickness of the annulus

In this section we consider the effect of varying the radius of the inner edge of the annulus r1 ∈ (0, 1). The semi-analytical

model can be used to quantify the transitions in the number of steady-state diagrams, and changes to parameter regions,
as the value of r1 is varied. This however presents significant computational challenges as the ode model changes (see

Equations (12)-(15) for the case of r1 = 0.25) as r1 is varied. In order to analyze the effects of varying r1 twenty five
different ode models were developed for r1 = [0.01, 0.99] at steps of r1 ≈ 0.04. All of these ode models were solved to
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Figure 4. (Color online) Bifurcation diagrams; the autocatalyst concentration, b
versus β for (a) r1 = 0.1 the breaking-wave pattern, (b) r1 = 0.25 the unique pattern.
The other parameters are b0 = 0.25, γ = 0.03. The concentration b is at r = rc. The
one-term (black solid lines) and two-term (red large dashes) semi-analytical solutions
plus the numerical solution of (2) (blue small dashes) are shown.

 0

 0.1

 0.2

 0.3

 0  0.01  0.02  0.03  0.04

b 0

γ
(a)

 0

 0.04
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 0.12

 0  0.005  0.01  0.015  0.02

b 0

γ
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Figure 5. (Color online) Division of the γ-b0 plane into regions corresponding to the
different bifurcation diagrams, (a) r1 = 0.1 and (b) r1 = 0.9. The isola curves (red
solid lines) and the hysteresis curves (blue small dashes) are shown

find their hysteresis and isola curves and the various intersection and maximum points. These points were then plotted
and a curve fitting routine used to obtain the smooth curves shown in figures 6 and 7 below.

Figure 5 shows the division of the γ-b0 plane into regions corresponding to the different steady-state diagrams

for (a) a thick annulus r1 = 0.1, and (b) a thin annulus r1 = 0.9. As the thickness of the reactor, 1 − r1, varies then
significant changes in the bifurcation regions also occur. In this geometry, as the annulus becomes thinner, changing

from a thickness of 1− r1 = 0.9 to 1− r1 = 0.1, the regions of parameter space in which multiple steady-state solutions

occur become much smaller. Also note that in the limit r1 → 1, the dynamics of the annulus reactor would be similar to
that of an equivalent 1-D reaction-diffusion slab cell, as the curvature effect are small. Figure 6(a) shows the intersection

point between the isola curve and the γ-axis, versus r1. This is a measure of the width of the parameter region in

which multiple steady-state solutions occur. As the value of r1 increases, the value of γ decreases, so that the region
of parameter space in which multiple steady-state solutions occur is reduced. Figure 6(b) shows the intersection point

between the cusp curve and the b0-axis versus r1, which is a measure of the height of the parameter space. As the value

of r1 increases, the value of b0 decreases, again reducing the parameter space. Figure 7 shows the maximum point of
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Figure 6. (Color online) The intersection points between (a) the isola curves and
the γ-axis and (b) the cusp curves and b0-axis, versus r1.
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Figure 7. (Color online) The maximum point of the isola curve, (a) γ versus r1, and
(b) b0 versus r1.

the isola curve, (a) γ versus r1 and (b) b0 versus r1. As the value of r1 increases, the values of b0 and γ decrease, and
the regions of parameter space is reduced. Thus a general trend is that a thin annulus has a smaller region of parameter
space in which the various types of bifurcation diagrams occur, which represent diagrams with multiple steady-state

solutions.

