31 research outputs found

    Viscoelastic Properties of Rapid Prototyped Magnetic Nanocomposite Scaffolds for Osteochondral Tissue Regeneration

    Get PDF
    Poly(ϵ-caprolactone) and poly(ethylene glycol) based magnetic nanocomposite scaffolds were fabricated using fused deposition modeling and stereolithography approaches, and a hybrid scaffold was obtained by combining these additive manufacturing technologies. Viscoelastic properties in compression were investigated at 37 °C, spanning a range frequency of four decades. Results suggest that poly(ϵ-caprolactone) and poly(ethylene glycol) based scaffolds adequately reproduce viscoelastic properties of subchondral bone and articular cartilage tissues, respectively. By combining fused deposition modeling and stereolithography it is possible to manufacture a hybrid scaffold suitable for osteochondral tissue regeneration. Poly(ϵ-caprolactone) and poly(ethylene glycol) based magnetic nanocomposite scaffolds were fabricated using fused deposition modeling and stereolithography approaches, and a hybrid scaffold was obtained by combining these additive manufacturing technologies. Viscoelastic properties in compression were investigated at 37 °C, spanning a range frequency of four decades. Results suggest that poly(ϵ-caprolactone) and poly(ethylene glycol) based scaffolds adequately reproduce viscoelastic properties of subchondral bone and articular cartilage tissues, respectively. By combining fused deposition modeling and stereolithography it is possible to manufacture a hybrid scaffold suitable for osteochondral tissue regeneration

    Efecto comparativo de 3 fuentes de abono orgánico en el rendimiento de frijol castilla (Vigna unguiculata L. Walp), Santa 2023

    Get PDF
    El presente trabajo de investigación se llevó a cabo en las instalaciones del fundo experimental santa rosa. El objetivo fue determinar el efecto comparativo de tres fuentes de abono orgánico en el rendimiento del frijol castilla (Vigna Unguiculata L. Walp). Las fuentes orgánicas en estudio fueron “Fouling Molido” a dosis de 150 y 300g (Tratamientos 1 y 2), “Bocashi de Fouling A” a dosis de 150 y 300g (Tratamientos 3 y 4), “Bocashi de Fouling B” a dosis de 150 y 300g (Tratamientos 5 y 6) y Humus a 300g como Testigo. Se trabajó con un Diseño en Bloques Completamente al Azar, considerando 4 bloques cada uno con 6 tratamientos más un testigo. Los indicadores de rendimiento en estudio fueron Número, Longitud y Peso de vainas como también el Peso de granos proyectados a Tn/Ha. Los resultados demostraron que con el T2 se obtuvo un mayor número de vainas con un promedio de (20.1 vainas/planta), así mismo este tratamiento destacó en el peso de vainas con un promedio de (43.7g/planta) y también genero el mayor peso de granos proyectados a toneladas por hectárea con un promedio de (3.19 Tn/Ha). Finalmente, con respecto al indicador longitud de vainas se determinó que T6 obtuvo un mayor promedio con (12.8 cm/planta)

    Bioactivation Routes of Gelatin-Based Scaffolds to Enhance at Nanoscale Level Bone Tissue Regeneration

    Get PDF
    The present work is focused on the development of gelatin-based scaffolds crosslinked through carbodiimide reaction and their bioactivation by two different methods: (i) surface modification by inorganic signals represented by hydroxyapatite nanoparticles precipitated on scaffold through biomimetic treatment; (ii) analog of BMP-2 peptide decoration. The results showed the effects of polymer concentration and crosslinking time on the physico-chemical, morphological, and mechanical properties of scaffolds. Furthermore, a comparative study of biological response for both bioactivated structures allowed to evaluate the influence of inorganic and organic cues on cellular behavior in terms of adhesion, proliferation and early osteogenic marker expression. The bioactivation by inorganic cues induced positive cellular response compared to neat scaffolds in terms of increased cell proliferation and early osteogenic differentiation of human mesenchymal stem cell (hMSC), as evidenced by the Alkaline phosphatase (ALP) expression. Similarly BMP-2 peptide decorated scaffolds showed higher values of ALP than biomineralized ones at longer time. The overall results demonstrated that the presence of bioactive signals (either inorganic or organic) at nanoscale level allowed an osteoinductive effect on hMSC in a basal medium, making the modified gelatin scaffolds a promising candidate for bone tissue regeneration

    Advanced application of collagen-based biomaterials in tissue repair and restoration

