99 research outputs found

    The "Alzheimer's disease signature": potential perspectives for novel biomarkers

    Get PDF
    Alzheimer's disease is a progressive and neurodegenerative disorder which involves multiple molecular mechanisms. Intense research during the last years has accumulated a large body of data and the search for sensitive and specific biomarkers has undergone a rapid evolution. However, the diagnosis remains problematic and the current tests do not accurately detect the process leading to neurodegeneration. Biomarkers discovery and validation are considered the key aspects to support clinical diagnosis and provide discriminatory power between different stages of the disorder. A considerable challenge is to integrate different types of data from new potent approach to reach a common interpretation and replicate the findings across studies and populations. Furthermore, long-term clinical follow-up and combined analysis of several biomarkers are among the most promising perspectives to diagnose and manage the disease. The present review will focus on the recent published data providing an updated overview of the main achievements in the genetic and biochemical research of the Alzheimer's disease. We also discuss the latest and most significant results that will help to define a specific disease signature whose validity might be clinically relevant for future AD diagnosis

    Application of the 1RM estimation formulas from the RM in bench press in a group of physically active middle-aged women

    Get PDF
    The 1RM is the standard measurement to value isotonic strength. Nevertheless, this type of test takes a lot of time, can expose evaluated individuals at a higher risk of injury, etc. Specialized literature recognizes that the use of a procedure which requires a smaller load than 1RM to estimate individuals maximal strength has, undoubted, a great attractive. Therefore, RM tests are the most commonly tool used with general population. Having the intention of proving these proposals among Spanish female population, 28 active women were evaluated in hers 1RM and RM before and after 8 training weeks. The results obtained put the predictive value of these formulas into question, especially regarding its individual predicting value

    DSTYK inhibition increases the sensitivity of lung cancer cells to T cell-mediated cytotoxicity

    Get PDF
    Lung cancer remains the leading cause of cancer-related death worldwide. We identify DSTYK, a dual serine/threonine and tyrosine non-receptor protein kinase, as a novel actionable target altered in non-small cell lung cancer (NSCLC). We also show DSTYK's association with a lower overall survival (OS) and poorer progression-free survival (PFS) in multiple patient cohorts. Abrogation of DSTYK in lung cancer experimental systems prevents mTOR-dependent cytoprotective autophagy, impairs lysosomal biogenesis and maturation, and induces accumulation of autophagosomes. Moreover, DSTYK inhibition severely affects mitochondrial fitness. We demonstrate in vivo that inhibition of DSTYK sensitizes lung cancer cells to TNF-α–mediated CD8+-killing and immune-resistant lung tumors to anti–PD-1 treatment. Finally, in a series of lung cancer patients, DSTYK copy number gain predicts lack of response to the immunotherapy. In summary, we have uncovered DSTYK as new therapeutic target in lung cancer. Prioritization of this novel target for drug development and clinical testing may expand the percentage of NSCLC patients benefiting from immune-based treatments.This work was supported by Fundación para la investigación medica aplicada (FIMA), Centro de Investigación Biomédica en Red de Cáncer (CIBERONC; CB16/12/00443), Spanish Association Against Cancer Scientific Foundation (AECC; GCB14-2170), Fundación Ramón Areces, Instituto de Salud Carlos III, and cofunded by the European Union (European Regional Development Fund, “A way to make Europe”; PI19/00098; PI19/00230; PI20/ 00419), Fundación Roberto Arnal Planelles, and International Association for the Study of Lung Cancer (IASLC) Fellowship funding (K. Valencia). M. Echepare was supported by Contratos Predoctorales de Formación en Investigación en Salud (PFIS), Instituto de Salud Carlos III, and co-funded by the European Union (European Social Fund, "Investing in your future"; FI20/00295)

    Two cell line models to study multiorganic metastasis and immunotherapy in lung squamous cell carcinoma

    Get PDF
    There is a paucity of adequate mouse models and cell lines available to study lung squamous cell carcinoma (LUSC). We have generated and characterized two models of phenotypically different transplantable LUSC cell lines, i.e. UN-SCC679 and UN-SCC680, derived from A/J mice that had been chemically induced with N-nitroso-tris-chloroethylurea (NTCU). Furthermore, we genetically characterized and compared both LUSC cell lines by performing whole-exome and RNA sequencing. These experiments revealed similar genetic and transcriptomic patterns that may correspond to the classic LUSC human subtype. In addition, we compared the immune landscape generated by both tumor cells lines in vivo and assessed their response to immune checkpoint inhibition. The differences between the two cell lines are a good model for the remarkable heterogeneity of human squamous cell carcinoma. Study of the metastatic potential of these models revealed that both cell lines represent the organotropism of LUSC in humans, i.e. affinity to the brain, bones, liver and adrenal glands. In summary, we have generated valuable cell line tools for LUSC research, which recapitulates the complexity of the human disease.This work was supported by FIMA, Centro de Investigacion Biomedica en Red de Cancer (CIBERONC) (grant number: CB16/12/00443), Fundacion Cientifica Asociacion Espanola Contra el Cancer (grant number: GCB14-2170), Fundacion Ramon Areces, Instituto de Salud Carlos III and the European Regional Development Fund (ERDF, A way to make Europe) (grant numbers: PI19/00098; PI19/00230; PI20/00419), Fundacion Roberto Arnal Planelles and an IASLC Fellowship funding (K.V.); D.S. was supported by the Juan de la Cierva-Incorporacion program, Spanish Ministry of Science and Innovation (grant number: IJCI-2016-27595); E.R. was supported by a FPU, Spanish Ministry of Education ( grant number: FPU17/01168); M.E. was supported by PFIS, Spanish Ministry of Health, M.L. was supported by a Junior Investigator grant from AECC

