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Abstract: 21 

The volatile composition of wild strawberry (Fragaria vesca) fruit differs from that of 22 

the cultivated strawberry, having more intense and fruity aromas. Over the last few 23 

years, the diploid F. vesca has been recognized as a model species for genetic studies of 24 

cultivated strawberry (F. x ananassa), and here a previously developed F. vesca/F. 25 

bucharica Near Isogenic Line collection (NIL) was used to explore genetic variability 26 

of fruit quality traits. Analysis of fruit volatiles by GC-MS in our NIL collection 27 

revealed a complex and highly variable profile. One hundred compounds were 28 

unequivocally identified, including esters, aldehydes, ketones, alcohols, terpenoids, 29 

furans and lactones. Those in a subset, named key volatile compounds (KVCs), are 30 

likely contributors to the special aroma/flavour of wild strawberry. Genetic analysis 31 

revealed 50 major quantitative trait loci (QTL) including 14 QTL for KVCs, and one 32 

segregating as a dominant monogenetic trait for nerolidol. The most determinant 33 

regions affecting QTLs for KVCs, were mapped on LG5 and LG7. New candidate 34 

genes for the volatile QTL are proposed, based on differences in gene expression 35 

between NILs containing specific fragments of F. bucharica and the F. vesca recurrent 36 

genome. A high percentage of these candidate genes/alleles were colocalized within the 37 

boundaries of introgressed regions that contain QTLs, appearing to affect volatile 38 

metabolite accumulation acting in cis. A NIL collection is a good tool for the genetic 39 

dissection of volatile accumulation in wild strawberry fruit and a source of information 40 

for genes and alleles which may enhance aroma in cultivated strawberry.  41 

 42 

 43 

Keywords: Fragaria vesca, volatilome, wild aroma, key volatile compounds, QTL, 44 

introgression 45 

 46 
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Introduction 47 

Around the past 30 years, strawberry breeding programs have been directed mainly 48 

towards improving agronomical performance, resulting in varieties which produce high 49 

yields of large red and firm fruits, but fruit aroma is the quality trait with a major impact 50 

in consumers (Bruhn et al. 1991; Schwiterman et al. 2014). Over 350 volatile 51 

compounds have been identified in fruits of Fragaria sp., comprising esters, aldehydes, 52 

ketones, furanones, alcohols and terpenoids (Latrasse 1991) but only a few have been 53 

reported to contribute to the strawberry aroma as perceived by humans (Schieberle & 54 

Hofmann 1997; Ulrich et al. 1997; Ulrich et al. 2007).  55 

As with other fruit crops, the biosynthetic pathways, enzymes and regulation underlying 56 

volatile compound accumulation have been partially elucidated in Fragaria. Fruit 57 

volatile profiles are known to depend on genetic (fruit species and variety), 58 

developmental (maturity stage) and postharvest factors, as well as on the analytical 59 

technique used. Generally, strawberry fruit volatiles increase with ripening (Goff & 60 

Klee 2006) and are classified in three main categories according to their carbon source: 61 

fatty acid, amino acid, and carbohydrate derivatives (reviewed by Schwab et al. 2008; 62 

Granell & Rambla 2013).  63 

Fatty acids are the most important precursors for most fruit aroma volatiles, including 64 

straight-chain aldehydes, alcohols, esters, lactones and ketones. These compounds are 65 

synthesized mainly through the lipoxygenase (LOX) pathway and α- β-oxidation. In the 66 

LOX pathway, linoleic (18:2) and linolenic (18:3) acid are converted to hydroperoxide 67 

isomers, which are then cleaved by hydroperoxide lyase (HPL) to form hexanal and (Z)-68 

3-hexenal, respectively. The aldehydes are subsequently reduced to the corresponding 69 

C6 alcohols by alcohol dehydrogenase (ADH). Alcohol acyl transferase (AAT) 70 

catalyzes the reaction between an acyl moiety and an alcohol to form an ester. It has 71 

been proposed that this pathway requires a still-unidentified lipase (Schwab et al. 2008; 72 