    Get PDF
    AbstractIn tissue engineering, bioactive materials play an important role, providing structural support, cell regulation and establishing a suitable microenvironment to promote tissue regeneration. As the main component of extracellular matrix, collagen is an important natural bioactive material and it has been widely used in scientific research and clinical applications. Collagen is available from a wide range of animal origin, it can be produced by synthesis or through recombinant protein production systems. The use of pure collagen has inherent disadvantages in terms of physico-chemical properties. For this reason, a processed collagen in different ways can better match the specific requirements as biomaterial for tissue repair. Here, collagen may be used in bone/cartilage regeneration, skin regeneration, cardiovascular repair and other fields, by following different processing methods, including cross-linked collagen, complex, structured collagen, mineralized collagen, carrier and other forms, promoting the development of tissue engineering. This review summarizes a wide range of applications of collagen-based biomaterials and their recent progress in several tissue regeneration fields. Furthermore, the application prospect of bioactive materials based on collagen was outlooked, aiming at inspiring more new progress and advancements in tissue engineering research. Graphical Abstrac

    Biofunctionalization of 3D printed collagen with bevacizumab-loaded microparticles targeting pathological angiogenesis

    Get PDF
    Pathological angiogenesis is a crucial attribute of several chronic diseases such as cancer, age-related macular degeneration, and osteoarthritis (OA). In the case of OA, pathological angiogenesis mediated by the vascular endothelial growth factor (VEGF), among other factors, contributes to cartilage degeneration and to implants rejection. In line with this, the use of the anti-VEGF bevacizumab (BVZ) has been shown to prevent OA progression and support cartilage regeneration. The aim of this work was to functionalize a medical grade collagen with poly (lactic-co-glycolic acid) (PLGA) microparticles containing BVZ via three-dimensional (3D) printing to target pathological angiogenesis. First, the effect of several formulation parameters on the encapsulation and release of BVZ from PLGA microparticles was studied. Then, the anti-angiogenic activity of released BVZ was tested in a 3D cell model. The 3D printability of the microparticle-loaded collagen ink was tested by evaluating the shape fidelity of 3D printed structures. Results showed that the release and the encapsulation efficiency of BVZ could be tuned as a function of several formulation parameters. In addition, the released BVZ was observed to reduce vascularization by human umbilical vein endothelial cells. Finally, the collagen ink with embedded BVZ microparticles was successfully printed, leading to shape-stable meniscus-, nose- and auricle-like structures. Taken altogether, we defined the conditions for the successful combination of BVZ-loaded microparticles with the 3D printing of a medical grade collagen to target pathological angiogenesisThis project has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement No 814444 (MEFISTO). The authors thank mAbxience-GH Genhelix for the kind donation of Bevacizumab (Avastin®) and Geistlich Pharma AG for providing the medical grade collagen. AA acknowledges funding from “la Caixa” Foundation (ID 100010434) with a fellowship code LCF/BQ/PR22/11920003. RL acknowledges funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No. 949806, VOLUME-BIO). RL and JM acknowledge funding from the Dutch Artritis Foundation (LLP-12 and LLP-22)S

    Bactericidal Activity of Silver-Doped Chitosan Coatings via Electrophoretic Deposition on Ti6Al4V Additively Manufactured Substrates

    Get PDF
    Prosthetic reconstruction can serve as a feasible alternative, delivering both functional and aesthetic benefits to individuals with hand and finger injuries, frequent causes of emergency room visits. Implant-related infections pose significant challenges in arthroplasty and osteosynthesis procedures, contributing to surgical failures. As a potential solution to this challenge, this study developed a new class of silver (Ag)-doped chitosan (CS) coatings via electrophoretic deposition (EPD) on osseointegrated prostheses for infection therapy. These coatings were successfully applied to additively manufactured Ti6Al4V ELI samples. In the initial phase, the feasibility of the composite coating was assessed using the Thermogravimetric Analysis (TGA) and Attenuated Total Reflection (ATR) techniques. The optimized structures exhibited impressive water uptake in the range of 300-360%. Codeposition with an antibacterial agent proved effective, and scanning electron microscopy (SEM) was used to examine the coating morphology. Biologically, CS coatings demonstrated cytocompatibility when in direct contact with a fibroblast cell line (L929) after 72 h. When exposed to the Staphylococcus epidermidis strain (ATCC 12228), these coatings inhibited bacterial growth and biofilm formation within 24 h. These findings underscore the significant potential of this approach for various applications, including endoprostheses like hip implants, internal medical devices, and transcutaneous prostheses such as osseointegrated limb prosthetics for upper and lower extremities

    Biofunctionalization of 3D printed collagen with bevacizumab-loaded microparticles targeting pathological angiogenesis

