1,385 research outputs found

    A factor model of term structure slopes in eurocurrency markets

    Get PDF
    This paper departs from previous research in dealing with dimensionality reduction in the space of international term structure slopes. Recent empirical work has documented the existence of information in the slope of the term structure which is relevant to forecast future changes in economic activity, and it is additional to information in past economic activity, inflation, or in any leading indicator index [see Estrella and Hardouvelis (1991), Stock and Watson (1988), Hardouvelis (1994) and Plosser and Rouwenhorst (1994), among others]. This implies that a good forecasting model of term structure slopes could be helpful to anticipate changes in economic activity with an even longer anticipation.Term structure of interest rates, Term structure slope, Principal components, Eurocurrencies.

    Dynamic correlations and forecasting of term structure slopes in eurocurrency market

    Get PDF
    Using monthly data on Euro-rates for 1979-1998, we examine the extent to which crosscountry information on term structure slopes can be used to improve upon univariate slope forecasts. This is interesting from the point of view of forecasting economic activity, since term structure slopes are known to anticipate fluctuations in the real economy. Additionally, the Expectations Hypothesis states that the term structure slope summarizes the available information which is relevant for forecasting future short-term interest rates, so that improved slope forecasts might also lead to better forecasts of future interest rates. We find ample evidence of significant explanatory power in term structure slopes across countries. Besides, we document that this information content leads to improved forecasts of the term structure slope in some countries, using a foreign slope as indicator.Term structure of interest rates, Term structure slope, Expectations hypothesis, Eurocurrencies.

    Can forward rates be used to improve interest rate forecasts?".

    Get PDF
    We evaluate the extent to which the explanatory power detected in the term structure in different markets and countries can actually be used to produce sensible forecasts of future short-term interest rates. Specifically, in spite of the forecasting connotation of the unbiasedness property of forward rates, actual evaluation of their forecasting performance has received scant attention in the literature on the term structure. We use monthly data for 1978-1998 on interest rates on Eurodeposits on the US dollar, yen, Deutsche mark, British pound, Spanish peseta, French franc, Italian lira and Swiss franc, comparing forecasts obtained from forward rates to those obtained from univariate autoregressions. By themselves, forward rates produce better one-step ahead forecasts, as well as better once-and-for all forecasts of 1-month interest rates over a full year horizon than those obtained from the own past of interest rates. The gain in one-step ahead forecasting disappears for longer maturities, although forward rates still produce better once-and-for all predictions of 3- and 6-month interest rates than univariate autoregressions for a number of currencies.Expectations hypothesis, Term structure, Forward rates

    Planning through Automatic Portfolio Configuration: The PbP Approach

    Get PDF
    In the field of domain-independent planning, several powerful planners implementing different techniques have been developed. However, no one of these systems outperforms all others in every known benchmark domain. In this work, we propose a multi-planner approach that automatically configures a portfolio of planning techniques for each given domain. The configuration process for a given domain uses a set of training instances to: (i) compute and analyze some alternative sets of macro-actions for each planner in the portfolio identifying a (possibly empty) useful set, (ii) select a cluster of planners, each one with the identified useful set of macro-actions, that is expected to perform best, and (iii) derive some additional information for configuring the execution scheduling of the selected planners at planning time. The resulting planning system, called PbP (Portfolio- based Planner), has two variants focusing on speed and plan quality. Different versions of PbP entered and won the learning track of the sixth and seventh International Planning Competitions. In this paper, we experimentally analyze PbP considering planning speed and plan quality in depth. We provide a collection of results that help to understand PbP�s behavior, and demonstrate the effectiveness of our approach to configuring a portfolio of planners with macro-actions

    Identifying and Exploiting Features for Effective Plan Retrieval in Case-Based Planning

    Get PDF
    Case-Based planning can fruitfully exploit knowledge gained by solving a large number of problems, storing the corresponding solutions in a plan library and reusing them for solving similar planning problems in the future. Case-based planning is extremely effective when similar reuse candidates can be efficiently chosen. In this paper, we study an innovative technique based on planning problem features for efficiently retrieving solved planning problems (and relative plans) from large plan libraries. A problem feature is a characteristic of the instance that can be automatically derived from the problem specification, domain and search space analyses, and different problem encodings. Since the use of existing planning features are not always able to effectively distinguish between problems within the same planning domain, we introduce a new class of features. An experimental analysis in this paper shows that our features-based retrieval approach can significantly improve the performance of a state-of-the-art case-based planning system