    Case-Control Analysis of the Impact of Anemia on Quality of Life in Patients with Cancer: A Qca Study Analysis

    Get PDF
    The impact of anemia on the quality of life (QoL) in cancer patients has been studied previously; however, the cut-off point used to define anemia differed among studies, thus providing inconsistent results. Therefore, we analysed the clinical impact of anemia on QoL using the same cut-off point for hemoglobin level to define anemia as that used in ESMO clinical practice guidelines. This post-hoc analysis aimed to determine the impact of anemia on QoL in cancer patients through the European Organization for Research and Treatment of Cancer Quality of life questionnaire version 3.0 (EORTC QLQ-C30) and Euro QoL 5-dimension 3-level (EQ-5D-3L) questionnaire. We found that cancer patients with anemia had significantly worse QoL in clinical terms. In addition, anemic patients had more pronounced symptoms than those in non-anemic patients. Anemia is a common condition in cancer patients and is associated with a wide variety of symptoms that impair quality of life (QoL). However, exactly how anemia affects QoL in cancer patients is unclear because of the inconsistencies in its definition in previous reports. We aimed to examine the clinical impact of anemia on the QoL of cancer patients using specific questionnaires. We performed a post-hoc analysis of a multicenter, prospective, case-control study. We included patients with cancer with (cases) or without (controls) anemia. Participants completed the European Organization for Research and Treatment of Cancer Quality of Life questionnaire version 3.0 (EORTC QLQ-C30) and Euro QoL 5-dimension 3-level (EQ-5D-3L) questionnaire. Statistically significant and clinically relevant differences in the global health status were examined. From 2015 to 2018, 365 patients were included (90 cases and 275 controls). We found minimally important differences in global health status according to the EORTC QLQ-C30 questionnaire (case vs. controls: 45.6 vs. 58%, respectively; mean difference: -12.4, p < 0.001). Regarding symptoms, cancer patients with anemia had more pronounced symptoms in six out of nine scales in comparison with those without anemia. In conclusion, cancer patients with anemia had a worse QoL both clinically and statistically

    Hv-CBF2A overexpression in barley accelerates COR gene transcript accumulation and acquisition of freezing tolerance during cold acclimation

    Get PDF
    Abstract C-Repeat Binding Factors (CBFs) are DNAbinding transcriptional activators of gene pathways imparting freezing tolerance. Poaceae contain three CBF subfamilies, two of which, HvCBF3/CBFIII and HvCBF4/CBFIV, are unique to this taxon. To gain mechanistic insight into HvCBF4/CBFIV CBFs we overexpressed Hv-CBF2A in spring barley (Hordeum vulgare) cultivar ‘Golden Promise’. The Hv-CBF2A overexpressing lines exhibited stunted growth, poor yield, and greater freezing tolerance compared to non-transformed ‘Golden Promise’. Differences in freezing tolerance were apparent only upon cold acclimation. During cold acclimation freezing tolerance of the Hv-CBF2A overexpressing lines increased more rapidly than that of ‘Golden Promise’ and paralleled the freezing tolerance of the winter hardy barley ‘Dicktoo’. Transcript levels of candidate CBF target genes, COR14B and DHN5 were increased in the overexpressor lines at warm temperatures, and at cold temperatures they accumulated to much higher levels in the Hv-CBF2A overexpressors than in ‘Golden Promise’. Hv-CBF2A overexpression also increased transcript levels of other CBF genes at FROST RESISTANCE-H2-H2 (FR-H2) possessing CRT/DRE sites in their upstream regions, the most notable of which was CBF12. CBF12 transcript levels exhibited a relatively constant incremental increase above levels in ‘Golden Promise’ both at warm and cold. These data indicate that Hv-CBF2A activates target genes at warm temperatures and that transcript accumulation for some of these targets is greatly enhanced by cold temperatures

    A shared role for RBF1 and dCAP-D3 in the regulation of transcription with consequences for innate immunity

    Get PDF
    Previously, we discovered a conserved interaction between RB proteins and the Condensin II protein CAP-D3 that is important for ensuring uniform chromatin condensation during mitotic prophase. The Drosophila melanogaster homologs RBF1 and dCAP-D3 co-localize on non-dividing polytene chromatin, suggesting the existence of a shared, non-mitotic role for these two proteins. Here, we show that the absence of RBF1 and dCAP-D3 alters the expression of many of the same genes in larvae and adult flies. Strikingly, most of the genes affected by the loss of RBF1 and dCAP-D3 are not classic cell cycle genes but are developmentally regulated genes with tissue-specific functions and these genes tend to be located in gene clusters. Our data reveal that RBF1 and dCAP-D3 are needed in fat body cells to activate transcription of clusters of antimicrobial peptide (AMP) genes. AMPs are important for innate immunity, and loss of either dCAP-D3 or RBF1 regulation results in a decrease in the ability to clear bacteria. Interestingly, in the adult fat body, RBF1 and dCAP-D3 bind to regions flanking an AMP gene cluster both prior to and following bacterial infection. These results describe a novel, non-mitotic role for the RBF1 and dCAP-D3 proteins in activation of the Drosophila immune system and suggest dCAP-D3 has an important role at specific subsets of RBF1-dependent genes
    corecore