65 research outputs found

    Cyclin-dependent kinases and nuclear functions in Arabidopsis thaliana

    Get PDF
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Resynthesis: Marker-Based Partial Reconstruction of Elite Genotypes in Clonally-Reproducing Plant Species

    Get PDF
    We propose a method for marker-based selection of cultivars of clonally-reproducing plant species which keeps the basic genetic architecture of a top-performing cultivar (usually a partly heterozygous genotype), with the addition of some agronomically relevant differences (such as production time, product appearance or quality), providing added value to the product or cultivation process. The method is based on selecting a) two complementary nearly-inbred lines from successive selfing generations (ideally only F2 and F3) of large size, that may generate individuals with most of their genome identical to the original cultivar but being homozygous for either of the two component haplotypes in the rest, and b) individuals with such characteristics already occurring in the F2. Option a) allows for introgressing genes from other individuals in one or both of these nearly-inbred lines. Peach, a woody-perennial, clonally-reproduced species, was chosen as a model for a proof of concept of the Resynthesis process due to its biological characteristics: self-compatibility, compact and genetically well-known genome, low recombination rates and relatively short intergeneration time (3–4 years). From 416 F2 seedlings from cultivar Sweet Dream (SD), we obtained seven individuals with 76–94% identity with SD, and selected five pairs of complementary lines with average homozygosity of the two parents ≥0.70 such that crossing would produce some individuals highly similar to SD. The application of this scheme to other species with more complex genomes or biological features, including its generalization to F1 hybrids, is discussed.info:eu-repo/semantics/publishedVersio

    Genetic analysis of the wild strawberry (Fragaria vesca) volatile composition

    Get PDF
    Altres ajuts: CERCA Programme / Generalitat de CatalunyaThe volatile composition of wild strawberry (Fragaria vesca) fruit differs from that of the cultivated strawberry, having more intense and fruity aromas. Over the last few years, the diploid F. vesca has been recognized as a model species for genetic studies of cultivated strawberry (F. x ananassa), and here a previously developed F. vesca/F. bucharica Near Isogenic Line collection (NIL) was used to explore genetic variability of fruit quality traits. Analysis of fruit volatiles by GC-MS in our NIL collection revealed a complex and highly variable profile. One hundred compounds were unequivocally identified, including esters, aldehydes, ketones, alcohols, terpenoids, furans and lactones. Those in a subset, named key volatile compounds (KVCs), are likely contributors to the special aroma/flavour of wild strawberry. Genetic analysis revealed 50 major quantitative trait loci (QTL) including 14 QTL for KVCs, and one segregating as a dominant monogenetic trait for nerolidol. The most determinant regions affecting QTLs for KVCs, were mapped on LG5 and LG7. New candidate genes for the volatile QTL are proposed, based on differences in gene expression between NILs containing specific fragments of F. bucharica and the F. vesca recurrent genome. A high percentage of these candidate genes/alleles were colocalized within the boundaries of introgressed regions that contain QTLs, appearing to affect volatile metabolite accumulation acting in cis. A NIL collection is a good tool for the genetic dissection of volatile accumulation in wild strawberry fruit and a source of information for genes and alleles which may enhance aroma in cultivated strawberry

    Mapping Cucumber Vein Yellowing Virus Resistance in Cucumber (Cucumis sativus L.) by Using BSA-seq Analysis

    Get PDF
    Cucumber vein yellowing virus (CVYV) causes severe yield losses in cucurbit crops across Mediterranean countries. The control of this virus is based on cultural practices to prevent the presence of its vector (Bemisia tabaci) and breeding for natural resistance, which requires the identification of the loci involved and the development of molecular markers for linkage analysis. In this work, we mapped a monogenic locus for resistance to CVYV in cucumber by using a Bulked Segregant Analysis (BSA) strategy coupled with whole-genome resequencing. We phenotyped 135 F families from a segregating population between a susceptible pickling cucumber and a resistant Long Dutch type cucumber for CVYV resistance. Phenotypic analysis determined the monogenic and incomplete dominance inheritance of the resistance. We named the locus CsCvy-1. For mapping this locus, 15 resistant and 15 susceptible homozygous F individuals were selected for whole genome resequencing. By using a customized bioinformatics pipeline, we identified a unique region in chromosome 5 associated to resistance to CVYV, explaining more than 80% of the variability. The resequencing data provided us with additional SNP markers to decrease the interval of CsCvy-1 to 625 kb, containing 24 annotated genes. Markers flanking CsCvy-1 in a 5.3 cM interval were developed for marker-assisted selection (MAS) in breeding programs and will be useful for the identification of the target gene in future studies

    Mapping Cucumber Vein Yellowing Virus Resistance in Cucumber (Cucumis sativus L.) by Using BSA-seq Analysis