    Portfolio Methods for Optimal Planning: an Empirical Analysis

    Get PDF
    Combining the complementary strengths of several algorithms through portfolio approaches has been demonstrated to be effective in solving a wide range of AI problems. Notably, portfolio techniques have been prominently applied to suboptimal (satisficing) AI planning. Here, we consider the construction of sequential planner portfolios for (domain- independent) optimal planning. Specifically, we introduce four techniques (three of which are dynamic) for per-instance planner schedule generation using problem instance features, and investigate the usefulness of a range of static and dynamic techniques for combining planners. Our extensive experimental analysis demonstrates the benefits of using static and dynamic sequential portfolios for optimal planning, and provides insights on the most suitable conditions for their fruitful exploitation

    Integrating the carbon footprint into the construction of corporate bond portfolios

    Get PDF
    Los inversores institucionales, conscientes de la necesidad de incorporar el cambio climático como un factor de riesgo adicional en la gestión de carteras, muestran un apetito creciente por la integración de criterios de Inversión Sostenible y Responsable (ISR) en sus procesos de inversión. En un contexto de gestión pasiva, este trabajo analiza, desde un punto de vista práctico, la inclusión de dichos criterios en la construcción de carteras de bonos corporativos, incorporando así una nueva dimensión al proceso de asignación de activos. Estudiamos la descarbonización de una cartera de bonos corporativos europeos mediante la construcción de la frontera eficiente, que muestra la relación entre las posibilidades de descarbonización de la cartera y el coste asumido en términos de desviación de la cartera de referencia. También analizamos el impacto de la descarbonización en los diferentes parámetros de riesgo-retorno durante el proceso de reasignación de activos. Finalmente, presentamos las principales estrategias de inversión verde que los inversores pueden utilizar para incorporar criterios de sostenibilidad en el diseño de carteras de bonos corporativos, introduciendo el enfoque de Green-Parity como estrategia complementaria al conjunto de herramientas disponible. El resultado del análisis empírico, para el universo de inversión y período elegidos, muestra que el inversor en bonos corporativos preocupado por la sostenibilidad tiene a su disposición diferentes estrategias que le permitirán lograr su objetivo de descarbonización sin tener que desviarse, significativamente, de su cartera de referencia y cumplir adecuadamente con los objetivos puramente financieros dictados por su mandato de inversión.Institutional investors, aware of the need to incorporate climate change as an additional risk factor into portfolio management, show a growing appetite for integrating Sustainable and Responsible Investment (SRI) criteria into their investment processes. Within a passive management context, this paper analyses, from a practical point of view, the inclusion of such criteria in the construction of corporate bond portfolios, thus incorporating a new dimension into the asset allocation process. We study the decarbonisation of a euro area corporate bond portfolio by constructing the efficient frontier, which shows the trade-off between the portfolio’s decarbonisation possibilities and the cost assumed in terms of deviation from the benchmark portfolio. We also analyse the impact of decarbonisation on the different risk-return parameters during the asset reallocation process. Finally, we present the main green investment strategies that investors can use to incorporate sustainability criteria into corporate bond portfolios’ design, introducing the Green-Parity approach as a complementary strategy to the available toolkit. The result of our empirical analysis, for the selected investment universe and sample period, shows that sustainability-conscious corporate bond investors have at their disposal different strategies that will allow them to achieve their decarbonisation objective without having to deviate significantly from their benchmark portfolio and to adequately meet the purely financial goals dictated by their investment mandate

