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Abstract

Poly(ε-caprolactone) and poly(ethylene glycol) based magnetic nanocomposite scaffolds were fabricated using fused deposition modeling and 
stereolithography approaches, and a hybrid scaffold was obtained by combining these additive manufacturing technologies. Viscoelastic 
properties in compression were investigated at 37°C, spanning a range frequency of four decades. Results suggest that poly(ε-caprolactone) and 
poly(ethylene glycol) based scaffolds adequately reproduce viscoelastic properties of subchondral bone and articular cartilage tissues, 
respectively. By combining fused deposition modeling and stereolithography it is possible to manufacture a hybrid scaffold suitable for 
osteochondral tissue regeneration.
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1. Introduction

Osteoarthritis represents the most common joint disorder 
causing severe pain and disability [1,2]. This pathology 
damages subchondral bone and cartilage, and total joint 
arthroplasty (e.g., knee and hip prostheses) is still the choice 
for the treatment of the late stage osteoarthritis [3,4]. Metals, 
ceramics, polymers and composites are the materials used to 
fabricate these prostheses [4-7], and often acrylic cements 
[8,9] are used to fix the prosthesis to bone. However, due to 
several drawbacks of prosthetic devices, revision of an 
implanted prosthesis is required [10]. In this scenario, 
osteochondral bone regeneration represents a great challenge.

A scaffold for tissue engineering has to satisfy several 
requirements: an interconnected porous architecture able to 
promote cell-material interaction and extracellular matrix 

deposition; withstand the forces acting on the bone-joint 
segment and transfer the stress to the hosting tissue allowing 
the mechanical stimulation of tissue cells; tailored mechanical 
and degradation properties in order to gradually transfer the 
loading function to the newly forming tissue [11-17]. In 
particular, polymer-based composite materials can be 
designed to achieve enhanced functional and mechanical 
properties [7,15,16,18]. Benefiting from the large variety of 
biocompatible polymers, spanning from cross-linked networks 
to weak gels, scaffolds may be designed in the form of solid-
like [15-22], strong gel-like [23-25] or injectable [26-30] 
formulations according to the specific application. Advanced 
scaffolds for tissue engineering able to release, in situ, drugs 
or cells could be obtained by integrating different 
technologies, also involving several strategies to improve cell 
attachment (i.e., surface functionalization) [30-35]. 
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Different approaches have been proposed to fabricate 3D 
porous scaffolds. Conventional methods (e.g., salt leaching, 
solvent casting, phase inversion, etc.) are not capable of 
precisely controlling pore geometry, spatial distribution and 
interconnectivity [16,36,37]. On the other hand, additive 
manufacturing, also known as 3D printing or solid freeform 
fabrication, represents the key to fabricate customized and 
reproducible scaffolds [38]. Among these techniques, Fused 
Deposition Modeling (FDM) offers the opportunity to process 
highly filled composites, thus obtaining 3D morphologically 
controlled micro/nano-composite scaffolds. This technique 
involves a moving nozzle to extrude a fiber of polymeric or 
composite material by which the physical model is built layer-
by-layer [16,20,37-41]. Conversely, stereolithography relies 
on the UV polymerization process. As in the case of FDM, 
stereolithography allows to process composite materials, but 
the amount of fillers is highly limited by the viscosity of the 
reactive photo-curable solution [16,36,42,43].

Recently, novel routes in tissue engineering have involved 
the use of magnetic nanoparticles (MNPs) to induce tissue 
growth through magnetic fields. Iron doped hydroxyapatite 
nanoparticles and iron oxide have been included into a 
polymeric matrix in order to guide bone regeneration [44-46]. 
The superparamagnetic feature of magnetic nanocomposite 
materials has allowed to develop an advanced and efficient in 
vitro method for the seeding of magnetically labeled cells, and 
a remarkable bone regeneration has been observed in vivo
[47]. Moreover, this approach allows also to benefit from the
effects of induced hyperthermia [48, 49].