5. Local stability and oscillatory solutions

Hopf bifurcations and oscillatory solutions are classical phenomena which occur in many chemical and biological systems.
The theory of Hopf bifurcations is explained in many texts on bifurcation theory and dynamical systems, see for example
Guckenheimer and Holmes [22] or Golubitsky and Schaeffer [23]. Hopf bifurcations also occur in a 1-D Gray-Scott

reaction-diffusion cell; Gray and Scott [4] considered the local stability by calculating the Jacobian matrix of the finite-
difference form of the pdes while Marchant [8] considered the stability of a lower order ode model. In both approaches
a region of the γ-b0 plane, in which Hopf bifurcations can occur, was identified. Here the stability of the semi-analytical
model (2) is considered. The Hopf degeneracy points are calculated to find a semi-analytical parameter map in which

Hopf bifurcations occur, for the reaction-diffusion annulus. For the one-term model, a2 = b2 = 0, the semi-analytical
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Figure 8. (Color online) The double Hopf curve when r1 = 0.1(small blue dashes),
r1 = 0.25 (green double dashes), r1 = 0.5 (large red dashes) and when r1 = 0.9 (black
solid line).

 0.02

 0.03

 0.04

 0.1  0.3  0.5  0.7  0.9

γ

r1

(a)

 0

 0.1

 0.2

 0.3

 0.1  0.3  0.5  0.7  0.9

b 0

r1

(b)

Figure 9. (Color online) The intersection points between (a) the Hopf curve and
the γ-axis and (b) the Hopf curve and b0-axis, versus r1.

model is given by two odes for a1 and b1. The degenerate Hopf points are defined by

DZE : fi = trJ = detJ = 0, H2 : f = trJ =
dtrJ

dβ
= 0, i = 1, 2. (10)

For the two-term semi-analytical model, the set of equations expands to four odes. The eigenvalues of the Jacobian
matrix are described by the quartic equation λ4 +α1λ3 +α2λ2 +α3λ+α4 = 0. Hopf bifurcations occur for this system

when one pair of eigenvalues is purely imaginary, which implies q = α4α2
1 + α2

3 − α1α2α3 = 0. The degenerate Hopf
points are given by

DZE : fi = α3 = α4 = 0, H2 : fi = q =
dq

dβ
= 0, i = 1, 4. (11)

By solving the DZE and H2 conditions, we obtain curves in the γ − b0 plane. We will discuss the effect of varying the
thickness of the annulus on the occurrence of Hopf bifurcations.
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Figure 8 shows the double Hopf curve in the γ-b0 plane for r1 = 0.1, 0.25, 0.5 and 0.9. Only the H2 Hopf curve is

shown as the DZE curve always lies inside the H2 curve. The maximum heights are b0 ≈ 0.301, 0.273, 0.265 and 0.281 for

r1 = 0.1, 0.25, 0.5 and 0.9 respectively. Hence the height of the bifurcation pattern varies in a non-monotonic manner.
The intersection points of the Hopf curve and b0-axis are b0 = 0.083, 0.205, 0.262 and 0.281, while the intersection points

of the Hopf curve and γ-axis are γ = 0.031, 0.025, 0.02 and 0.016. Hence, Hopf points are found in a larger region of

parameter space for a thick annulus, which corresponds to small values of r1. However for a thin annulus, for small
values of γ, there is an increased parameter space in which Hopf bifurcation points occur.

Figure 9 shows the intersection points between the Hopf curves and (a) the γ-axis, (b) the b0-axis, versus r1. The
height of the Hopf curve increases near its intersection with the b0-axis as r1 increases, and its extent shrinks near the

γ-axis as r1 increases. Hence large value of r1, which corresponds to a thin annulus, leads to an increased possibility

of Hopf bifurcations and oscillatory solutions near the b0-axis as shown in figure 9(b), and a decreased possibility near
the γ-axis, as shown in figure 9(a). The technique which is used to obtain values of figure 9 is similar to that for figure

6 and 7. Many ode models for differing r1 were solved to find the H2 curve and the intersection points. These points

were all plotted to obtain the smooth curves of figure 9.