    Towards Formal Modeling of Affective Agents in a BDI Architecture

    Full text link
    [EN] Affective characteristics are crucial factors that influence human behavior, and often the prevalence of either emotions or reason varies on each individual. We aim to facilitate the development of agents reasoning considering their affective characteristics. We first identify core processes in an affective BDI agent, and we integrate them into an affective agent architecture (GenIA3). These tasks include the extension of the BDI agent reasoning cycle to be compliant with the architecture, and the extension of the agent language (Jason) to support affect-based reasoning, and the adjustment of the equilibrium between the agent s affective and rational sides.This work was supported by the Generalitat Valenciana grant PROMETEOII/2013/019, and the Spanish TIN2014-55206-R project of the Ministerio de Economa y Competitividad.Alfonso Espinosa, B.; Vivancos, E.; Botti, V. (2017). Towards Formal Modeling of Affective Agents in a BDI Architecture. ACM Transactions on Internet Technology. 17(1):5:1-5:23. https://doi.org/10.1145/3001584S5:15:23171Bexy Alfonso, Emilio Vivancos, and Vicente J. Botti. 2014. An open architecture for affective traits in a BDI agent. In Proceedings of the 6th ECTA 2014. Part of the 6th IJCCI 2014. 320--325.Bexy Alfonso, Emilio Vivancos, and Vicente J. Botti. 2016a. Design of an Affective Intelligent Agent on GenIA. Technical Report. DSIC, UPV, Spain.Bexy Alfonso, Emilio Vivancos, and Vicente J. Botti. 2016b. Toward a Systematic Development of Affective Intelligent Agents. Technical Report. DSIC, UPV, Spain.Gordon Willard Allport. 1937. Personality: A Psychological Interpretation. Henry Holt, New York.Albert Bandura. 1977. Self-efficacy: Toward a unifying theory of behavioral change. Psychological Review 84, 2 (1977), 191.Cristina Battaglino, Rossana Damiano, and Leonardo Lesmo. Emotional range in value-sensitive deliberation. In Proceedings of AAMAS’13. International Foundation for Autonomous Agents and Multiagent Systems, Richland, SC, 769--776.Antoine Bechara, Hanna Damasio, and Antonio R Damasio. 2000. Emotion, decision making and the orbitofrontal cortex. Cerebral Cortex 10, 3 (2000), 295--307.Rafael H. Bordini and Jomi Fred Hübner. 2010. Semantics for the Jason variant of AgentSpeak (plan failure and some internal actions). In Proceedings of ECAI’10. IOS Press, Amsterdam, The Netherlands, 635--640.Rafael H. Bordini, Jomi Fred Hübner, and Michael Wooldridge. 2007. Programming Multi-Agent Systems in AgentSpeak Using Jason. Wiley.Tibor Bosse, Joost Broekens, João Dias, and Janneke van der Zwaan. 2014. Emotion Modeling. Springer.Scott Brave, Clifford Nass, and Kevin Hutchinson. 2005. Computers that care: Investigating the effects of orientation of emotion exhibited by an embodied computer agent. International Journal of Human-computer Studies 62, 2 (2005), 161--178.Jerome R. Busemeyer, Eric Dimperio, and Ryan K. Jessup. 2007. Integrating Emotional Processes Into Decision-Making Models. Oxford University Press, 29--44.Colin F Camerer, George Loewenstein, and Matthew Rabin. 2011. Advances in Behavioral Economics. Princeton University Press.Martin A Conway. 1990. Autobiographical Memory: An Introduction. Open University Press.Ronald De Sousa. 1990. The Rationality of Emotion. MIT Press.João Dias, Samuel Mascarenhas, and Ana Paiva. 2014. FAtiMA Modular: Towards an Agent Architecture with a Generic Appraisal Framework. Springer International Publishing, 44--56. DOI:http://dx.doi.org/10.1007/978-3-319-12973-0_3Magy Seif El-Nasr, John Yen, and Thomas R Ioerger. 2000. Flame—fuzzy logic adaptive model of emotions. Autonomous Agents and Multi-agent systems 3, 3 (2000), 219--257.Hans Jürgen Eysenck. 