Granell & Rambla 2013). Fatty acids can also be degraded via α- and β-oxidation 73 

pathways, although the specific mechanisms in plants are not well understood. In 74 

strawberry, alcohol acyl transferases (SAAT) with high sequence similarity but different 75 

substrate preferences have been identified: AAT in F. x ananassa (SAAT, Aharoni et 76 

al. 2000) and F. vesca (VAAT, Beekwilder et al. 2004). Additionally, an omega-6 fatty 77 

acid desaturase (FaFAD) has been correlated with the presence of γ-decalactone 78 

(Chambers et al. 2014; Sanchez-Sevilla et al. 2014).  79 
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Amino acid metabolism is known to be an important source of aroma volatile 80 

precursors. This is the case of phenylpropanoid and benzenoid volatiles that derive from 81 

phenylalanine. In strawberry, eugenol biosynthesis is mediated by two eugenol 82 

synthases (FaEGS1 and FaEGS2) and controlled by one R2R3 MYB transcription 83 

factor (FaEOBII) (Aragüez et al. 2013; Medina-Puche et al. 2015). The biosynthetic 84 

pathways of other volatile benzenoids have not yet been clearly elucidated. Other 85 

branched-chain organic acids and aromatic amino acids are volatile precursors, however 86 

their catabolic pathways to form volatile compounds also remain unclear (Granell & 87 

Rambla 2013).  88 

Carbohydrates can give rise directly to volatile furanones, without degradation of the 89 

carbon skeleton. In F. x ananassa, the FaOMT enzyme transforms furaneol to 90 

mesifurane (Zorrilla-Fontanesi et al. 2012). Volatile terpenoids (mainly mono- and 91 

sesqui- terpenoids) are formed from the basic C5 precursors isopentenyl pyrophosphate 92 

(IPP) and its isomer, dimethylallyl pyrophosphate (DMAPP). IPP and DMAPP derive 93 

from either the plastidic methylerythriol phosphate or the cytosolic mevalonate 94 

pathway. These C5 units are condensed to pyrophosphate precursors of terpenoids that 95 

are converted to final products by terpene synthases (TPS) (Granell & Rambla 2013). In 96 

strawberry, the production of the monoterpenoid linalool and the sesquiterpenoid 97 

nerolidol, and that of the monoterpene α-pinene, have been shown to be linked to 98 

specific alleles of the terpene synthases FaNES1 and FvPINS respectively (Aharoni et 99 

al. 2004). 100 

Major differences in volatile patterns have been observed among different species 101 

within the Fragaria genus. The most common volatile compounds contributing to 102 

strawberry aroma are esters with methyl butanoate, ethyl butanoate, butyl butanoate, 103 

methyl hexanoate, ethyl hexanoate, butyl acetate and hexyl acetate as important 104 

contributors to the fruity aroma. Methyl 2-aminobenzoate (also known as methyl 105 

anthranilate) has been reported as the single compound which confers the typical “wild 106 

strawberry-like” aroma of woodland strawberry (F. vesca) accessions, and is only very 107 

rarely found in some commercial varieties (Ulrich et al. 1997). Methyl cinnamate adds 108 

spicy notes and myrtenyl acetate herbaceous notes (Schieberle & Hofmann 1997; Ulrich 109 

et al. 1997; Jetti et al. 2007; Ulrich et al. 2007; Olbricht et al. 2008; Schwieterman et al. 110 

2014). Furans, specifically furaneol and mesifurane, are considered important 111 

contributors by adding caramel notes (Schieberle & Hoffmann 1997, Ulrich et al. 1997; 112 

Ulrich et al. 2007; Jetti et al. 2007), while the terpenoids linalool and nerolidol, add 113 
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flowery notes (Ulrich et al. 1997, Olbrich et al. 2008, Schwieterman et al. 2014), but 114 

these compounds have been detected mainly in octoploid cultivars (F. x ananassa) and 115 

not in diploid wild strawberries (F. vesca) (Aharoni et al. 2004). The so-called ‘green 116 

volatile compounds’, (Z)-3-hexenal, (E)-2-hexenal and (Z)-3-hexen-1-ol, have been 117 

reported to contribute to the aroma characteristics that typically decrease with ripening 118 