    Get PDF
    Cucumber vein yellowing virus (CVYV) causes severe yield losses in cucurbit crops across Mediterranean countries. The control of this virus is based on cultural practices to prevent the presence of its vector (Bemisia tabaci) and breeding for natural resistance, which requires the identification of the loci involved and the development of molecular markers for linkage analysis. In this work, we mapped a monogenic locus for resistance to CVYV in cucumber by using a Bulked Segregant Analysis (BSA) strategy coupled with wholegenome resequencing. We phenotyped 135 F3 families from a segregating population between a susceptible pickling cucumber and a resistant Long Dutch type cucumber for CVYV resistance. Phenotypic analysis determined the monogenic and incomplete dominance inheritance of the resistance. We named the locus CsCvy-1. For mapping this locus, 15 resistant and 15 susceptible homozygous F2 individuals were selected for whole genome resequencing. By using a customized bioinformatics pipeline, we identified a unique region in chromosome 5 associated to resistance to CVYV, explaining more than 80% of the variability. The resequencing data provided us with additional SNP markers to decrease the interval of CsCvy-1 to 625 kb, containing 24 annotated genes. Markers flanking CsCvy-1 in a 5.3 cM interval were developed for marker-assisted selection (MAS) in breeding programs and will be useful for the identification of the target gene in future studies.info:eu-repo/semantics/publishedVersio

    Multi-branch convolutional neural network for identification of small non-coding RNA genomic loci

    Get PDF
    Genomic regions that encode small RNA genes exhibit characteristic patterns in their sequence, secondary structure, and evolutionary conservation. Convolutional Neural Networks are a family of algorithms that can classify data based on learned patterns. Here we present MuStARD an application of Convolutional Neural Networks that can learn patterns associated with user-defined sets of genomic regions, and scan large genomic areas for novel regions exhibiting similar characteristics. We demonstrate that MuStARD is a generic method that can be trained on different classes of human small RNA genomic loci, without need for domain specific knowledge, due to the automated feature and background selection processes built into the model. We also demonstrate the ability of MuStARD for inter-species identification of functional elements by predicting mouse small RNAs (pre-miRNAs and snoRNAs) using models trained on the human genome. MuStARD can be used to filter small RNA-Seq datasets for identification of novel small RNA loci, intra- and inter- species, as demonstrated in three use cases of human, mouse, and fly pre-miRNA prediction. MuStARD is easy to deploy and extend to a variety of genomic classification questions. Code and trained models are freely available at gitlab.com/RBP_Bioinformatics/mustard.peer-reviewe

    Copy Number Variation on ABCC2-DNMBP Loci Affects the Diversity and Composition of the Fecal Microbiota in Pigs

    Get PDF
    Genetic variation in the pig genome partially modulates the composition of porcine gut microbial communities. Previous studies have been focused on the association between single nucleotide polymorphisms (SNPs) and the gut microbiota, but little is known about the relationship between structural variants and fecal microbial traits. The main goal of this study was to explore the association between porcine genome copy number variants (CNVs) and the diversity and composition of pig fecal microbiota. For this purpose, we used whole-genome sequencing data to undertake a comprehensive identification of CNVs followed by a genome-wide association analysis between the estimated CNV status and the fecal bacterial diversity in a commercial Duroc pig population. A CNV predicted as gain (DUP) partially harboring ABCC2-DNMBP loci was associated with richness (P = 5.41 × 10−5, false discovery rate [FDR] = 0.022) and Shannon α-diversity (P = 1.42 × 10−4, FDR = 0.057). The in silico predicted gain of copies was validated by real-time quantitative PCR (qPCR), and its segregation, and positive association with the richness and Shannon α-diversity of the porcine fecal bacterial ecosystem was confirmed in an unrelated F1 (Duroc × Iberian) cross. Our results advise the relevance of considering the role of host-genome structural variants as potential modulators of microbial ecosystems and suggest the ABCC2-DNMBP CNV as a host-genetic factor for the modulation of the diversity and composition of the fecal microbiota in pigs. IMPORTANCE A better understanding of the environmental and host factors modulating gut microbiomes is a topic of greatest interest. Recent evidence suggests that genetic variation in the pig genome partially controls the composition of porcine gut microbiota. However, since previous studies have been focused on the association between single nucleotide polymorphisms and the fecal microbiota, little is known about the relationship between other sources of genetic variation, like the structural variants and microbial traits. Here, we identified, experimentally validated, and replicated in an independent population a positive link between the gain of copies of ABCC2-DNMBP loci and the diversity and composition of pig fecal microbiota. Our results advise the relevance of considering the role of host-genome structural variants as putative modulators of microbial ecosystems and open the possibility of implementing novel holobiont-based management strategies in breeding programs for the simultaneous improvement of microbial traits and host performance.The project was funded by the Spanish Ministry of Science and Innovation-State Research Agency (Agencia Española de Investigación (AEI), Spain, 10.13039/501100011033) grants PID2020-112677RB-C21 (M.B.) and PID2021-126555OB-I00 (Y.R.-C.) and the GENE-SWitCH project (https://www.gene-switch.eu) funded by the European Union’s Horizon 2020 research and innovation program under grant agreement 817998 (M.B. and D.C.-P.). S.R.-O. is supported by grant PID2020-119255GB-I00 (Ministerio de Ciencia e Innovación de España (MICINN), Spain) and by the CERCA Program/Generalitat de Catalunya. The Centre for Research in Agricultural Genomics acknowledges financial support from the Spanish Ministry of Economy and Competitiveness through grants SEV-2015-0533 and CEX2019-000917 from the Severo Ochoa Program for Centers of Excellence in R&D 2016 to 2019 and 2020 to 2023 and the European Regional Development Fund. Y.R.-C. is recipient of Ramon y Cajal postdoctoral fellowship RYC2019-027244-I funded by the Spanish Ministry of Science and Innovation. C.S. is funded by AGUAR grant 2020FI_B 00225. D.C.-P., M.B, O.G.-R., R.Q., and Y.R.-C. belonged to a Consolidated Research Group Agencia de Gestión de Ayudas Universitarias y de Investigación de Catalunya (AGAUR), reference 2017SGR-1719.info:eu-repo/semantics/publishedVersio