1982. Personality, Genetics, and Behavior: Selected Papers. Praeger, Chapter Development of a Theory, 1--48.Shane Frederick. 2005. Cognitive reflection and decision making. The Journal of Economic Perspectives 19, 4 (2005), 25--42.N. H. Frijda, A. S. R. Manstead, and S. Bem. 2000. Emotions and Beliefs: How Feelings Influence Thoughts. Cambridge University Press.Nico H. Frijda. 2007. The Laws of Emotion. Lawrence Erlbaum Associates, Incorporated.Patrick Gebhard. 2005. ALMA: A layered model of affect. In Proceedings of the 4th AAMAS. ACM, New York, NY, 29--36. DOI:http://dx.doi.org/10.1145/1082473.1082478Lewis R. Goldberg and others. 1990. An alternative “description of personality”: The big-five factor structure. Journal of Personality and Social Psychology 59, 6 (1990), 1216--1229.James J. Gross and Ross A. Thompson. 2011. Emotion regulation: Conceptual fundations. In Handbook of Emotion Regulation. Guilford Publications.JonathanY. Ito, DavidV. Pynadath, and StacyC. Marsella. 2010. Modeling self-deception within a decision-theoretic framework. AAMAS 20, 1 (2010), 3--13. DOI:http://dx.doi.org/10.1007/s10458-009-9096-7William G. Kennedy. 2012. Modelling human behaviour in agent-based models. In Agent-based Models of Geographical Systems. Springer, 167--179.Jonathan Klein, Youngme Moon, and Rosalind W. Picard. 2002. This computer responds to user frustration: Theory, design, and results. Interacting with Computers 14, 2 (2002), 119--140.Richard S. Lazarus and Susan Folkman. 1984. Stress, Appraisal, and Coping. Springer.Stacy Marsella and Jonathan Gratch. 2003. Modeling coping behavior in virtual humans: Don’t worry, be happy. In Proceedings of AAMAS’03. ACM, 313--320. DOI:http://dx.doi.org/10.1145/860575.860626Stacy C. Marsella and Jonathan Gratch. 2009. EMA: A process model of appraisal dynamics. Cognitive Systems Research 10, 1 (2009), 70--90.Stacy C. Marsella, Jonathan Gratch, and Paolo Petta. 2010. Computational models of emotion. In A Blueprint for Affective Computing: A Sourcebook and Manual. OUP Oxford, 21--46.Robert R. McCrae and Oliver P. John. 1992. An introduction to the five-factor model and its applications. Journal of Personality 60, 2 (1992), 175--215.Albert Mehrabian. 1996a. Analysis of the big-five personality factors in terms of the PAD temperament model. Australian Journal of Psychology 48, 2 (1996), 86--92. DOI:http://dx.doi.org/10.1080/00049539608259510Albert Mehrabian. 1996b. Pleasure-arousal-dominance: A general framework for describing and measuring individual differences in temperament. Current Psychology 14, 4 (1996), 261--292. DOI:http://dx.doi.org/10.1007/BF02686918Albert Mehrabian and James A. Russell. 1974. An Approach to Environmental Psychology. MIT Press.John-Jules Ch. Meyer. 2006. Reasoning about emotional agents. International Journal of Intelligent Systems 21, 6 (June 2006), 601--619. DOI:http://dx.doi.org/10.1002/int.v21:6Katherine Nelson. 1993. The psychological and social origins of autobiographical memory. Psychological Science 4, 1 (1993), 7--14.Magalie Ochs, David Sadek, and Catherine Pelachaud. 2012. A formal model of emotions for an empathic rational dialog agent. AAMAS 24, 3 (2012), 410--440. DOI:http://dx.doi.org/10.1007/s10458-010-9156-zAndrew Ortony. 2003. On making believable emotional agents believable. In Emotions in Humans and Artifacts, R. P. Trapple, P. Petta, and S. Payer (Eds.). MIT Press, Chapter 6, 189--212.Andrew Ortony, Gerald L. Clore, and Allan Collins. 1988. The Cognitive Structure of Emotions. Cambridge University Press.Rosalind W. Picard and Karen K. Liu. 2007. Relative subjective count and assessment of interruptive technologies applied to mobile monitoring of stress. International Journal of Human-Computer Studies 65, 4 (2007), 361--375.César F. Pimentel and Maria R. Cravo. 