(Ulrich et al. 1997, Schieberle & Hoffman 1997). Another important volatile compound 119 

is γ-decalactone, which confers ‘peach-like’ notes (Ulrich et al. 1997, Jetti et al. 2007, 120 

Olbrich et al. 2008). 121 

A distinctive characteristic of volatile composition in F. vesca fruit is that it is richer in 122 

esters and monoterpenes (α-pinene, β-myrcene, α-terpineol, α-phellandrene) while 123 

exhibiting the pleasant and easily identifiable ‘wild-strawberry-like’ aroma associated 124 

with methyl 2-aminobenzoate. These compounds confer more intense and fruity aroma 125 

characteristics of this wild species and are not found normally in commercial strawberry 126 

fruits (F. x ananassa) (Aharoni et al. 2004, Ulrich et al. 1997; Ulrich et al. 2007; Dong 127 

et al. 2013). It is important to emphasize that large differences have been observed 128 

between F. x ananassa varieties covering a range of fruit quality phenotypes (Zorrilla-129 

Fontanesi et al. 2012; Schwieterman et al. 2014).   130 

To date, research has been directed to the characterization of the aroma profile of 131 

different octoploid accessions, mapping populations resulting from crosses involving 132 

commercial and wild material (Jetti et al. 2007; Olbricht et al. 2008; Zorrilla-Fontanesi 133 

et al. 2012; Schwieterman et al. 2014), and differences in the aroma profiles between 134 

octoploid and diploid strawberries (Aharoni et al. 2004; Ulrich et al. 2007; Dong et al. 135 

2013). It is surprising that, despite the outstanding organoleptic characteristics of F. 136 

vesca, the genetic basis of its characteristic volatile content have not been yet reported. 137 

Given the very high degree of synteny between F. vesca and the commercial hybrid F. x 138 

ananassa (Rousseau-Gueutin et al. 2008, Tennessen et al. 2014), F. vesca is a model for 139 

the study of strawberry genetics what facilitates the transfer of information and alleles 140 

to modern varieties. In addition, the high quality reference genome sequence available 141 

(Shulaev et al. 2011), the transcriptomic analysis re-annotation of the especies (Darwish 142 

et al. 2015) and the recently developed near isogenic line (NIL) mapping collection 143 

(Urrutia et al. 2015) are powerful tools for the study of genetic traits in strawberry. 144 

Specifically, strawberry NIL collection derived from an inter-specific cross between F. 145 

vesca and F. bucharica. The homozygous introgressions of F. bucharica, an exotic 146 
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relative of F. vesca, give phenotypic variability that has been used to map QTL for 147 

agronomical and metabolic traits (Urrutia et al. 2016). 148 

This study provides a detailed profiling and QTL mapping of the volatile composition 149 

of a F. vesca NIL population, as a first step to identifying the genetic basis of the wild 150 

strawberry-like aroma. We focused on two genome regions that harbor key aroma 151 

volatile QTL, a whole transcriptomic study of the corresponding lines allowed us to 152 

select a number of differentially expressed candidate genes as responsible for the 153 

differences in volatile accumulation. 154 

155 
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Materials and Methods 156 

Plant material and sample extraction 157 

The volatilome of diploid strawberry ripe fruits was analyzed using 42 lines from a near 158 

isogenic line (NIL) collection in F. vesca, its recurrent and donor parents (F. vesca var. 159 

‘Reine des Vallées’ and F. bucharica ‘FDP 601’ respectively) and the yellow-fruited 160 

variety of F. vesca named ‘Yellow Wonder’ (YW), which has a very pleasant 161 

pineapple-like aroma. Each line was represented by six to eight individuals 162 

independently grown from seed in two different years (2012 and 2013) and cultivated in 163 

a shaded greenhouse in Caldes de Montbui (latitude: 41º 36’N, longitude: 2º 10’ E, 164 

altitude 203m above sea level, pre-coastal Mediterranean climate) following the usual 165 

agronomical practices for this crop. Pools of berries from each genotype were collected 166 

at harvest time and immediately frozen in liquid nitrogen as independent biological 167 

replicates. Three to five biological replicates were harvested, ground to fine powder and 168 

stored at -80ºC prior to gas chromatography-mass spectrometry (GC-MS) analysis 169 

and/or total RNA extraction. The NIL collection is extensively described in Urrutia et 170 

al. (2015). 171 

 172 

Volatile compounds analysis 173 

Volatile compounds were determined in a similar way as described in Rambla et al. 174 