In a joint connective tissues can be considered as composite 
materials mainly composed of collagen, hydroxyapatite and 
water-gel containing proteoglycans [50-52], and the time-
dependent properties (viscoelasticity) of bone and cartilage are 
strongly related to the age, organ and district site [50,53-55]. 
On the other hand, mimicking of the mechanical and 
viscoelastic properties has shown to be very effective for 
improving the design of prosthetic [56,57] and scaffold 
devices [58]. Dynamic Mechanical Analysis (DMA) is a 
powerful tool to study the viscoelastic behavior of materials 
[8,50,53-55,57]. It is recognized that mechanisms occurring 
during tissue adaptation rely on a cellular 
mechanotransduction process driven by dynamic rather than 
static loading [59,61]. Of course, viscoelastic properties of 
scaffolds are of paramount importance especially in relation to 
the remarkable effects of dynamic mechanical stimulation, in 
vivo and in vitro through bioreactors, on tissue 
adaptation/regeneration [59-62].

Accordingly, through the combination of additive 
manufacturing approaches, the aim of the current research was 
the design and preparation of scaffolds for bone and cartilage 
regeneration, as well as the assessment of the viscoelastic 
features through DMA.

2. Materials and Methods

Poly(ε-caprolactone) (PCL) and PCL/MNPs 
nanocomposites scaffolds were fabricated through FDM 
technique (Fig. 1a), while poly(ethylene glycol) diacrylate 
(PEGDA) and PEGDA/MNPs scaffolds were manufactured 

using stereolithography (Fig. 1b). 3D cylindrical hybrid 
scaffolds (Fig. 1c) were also obtained through a proper 
combination of these technologies.

Fig. 1. (a) PCL/MNPs 80/20 scaffold obtained through FDM; (b) PEG/MNPs 
95/5 scaffold obtained through stereolithography; (c) Multimaterial scaffold 
obtained combining stereolithography and FDM; (d) mechanical spectrometer 
equipped with a water bath at 37°C; (e) typical dynamic mechanical 
measurement and analysis for determining viscoelastic properties.

2.1. Scaffolds preparation: FDM

PCL pellets (Mw=65,000, Sigma-Aldrich, St. Louis, MO) 
and PCL/MNPs pellets were processed through FDM using a 
3D plotter (Bioplotter, Envisiontec GmbH, Gladbeck, 
Germany) to manufacture 3D cylindrical scaffolds (6 mm in 
diameter, 8 mm in height) with a 0/0/90/90° lay-down pattern 
(Fig. 1a). PCL/MNPs pellets were obtained by dissolving 
PCL in tetrahydrofuran (THF, Sigma-Aldrich, St. Louis, MO) 
and adding MNPs and ethanol to the PCL/THF solution 
during stirring. Sonication through the ultrasonic bath 
(Branson 1510 MT, Danbury, CT) promoted the dispersion of 
the nanoparticles in the solution. The polymer/filler weight 
ratio (wt/wt) was 80/20.

The stainless steel injector of the FDM apparatus was 
pressurized to 8.5 bar and it was heated to a temperature of 
90°C and 120°C for PCL and PCL/MNPs scaffolds, 
respectively. The material was deposited at a speed of 35 
mm/min through a nozzle with an inner diameter of 600 µm. 

2.2. Scaffolds preparation: stereolithography

PEGDA and PEGDA/MNPs photo-curable solutions were 
processed through stereolithography (Envisiontec Perfactory 
Mini Multilens SLA). Briefly, MNPs were dispersed in the 
monomer solution through sonication. PEG/MNPs 95/5 and 
PEG/MNPs 90/10 formulations were prepared, also including 
the photo-initiator Lucirin-TPO  (4% wt).