2005. Affective revision. In Progress in Artificial Intelligence, Carlos Bento, Amílcar Cardoso, and Gaël Dias (Eds.). LNCS, Vol. 3808. Springer Berlin, 115--126.Gordon D. Plotkin. 1981. A Structural Approach to Operational Semantics. Technical Report DAIMI FN-19. Aarhus University.Anand S. Rao. 1996. Agentspeak(L): BDI agents speak out in a logical computable language. In Proceedings of the 7th European Workshop on Modelling Autonomous Agents in a Multi-Agent World, Rudy Van Hoe (Ed.). Eindhoven, The Netherlands.Rainer Reisenzein, Eva Hudlicka, Mehdi Dastani, Jonathan Gratch, Koen Hindriks, Emiliano Lorini, and J-JC Meyer. 2013. Computational modeling of emotion: Toward improving the inter- and intradisciplinary exchange. IEEE Transactions on Affective Computing 4, 3 (2013), 246--266.Luis-Felipe Rodríguez and Félix Ramos. 2014. Development of computational models of emotions for autonomous agents: A review. Cognitive Computation 6, 3 (2014), 351--375. DOI:http://dx.doi.org/10.1007/s12559-013-9244-xIra J. Roseman. 2001. A Model of Appraisal in the Emotion System: Integrating Theory, Research, and Applications. Oxford University Press, 68--91.James A. Russell. 2003. Core affect and the psychological construction of emotion. Psychological Review 110, 1 (2003), 145--172.Klaus R. Scherer. 2001. Appraisal considered as a process of multilevel sequential checking. Appraisal Processes in Emotion: Theory, Methods, Research 92 (2001), 120.Norbert Schwarz. 2000. Emotion, cognition, and decision making. Cognition 8 Emotion 14, 4 (2000), 433--440.Leila Selimbegović, Isabelle Régner, Pascal Huguet, and Armand Chatard. 2015. On the power of autobiographical memories: From threat and challenge appraisals to actual behaviour. Memory (2015), 1--8.Martin Sewell. 2010. Emotions help solve the prisoner’s dilemma. In Proceedings of the Behavioural Finance Working Group Conference: Fairness, Trust and Emotions in Finance, London. 1--2.Craig A. Smith and Richard S. Lazarus. 1990. Emotion and adaptation. In Handbook of Personality: Theory and Research, Lawrence A. Pervin (Ed.). 609--637.Bas R. Steunebrink, Mehdi Dastani, and John-Jules Ch. Meyer. 2009. A formal model of emotion-based action tendency for intelligent agents. In Proceedings of EPIA’09. Springer-Verlag, Berlin, 174--186. DOI:http://dx.doi.org/10.1007/978-3-642-04686-5_15Bas R. Steunebrink, Mehdi Dastani, and John-Jules Ch. Meyer. 2012. A formal model of emotion triggers: An approach for BDI agents. Synthese 185 (2012), 83--129. DOI:http://dx.doi.org/10.1007/s11229-011-0004-8AW Tucker. 1983. The mathematics of tucker: A sampler. The Two-Year College Mathematics Journal 14, 3 (1983), 228--232.Renata Vieira, Álvaro F. Moreira, Michael Wooldridge, and Rafael H. Bordini. 2007. On the formal semantics of speech-act based communication in an agent-oriented programming language. J. Artif. Intell. Res. (JAIR) 29 (2007), 221--267.G. Weiss. 2013. Multiagent Systems. MIT Press

    Simulating NEPs in a cluster with jNEP

    Full text link
    This paper introduces jNEP: a general, flexible, and rigorous implementation of NEPs (the basic model) and some interestenting variants; it is specifically designed to easily add the new results (filters, stopping conditions, evolutionary rules, and so on) of the research in the area. jNEP is written in Java; there are two different versions that implement the concurrency of NEPs by means of the Java classes Process and Threads respectively. There are also extended versions that run on clusters of computers under JavaParty. jNEP reads the description of the currently simulated NEP from a XML configuration file. This paper shows how jNEP tackles the SAT problem with polynomial performance by simulating an ANSP.This work was supported in part by the Spanish Ministry of Education and Science (MEC) under Project TSI2005-08225-C07-06
    • …
    corecore