(2015). Each biological replicate was analyzed as an independent sample. Before the 175 

volatile compounds analysis, an aliquot of 500 mg of frozen fruit powder from each 176 

sample was weighed in a 7 mL glass vial and thawed at 30ºC for 5 min. Then 500 µL of 177 

a saturated NaCl solution were added and the mixture was homogenized gently. Five 178 

hundred microliters of the resulting paste were transferred to a 10 mL screw cap 179 

headspace vial and analyzed immediately. Volatiles were sampled by HS-SPME 180 

(headspace solid phase microextraction) with a 65 µm PDMS/DVB 181 

(polydimethylsiloxane/divinyl-benzene) fiber (Supelco, PA, USA). The vials were first 182 

tempered at 50ºC for 10 min, then volatiles were extracted by exposing the fiber to the 183 

vial headspace for 30 min at 50ºC with agitation at 500 rpm. The extracted volatiles 184 

were desorbed in the GC injection port at 250ºC for 1 min in splitless mode. A Combi-185 

PAL autosampler (CTC Analytics, Zwingen, Switzerland) was used for incubation, 186 

volatile extraction and desorption. GC-MS was in a 6890N gas chromatograph coupled 187 

to a 5975B mass spectrometer (Agilent Technologies, CA, USA). A DB-5ms column 188 

(60 m, 0.25 mm, 1 µm) (J&W Scientific, CA, USA) and a constant helium flow of 1.2 189 
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mL min-1 were used for chromatographic separation. Oven programming conditions 190 

were: 40ºC for 2 min, 5ºC min-1 ramp to 250ºC, then 5 min at 250ºC. Compounds were 191 

monitorized over the mass/charge ratio (m z-1) range of 35-250. Chromatograms and 192 

mass spectra were analyzed using the Enhanced ChemStation software (Agilent 193 

Technologies, CA, USA). Volatile compounds were unambiguously identified by 194 

comparison of both retention time and mass spectra to those of commercial standards 195 

(SIGMA-Aldrich, MO, USA) run under the same conditions, except four compounds 196 

which were tentatively identified by comparison of their mass spectra to those in the 197 

NIST 05 mass spectral library. These compounds are marked with a “T” after the 198 

chemical name (Table 1). For quantification, a specific ion was selected for integration 199 

of the area of each of the identified compounds. Areas were normalized by comparison 200 

with the peak area of the same compound in a reference sample which was injected 201 

regularly each five to six samples, in order to correct for variations in sensitivity and 202 

fiber aging. This reference sample consisted of a homogeneous mix of all the samples 203 

analyzed each year.  204 

 205 

Data and mQTL analysis 206 

Volatiles are expressed in relative terms, as a ratio between each sample and a quality 207 

control sample (a mix of all studied samples) to correct for technical drift. In order to 208 

assess normality for statistical data analysis, ratios were transformed to base 2 209 

logarithm. All the lines that set fruit were processed and analyzed by GC-MS each year 210 

(Supplemental Table 1). However, for the exploratory analysis, only those genotypes 211 

that produced enough fruits both years were considered (Urrutia et al 2016). For the 212 

statistical analysis and graphical representations, the free source software R 2.15.1 213 

(RCoreTeam, 2012) was used, with the Rstudio 0.92.501 interface (Rstudio, 2012) 214 

unless otherwise specified. Pearson’s correlation was calculated using the rcorr function 215 

from the Hmisc package (Harrell, 2014). The Anova function from the car package (Fox 216 

2011) was used for analysis of variance (ANOVA). Omega squared values (ω2) were 217 

calculated from ANOVA residuals following the formula: (SSi – dfi * MSerr) * (MSt + 218 