    Fine mapping of the peach pollen sterility gene (Ps/ps) and detection of markers for marker-assisted selection

    Get PDF
    Altres ajuts: CERCA Programme/Generalitat de CatalunyaIn peach, pollen sterility, expressed as absence of pollen in the anthers, segregates as an undesired trait in breeding programs. Pollen fertility screening in progenies is not a common practice mainly because it does not affect fruit set since cross-pollination is frequent. It is also a time-consuming activity that coincides with the busy pollination season. Segregation for this trait could be avoided by using molecular markers to identify appropriate parents or male sterile plants for early culling in progenies expected to segregate, thus increasing breeding efficiency. In peach, pollen sterility is determined by a recessive allele in homozygosis of the major gene, Ps/ps, located on chromosome 6. In this work, using a conventional mapping approach combined with bulked segregant analysis using resequencing data, we fine mapped Ps to a region of almost 160 kb and developed molecular markers for marker-assisted breeding. These markers were validated in plant materials from three peach breeding programs, including progenies, advanced selections and cultivars, allowing us to determine that the frequency of the ps allele is high (0.23) and also to infer the genotypes of a large collection of cultivars and advanced breeding lines

    The evolutionary consequences of transposon-related pericentromer expansion in melon

    Get PDF
    Transposable elements (TEs) are a major driver of plant genome evolution. A part frombeing a rich source of new genes and regulatory sequences, TEs can also affect plant genome evolution by modifying genome size and shaping chromosome structure. TEs tend to concentrate in heterochromatic pericentromeric regions and their proliferation may expand these regions. Here, we show that after the split of melon and cucumber, TEs have expanded the pericentromeric regions of melon chromosomes that, probably as a consequence, show a very low recombination frequency. In contrast, TEs have not proliferated to a high extent in cucumber, which has small TE-dense pericentromeric regions and shows a relatively constant recombination rate along chromosomes. These differences in chromosome structure also translate in differences in gene nucleotide diversity. Although gene nucleotide diversity is essentially constant along cucumber chromosomes, melon chromosomes show a bimodal pattern of genetic variability, with a gene-poor region where variability is negatively correlated with gene density. Interestingly, genes are not homogeneously distributed in melon, and the high variable low-recombining pericentromeric regions show a higher concentration of melon-specific genes whereas genes shared with cucumber and other plants are essentially found in gene-rich chromosomal arms. The results presented here suggest that melon pericentromeric regions may allow gene sequences to evolve more freely than in other chromosomal compartments which may allow new ORFs to arise and eventually be selected. These results show that TEs can drastically change the structure of chromosomes creating different chromosomal compartments imposing different constraints for gene evolution

    A deletion affecting an LRR-RLK gene co-segregates with the fruit flat shape trait in peach

    Get PDF
    Altres ajuts: CERCA Programme/Generalitat de CatalunyaIn peach, the flat phenotype is caused by a partially dominant allele in heterozygosis (Ss), fruits from homozygous trees (SS) abort a few weeks after fruit setting. Previous research has identified a SSR marker (UDP98-412) highly associated with the trait, found suitable for marker assisted selection (MAS). Here we report a ∼10 Kb deletion affecting the gene PRUPE.6G281100, 400 Kb upstream of UDP98-412, co-segregating with the trait. This gene is a leucine-rich repeat receptor-like kinase (LRRRLK) orthologous to the Brassinosteroid insensitive 1-associated receptor kinase 1 (BAK1) group. PCR markers suitable for MAS confirmed its strong association with the trait in a collection of 246 cultivars. They were used to evaluate the DNA from a round fruit derived from a somatic mutation of the flat variety 'UFO-4', revealing that the mutation affected the flat associated allele (S). Protein BLAST alignment identified significant hits with genes involved in different biological processes. Best protein hit occurred with AtRLP12, which may functionally complement CLAVATA2, a key regulator that controls the stem cell population size. RT-PCR analysis revealed the absence of transcription of the partially deleted allele. The data support PRUPE.6G281100 as a candidate gene for flat shape in peach
    • …
    corecore