Surfaces, which are periodic in three independent 
directions, were generated using K3DSurf v0.6.2 software, 
and diamond like architectures, according to the boundary 
conditions x2+y2 :[-4π,4π] and z:[-8π,8π], were obtained using 
the following trigonometric functions:

sin(x)sin( y)sin(z) + sin(x)cos( y)cos(z) +

cos(x)sin( y)cos(z) + cos(x)cos( y)sin(z) = C
(1)

where C is the offset value that regulates the porosity of 
the structure. This value was set at 0.4 to obtain a porosity of 
about 80%.
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The building process involved projections of 1280*1024 
pixels, each 32*32 µm2 in size, and the layers thickness was 
25 µm. Post-curing was carried out at 90°C for 1 day under 
vacuum. PEG, PEG/MNPs 95/5 and PEG/MNPs 90/10 
scaffolds (Fig. 1b) were 3D manufactured.

2.3. Dynamic mechanical measurements

Dynamic mechanical tests in compression were carried out 
with a Bose Enduratec ELF 3200 (Minnetonka, USA) 
equipped with a water chamber controlled by a heater mixer 
(TE-10D Techne Cambridge, UK) (Fig. 1d). DMA, in a 
displacement control mode, was performed using sinusoidal 
waveforms between 0.01 and 100 Hz, thus spanning four 
frequency decades. The strain excitation signal (ε) is given by 
the ratio Δh/h0, where h0 is the specimen height, while the 
stress response is given by the ratio F/A, where F is the load 
and A is the “apparent” scaffold cross-section [16,46,49]. 
Dynamic data (Fig. 1e) were interpreted by means of phase 
angle (Φ) measurements, thus distinguishing the storage 
modulus (E’) and the loss modulus (E’’), defined as follows:

(2)

(3)

Where σ0 and ε0 are the stress and the strain amplitudes, 
respectively. 

2.4. SEM imaging

Scanning electron microscopy (SEM) was carried out to 
study morphology, pore shape and size of PCL and PEG 
based magnetic 3D scaffolds. The specimens were gold 
sputtered and analyzed through a FEI QUANTA 200 (The 
Netherlands, FEI Company) scanning electron microscope 
working at 30 kV.

3. Results and Discussion

Morphologically controlled scaffolds were fabricated through
additive manufacturing techniques. From a static mechanical 
point of view, it was previously shown that PCL based 
scaffolds represent good candidates for bone regeneration 
[13,15,18,32,41] and the magnetic feature of PCL/MNPs 
scaffolds offered advanced opportunity to guide trabecular 
bone regeneration in vitro and in vivo [16, 44,47,50].

Fig. 2. (a) Architecture of PCL based magnetic 3D scaffold; (b) Architecture 
of PEG based magnetic 3D scaffold.

Figure 2 shows the morphology of PCL and PEG based 
magnetic nanocomposite scaffolds analyzed through SEM.

The obtained SEM results show that the designed scaffolds 
display a fully interconnected pore network, as well as a 
morphologically controlled architecture, highlighting the 
different morphology of the structures which should influence 
the mechanical and functional properties. The physical 
integrity of the filaments/fibers and layers was confirmed 
through SEM investigations, the pore shape and size obtained 
were consistent with the theoretical values defined during the 
design process. The 0/0/90/90° lay-down pattern (Fig. 2a) for 
the PCL based architecture obtained through FDM, and the 
layer stratification for PEG based architecture fabricated 
through stereolithography (Fig. 2b) at thickness of 25 µm, can 
be easily detected. Also, the periodic surface generating the 
PEG based scaffold can be easily distinguished.

The storage modulus of PCL based scaffold (Fig. 3) is 
almost constant between 0.01 Hz and 10 Hz, while it slightly 
increases (of about 10%) as the frequency increases from 1 
Hz to 100 Hz, ranging from 68 MPa to78 MPa. A similar 
behavior was observed for PCL/MNPs 80/20 magnetic 
scaffolds, however showing higher values of storage modulus. 
These values increased from 99 MPa to 109 MPa as the 
frequency was increased from 0.01 Hz to 100 Hz. Therefore, 
as previously observed [44,47-50], MNPs represent an 
effective reinforcement for the PCL based architecture.