MSerr)
-1. For Principal Components Analysis (PCA), the prcomp function and scaled 219 

values were used. The Hierarchical Clustering Analysis (HCA) was calculated 220 

considering Euclidean distance and the complete linkage clustering method. The Cluster 221 

Network Analysis (CNA) was calculated with the qgraph function from the qgraph R 222 

package (Epskamp et al. 2012). Significance tests were recursively calculated between 223 
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each NIL and RV ratio using the t.test function and corrected for multi-testing by 224 

p.adjust (threshold p. adjusted < 0.05) for QTL mapping. QTLs were mapped to a 225 

specific genetic region only when all NILs harboring a common F. bucharica 226 

introgression in this region showed a significant effect and in the same direction over 227 

the ratio for the specific metabolite of study. QTL that were mapped to the same region 228 

in two harvests were considered stable. Interval mapping analysis with MapQTL v.6 229 

(Van Ooijen 2009) was used to confirm these QTL and estimate their effect. Stable 230 

QTL that explained around 20% or more of the variability and had LOD scores >1.8 231 

were considered major QTLs. Non-stable QTL (detected in only one harvest) were 232 

considered only if they accounted for more than 20% of the observed variability that 233 

year. Graphical representation of the mQTLs was using MapChart 2.2 (Voorrips, 2002). 234 

 235 

RNA sequencing and analysis 236 

Total RNA was isolated from three selected NILs (Fb5:0-35 and Fb7:0-10) and the 237 

recurrent parental (RV) extracting the nine samples (three biological replicates per line) 238 

following the protocol described by Liao et al. 2004. A cell lysis step with CTAB 239 

buffer, modified with 3% PVP and 4% β-mercaptoethanol, was followed by: 2-3 240 

cleaning steps with chloroform-isoamyl alcohol (24:1 v/v), overnight precipitation with 241 

lithium chloride (8 M), 1-2 additional cleaning steps with chloroform-isoamyl alcohol 242 

(24:1 v/v) and precipitation with cold absolute ethanol. RNA was quantified and 243 

checked for purity and integrity in a Bioanalyzer-2100 (Agilent Technologies, CA, 244 

USA). The concentration and quality threshold was set at 150 ng/?L and RNA integrity 245 

number (RIN) above eight. Further steps in RNA quality control, library preparation 246 

and mRNA paired end (2 x 75bp) sequencing were carried out at the Centro Nacional de 247 

Análisis Genómico (CNAG), Spain in a HiSeq2000 sequencer (Illumina, CA, USA). 248 

For quality control, trimming of sequencing adapters and removal of low quality and 249 

short reads (<40bp), FASTQC v0.10.1 250 

 (http://www.bioinformatics.babraham.ac.uk/projects/fastqc) and Trimmomatic v0.32 251 

(Bolger et al 2014) were used respectively. Trimmed reads were mapped against the 252 

F. vesca reference genome v1.1 using Tophat v2.0.11 with default parameters (Trapnell 253 

et al. 2009), taking as annotation reference version 2 (a2) (Darwish et al. 2015) and 254 

version 1 (a1) (https://www.rosaceae.org/species/fragaria/fragaria_vesca). Mapping 255 

quality was evaluated with the bamqc and rnaseq functions from Qualimap v2.1 256 

(García-Alcalde et al 2012). 257 
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 258 

Differential gene expression analysis and functional annotation 259 

Differential expression analysis was first performed using annotations a2 and then 260 

complemented, using the same filters and parameters, with a1. Independent tables of 261 

counts per gene were first generated with HTSeq-count with mode union (Anders et al 262 

2014), considering all annotated genes from the reference annotation a2 and a1 263 

respectively. These tables were provided as input to the DESeq package in R (Anders 264 

and Hubers 2010) using the newCountDataSetFromHTSeqCount function. DESeq 265 

counts all the reads-pairs mapped to a gene and normalizes the number of counts 266 

between samples, correcting for the library size. We considered that a gene was 267 

expressed in a specific line if at least two of the three biological replicates had >=1 268 

read-counts for the gene. Secondly, 40% of the genes with lowest standard deviation 269 

were filtered in order to maximize the discovery rate. Differential expression analyses 270 

contrasting each NIL against RV were computed with the nbinomTest function (Anders 271 

and Hubers 2010). Multi-testing corrected p-values (p-adjust) were calculated using the 272 