    Get PDF
    Pathological angiogenesis is a crucial attribute of several chronic diseases such as cancer, age-related macular degeneration, and osteoarthritis (OA). In the case of OA, pathological angiogenesis mediated by the vascular endothelial growth factor (VEGF), among other factors, contributes to cartilage degeneration and to implants rejection. In line with this, the use of the anti-VEGF bevacizumab (BVZ) has been shown to prevent OA progression and support cartilage regeneration. The aim of this work was to functionalize a medical grade collagen with poly (lactic-co-glycolic acid) (PLGA) microparticles containing BVZ via three-dimensional (3D) printing to target pathological angiogenesis. First, the effect of several formulation parameters on the encapsulation and release of BVZ from PLGA microparticles was studied. Then, the anti-angiogenic activity of released BVZ was tested in a 3D cell model. The 3D printability of the microparticle-loaded collagen ink was tested by evaluating the shape fidelity of 3D printed structures. Results showed that the release and the encapsulation efficiency of BVZ could be tuned as a function of several formulation parameters. In addition, the released BVZ was observed to reduce vascularization by human umbilical vein endothelial cells. Finally, the collagen ink with embedded BVZ microparticles was successfully printed, leading to shape-stable meniscus-, nose- and auricle-like structures. Taken altogether, we defined the conditions for the successful combination of BVZ-loaded microparticles with the 3D printing of a medical grade collagen to target pathological angiogenesis

    Biofunctionalization of 3D printed collagen with bevacizumab-loaded microparticles targeting pathological angiogenesis

    Get PDF
    Pathological angiogenesis is a crucial attribute of several chronic diseases such as cancer, age-related macular degeneration, and osteoarthritis (OA). In the case of OA, pathological angiogenesis mediated by the vascular endothelial growth factor (VEGF), among other factors, contributes to cartilage degeneration and to implants rejection. In line with this, the use of the anti-VEGF bevacizumab (BVZ) has been shown to prevent OA progression and support cartilage regeneration. The aim of this work was to functionalize a medical grade collagen with poly (lactic-co-glycolic acid) (PLGA) microparticles containing BVZ via three-dimensional (3D) printing to target pathological angiogenesis. First, the effect of several formulation parameters on the encapsulation and release of BVZ from PLGA microparticles was studied. Then, the anti-angiogenic activity of released BVZ was tested in a 3D cell model. The 3D printability of the microparticle-loaded collagen ink was tested by evaluating the shape fidelity of 3D printed structures. Results showed that the release and the encapsulation efficiency of BVZ could be tuned as a function of several formulation parameters. In addition, the released BVZ was observed to reduce vascularization by human umbilical vein endothelial cells. Finally, the collagen ink with embedded BVZ microparticles was successfully printed, leading to shape-stable meniscus-, nose- and auricle-like structures. Taken altogether, we defined the conditions for the successful combination of BVZ-loaded microparticles with the 3D printing of a medical grade collagen to target pathological angiogenesis

    Serum Albumin Is Inversely Associated With Portal Vein Thrombosis in Cirrhosis

    Get PDF
    We analyzed whether serum albumin is independently associated with portal vein thrombosis (PVT) in liver cirrhosis (LC) and if a biologic plausibility exists. This study was divided into three parts. In part 1 (retrospective analysis), 753 consecutive patients with LC with ultrasound-detected PVT were retrospectively analyzed. In part 2, 112 patients with LC and 56 matched controls were entered in the cross-sectional study. In part 3, 5 patients with cirrhosis were entered in the in vivo study and 4 healthy subjects (HSs) were entered in the in vitro study to explore if albumin may affect platelet activation by modulating oxidative stress. In the 753 patients with LC, the prevalence of PVT was 16.7%; logistic analysis showed that only age (odds ratio [OR], 1.024; P = 0.012) and serum albumin (OR, -0.422; P = 0.0001) significantly predicted patients with PVT. Analyzing the 112 patients with LC and controls, soluble clusters of differentiation (CD)40-ligand (P = 0.0238), soluble Nox2-derived peptide (sNox2-dp; P < 0.0001), and urinary excretion of isoprostanes (P = 0.0078) were higher in patients with LC. In LC, albumin was correlated with sCD4OL (Spearman's rank correlation coefficient [r(s)], -0.33; P < 0.001), sNox2-dp (r(s), -0.57; P < 0.0001), and urinary excretion of isoprostanes (r(s), -0.48; P < 0.0001) levels. The in vivo study showed a progressive decrease in platelet aggregation, sNox2-dp, and urinary 8-iso prostaglandin F2 alpha-III formation 2 hours and 3 days after albumin infusion. Finally, platelet aggregation, sNox2-dp, and isoprostane formation significantly decreased in platelets from HSs incubated with scalar concentrations of albumin. Conclusion: Low serum albumin in LC is associated with PVT, suggesting that albumin could be a modulator of the hemostatic system through interference with mechanisms regulating platelet activation

    Bioactive composite scaffolds for bone regeneration:from the process to the biological validation

    Get PDF
    In this work, we have discussed the preparation and characterization of composite scaffolds for bone regeneration. The scaffolds were made with different techniques: salt leaching / phase inversion,filament winding and stereolithography. The phase of preparation is followed by a characterization from a morphological, mechanical and biological point of view. Results were very promising especially regarding the biological response of the substrates that appear to be promising for future in vivo tests
    corecore