Figure 10(a) shows a limit cycle curve, a versus b, while 10(b) and 10(c) show the time evolution of the reactant

and autocatalyst, a and b versus t respectively. The parameters are b0 = 0.25, γ = 0.031, β = 1000 and r1 = 0.1. The
parameter choice used here lie to the left of the r1 = 0.1 Hopf curve in figure 8. Hence the occurrence of limit cycles

in this example is consistent with the theoretical prediction of the ode model. The numerical solutions of (2) are shown

where the period of the limit cycle is 0.884 while, the amplitudes of the limit cycle are 0.606 and 0.234 for the reactant
and autocatalyst concentrations respectively. Figure 11 shows (a) the reactant and (b) the autocatalyst concentrations,

a and b versus t. The parameters are the same as for figure 10 except that r1 = 0.25. The parameters lie to the right of

the r1 = 0.25 Hopf curve in figure 8. Hence the solution here is stabilized by the thinner annulus geometry, as predicted
by the ode based theory. The one term, two-term semi-analytical solutions and the numerical solutions of (2) are shown.

After some initial relaxation oscillations the solutions evolve to the steady-states for large time, with a → 0.039 and

b→ 0.192 as t→∞. The two-term expression gives a good approximation when compared with the numerical solution
of the governing pdes. At t = 3, for two-term semi-analytical approximations, the errors are less than 2%.

6. Conclusion

Semi-analytical solutions have been developed for the Gray-Scott scheme in a reaction-diffusion annulus. The effect of

varying the thickness of the annulus has been considered and the model is shown to exhibit a wide variety of complexity,
both for bifurcation patterns and Hopf bifurcation points. In general, a thicker annulus will display multiple steady-state

and Hopf bifurcations in a larger region of parameter space, than a thin annulus. Comparisons with numerical solutions

show that the two-term semi-analytical model is very accurate. A wide range of future work is possible. Symmetry
breaking Hopf bifurcations and the existence and stability of a rotating wave in an annulus reactor could be considered.

Also chemical schemes with experimental applicability could be analysed in a reaction-diffusion annulus, such as the

BZ or glycolytic reaction schemes.

Appendix: The ode model for inner radius r1 = 0.25

d

dt
a1 = −0.504βa2b0b2 − 0.0766βb0b2 − 0.405βb0b1 − 0.213βa2b0b1 − 0.427βb22 − 0.5βa1b

2
2

−0.55βb21 − 0.75βa1b
2
1 − 0.599βa1b0b1 − 16.0a1 − 5.20a2 − 0.098b20 (12)

−0.155βa1b
2
0 − 0.213βa1b0b2 − βa2b1b2 + 0.213βb1b2 − 0.123βa2b

2
0

d

dt
a2 = −0.383βa2b0b2 − 0.351βb0b2 − 0.504βa2b0b1 − 0.5βa2b

2
1 + 0.192βb22

−0.75βa2b
2
2 − 0.077βb0b1 + 0.107βb21 − 0.213βa1b0b1 + 6.63a1 − 68.4a2 (13)

−0.067βb20 − 0.124βa1b
2
0 − 0.855βb1b2 − βa1b1b2 − 0.504βa1b0b2 − 0.203βa2b

2
0

d

dt
b1 = 0.504βa2b0b2 + 0.077βb0b2 + 0.213βa2b0b1 + 0.405βb0b1 + 0.427βb22 + 0.5βa1b

2
2

+0.55βb21 + 0.75βa1b
2
1 + 0.213βa1b0b2 + 0.599βa1b0b1 + 0.098βb20 + 0.155βa1b

2
0 (14)

+βa2b1b2 + 0.124βa2b
2
0 − 16.0b1 − 0.466γβb0 − γβb1 − 5.20b2 − 0.213βb1b2

d

dt
b2 = 0.383βa2b0b2 + 0.351βb0b2 + 0.504βa2b0b1 + 0.0766βb0b1 + 0.5βa2b

2
1 − 0.192βb22

+0.75βa2b
2
2 − 0.107βb21 + 0.213βa1b0b1 + 0.067βb20 + 0.124βa1b

2
0 + 0.855βb1b2 (15)

+ + βa1b1b2 − 68.4b2 + 0.504βa1b0b2 + 0.203βa2b
2
0 + 76.6b1 − 0.290γβb0 − γβb2
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Figure 10. (Color online) Limit cycle curve, reactant and autocatalyst concentra-
tions, a versus b. The parameters are b0 = 0.25, γ = 0.031, β = 1000, and r1 = 0.1.
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