On the other hand, for both PCL and PCL/MNPs, the loss 
modulus is almost constant between 0.01 Hz and 1 Hz, while 
it remarkably increases through the last decade of the 
frequency sweep. In particular, the loss modulus for PCL 
based scaffolds spans from 3.4 MPa to 11.8 MPa, while it 
ranges between 5.7 MPa and 19.9 MPa for PCL/MNPs based 
scaffolds. Such values suggest that PCL based scaffolds have 
some capability to damp the mechanical vibrations. This 
capability has to be ascribed to the viscoelastic nature of PCL 
in the rubbery state at 37°C.

When using DMA to assess the viscoelastic properties of 
materials, the shock absorbing capability is directly related to 
the phase angle (Φ) measurements [8,55,57,63]. This 
measurement can be carried out independently of the 
specimen geometry by considering the shift angle between the 
applied sinusoidal displacement and the response in terms of  
force. This phase shift is related to the amount of energy that 
the structure is capable to dissipate. Furthermore, tan Φ
represents the loss factor or loss tangent. For both the PCL 
and PCL/MNPs structures the loss factor increases from 0.04 

( )Φ= cos'E
0

0

ε
σ

( )Φ= sin''E
0

0

ε
σ
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to 0.18 as frequency increases. These values are consistent 
with loss factor measurements on subchondral bone of the 
human tibial plateau [55].

Fig. 3. Storage modulus (E’) and loss modulus (E’’) as function of frequency 
for PCL and PCL/MNPs 80/20 magnetic scaffolds.

It is worth noting that the storage modulus at 0.01 Hz of 
the subchondral bone of the human tibial plateau varies from 
53 MPa to 230 MPa according to the site [50,55], and its 
values rise as frequency increases, analogously to PCL based 
scaffold. Furthermore, the loss modulus of the subchondral 
bone of the human tibial plateau at 0.01 Hz varies from 7.9 
MPa to 50 MPa according to the site [54], and it increases as 
the frequency increases up to 100 Hz. Loss modulus for PCL 
based scaffolds are in the range of those from the tibial 
plateau. Therefore, the PCL based architectures obtained 
through FDM are very good candidate to mimic viscoelastic 
properties of subchondral bone.

The storage modulus of PEG based scaffold (Fig. 4) is 
almost constant between 0.01 Hz and 100 Hz. Higher values 
were measured for PEG/MNPs 95/5 scaffolds. The mean 
value storage modulus for PEG/MNPs 95/5 is 4.4 MPa, while 
those of PEG and PEG/MNPs 90/10 are similar (3.5 MPa). 
For all the scaffolds obtained through stereolithography, the 
loss modulus is almost constant up to 1Hz, while showing a 
consistent increase through the last two decades of the 
frequency sweep. In particular, the loss modulus spanned 
from 120 kPa to 250 kPa, from 80 kPa to 250 kPa and from 
80 kPa to 140 kPa for PEG, PEG/MNPs 95/5 and PEG/MNPs 
90/10 structures, respectively. Therefore, it is also interesting 
to note that PEG/MNPs 90/10 scaffold have shown lower 
damping properties.

Fig. 4. Storage modulus (E’) and loss modulus (E’’) as function of frequency 
for PEG, PEG/MNPs 95/05 and  PEG/MNPs 90/10 magnetic scaffolds.

It is remarkable to report that the storage modulus of 
bovine articular cartilage tested at 37°C increases from 470 
kPa at 0.1 Hz to 1 MPa at 10 Hz [53] while higher but almost 
constant values have been observed at room temperature at 
high frequency [54]. Therefore, the storage moduli of the PEG 
based scaffolds (Fig. 3) are comparable to those of articular 
cartilage. The loss modulus of bovine articular cartilage tested 
in wet environment at 37°C has shown to be almost constant 
in the frequency range of 0.1-10 Hz, varying between 176 kPa 
and 249 kPa [53]. Consequently, also the loss modulus of the 
PEG based scaffolds (Fig. 3) are in the range of those 
measured for the articular cartilage [53]. In particular, for all 
the PEG based scaffolds, the phase angle (Φ) spanned from 
1.0° to 9.8°, showing a mean value of 4.0°. Also these value 
are in agreement with phase angle measurements of bovine 
articular cartilage [54].

As previously reported [44,47], a 3D superparamagnetic 
scaffold can be considered as a fixed ‘station’, incorporating a 
programmed biofactor release, triggered by external magnetic 
fields. The incorporation of MNPs in PEG- and PCL-based 
scaffolds strongly influences viscoelastic properties. Static 
mechanical analyses have shown that, for PCL scaffold 
[44,47,50], the inclusion of MNPs results in an improvement 
of the elastic modulus, however decreasing their ductility. 
From a dynamic point of view, storage modulus profiles 
obtained at 37°C (Fig. 3) confirm the strengthening effect of 
MNPs. This result can be ascribed to the difference in the 
stiffness and ductility between the polymeric matrix and 
purely inorganic nanoparticles. Hence, these differences 
influence the  viscoelastic behaviour during compression.

Instead, for PEG based scaffolds, MNPs seems to be an 
effective reinforcement only up to 5% by weight. The lower 
storage modulus recorded for the PEG/MNPs 90/10 scaffolds 
may be due to a clustering effect of MNPs occurring in the 
monomer solution undergoing the step by step photo-
polymerization process. Therefore, the lower values of the 
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storage modulus at high MNP amount can be ascribed to the 
poor interface between clusters and polymeric matrix.

It has been suggested that tissue remodelling, adaptation 
and regeneration is mainly driven by dynamic rather than 
static stimulation [59-62]. In particular, models of bone 
adaptation in a rat ulna suggests that the dissipation energy 
stimulus plays a crucial role for tissue growth [61]. Of course, 
for regeneration through the tissue engineering approach, this 
stimulus depends on scaffold viscoelasticity. Even if some 
class of metals used for biomedical application, such as shape 
memory alloys based on titanium, displays marked time- and 
temperature-dependent properties [63-65], polymer based 
composite scaffolds can be considered ideal materials for 
reproducing viscoelastic properties of natural tissues [25,57], 
and the viscoelastic properties measured for PEG and PCL 
based scaffolds should promote an efficient 
mechanotransduction [59-63]. Moreover, as reported in the 
literature, it is possible to adopt different strategies for surface 
functionalization of the selected polymers, in order to improve 
cell-material interaction [32-35]. The fully interconnected 
porosity of PEG and PCL based scaffolds also allows to 
benefit from injectable gel based formulation [26-30] capable 
to release, in situ, drugs or cells [30,31]. In particular, for 
superparamagnetic scaffolds, it has already been shown that 
enhanced gel infiltration [31] or cell seeding [47] into the 
scaffold can be achieved through the use of an external 
magnetic field.

Osteoarthritis is a degenerative joint disease that mainly 
affects the knee and hip especially for the elderly population. 
In the late stage, patients affected by this disease show severe 
pain and the restriction of their daily activities [1-4]. Total 
joint arthroplasty actually represents the method of choice for 
the treatment of late stage osteoarthritis. This method involves
the use of prostheses made of non-degradable biomaterials 
such as metals, ceramics, polymers and composites [4-7]. 
Among the drawbacks, stress-shielding effects due to the 
stiffness of these prosthetic materials, higher than that of the 
hosting bone, determine tissue resorption around the 
prosthesis. Fatigue, corrosion, wear and debris are further 
drawbacks, and finally aseptic loosening [4], hence, a revision 
of the implant is a demand [10]. Consequently, regeneration 
of osteochondral bone represents an important goal, and our
results suggest that a multimaterial scaffold based on PCL and 
PEG loaded with MNPs, fabricated by combining 
stereolithography and FDM techniques, may adequately 
reproduce viscoelastic properties of osteochondral tissues.

4. Conclusions

PCL and PEG based magnetic nanocomposite scaffolds 
adequately reproduce viscoelastic properties of trabecular 
bone and articular cartilage tissues, respectively. By 
combining fused deposition modeling and stereolithography it 
is possible to fabricate a hybrid multimaterial scaffold suitable 
for osteochondral tissue regeneration.
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