Benjamini & Hochberg method. The significance threshold for a differentially 273 

expressed gene (DEG) was fixed at p-adjust=0.1. Lists of DEGs obtained with a2 274 

(Supplemental Table 6) and a1 were compared for coincidence. DEG lists were inquired 275 

for predicted protein similarity with other proteins annotated in plant databases. The 276 

mRNA sequence was extracted from predicted exon coordinates. These mRNA 277 

sequences were inquired by blastx with the GoAnna tool from Agbase (McCarthy et al 278 

2006) against the manually annotated protein plant database, with a significance 279 

threshold of 0.05. Annotated function and gene ontology terms (GO terms) of best blast 280 

hits were assumed as putative functions by mRNA query. In order to obtain a 281 

summarized view of the functional annotation results we used GoSlimViewer from 282 

AgBase (McCarthy et al 2006). In addition, functional enrichment analysis to detect 283 

metabolic functions or biological processes that might be over-represented among the 284 

DEGs was carried out using the MetGenMAP online platform (Joung et al 2009). 285 

Putatively affected metabolic pathways were also explored using MetGenMAP. 286 

 287 

Variation calling 288 

SNP and INDEL detection was only carried out for the genomic regions where an 289 

introgression of F. bucharica was present. Alignment files generated by TopHat for 290 

each NIL were indexed and then filtered to contain reads mapping to the respective F. 291 
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bucharica introgressed regions, using Samtools (v1.2.0). Further filtering of the 292 

alignment files included removal of duplicate reads (“samtools rmdup”) and additional 293 

steps as described in the “GATK Best Practices workflow for SNP and indel calling on 294 

RNAseq data” (GATK-3.1.1; 295 

https://www.broadinstitute.org/gatk/guide/article?id=3891). Briefly, after removal of the 296 

duplicate reads, sequences overhanging the intronic regions were hard-clipped using 297 

'SplitNCigarReads', mapping qualities (MAPQs) reassigned using 'PrintReads' and local 298 

INDEL realigned using 'RealignerIndelCreator' and 'IndelRealigner'. Clean and 299 

reformatted alignment files were used as input for variant calling with Samtools (v1.2.0) 300 

using default parameters, except for applying a downgrading of mapping quality for 301 

reads containing excessive mismatches (-C 50).  302 
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Results 303 

Variability in the profile of fruit volatile compounds in the strawberry NIL collection 304 

In order to detect genetic regions affecting wild strawberry aroma, differences in 305 

volatile accumulation were evaluated over two years in ripe fruit of NILs derived from 306 

an interspecific Fragaria cross (F. vesca var. ‘Reine des Vallées’ (RV) as recurrent 307 

parent x F. bucharica ‘FDP601’ (FB), as donor parental; Urrutia et al. 2015). Fruits 308 

from the RV were used as a reference for the changes in volatiles observed in the 309 

population, and fruit from the aromatic white-fruited F. vesca var. Yellow Wonder 310 

(YW) were used as an external control or out-group. Metabolite profiling by GC-MS 311 

analyses and QTL mapping were performed with all the genotypes that set enough fruit 312 

each year, but we only considered those that were represented by at least three 313 

biological replicates in both years for the statistical analysis (i.e. 25 genotypes, 314 

Supplemental Table 1). 315 

 316 

We were able to identify 100 volatile compounds, 96 of which were unambiguously 317 

identified by comparison of both retention time and mass spectra with those of 318 

commercial standards run under the same conditions, whilst the remaining four 319 

compounds were tentatively identified based on their mass spectra (these are marked 320 

with a T at the end of the chemical name, see Table 1). The unequivocally identified 321 

volatile compounds were 11 alcohols, 16 aldehydes, 46 esters, four furans, 14 ketones, 322 

eight terpenoids and one lactone, and include most of the compounds described in the 323 

literature as contributing to strawberry aroma (Schieberle & Hofmann 1997; Ulrich et 324 

al. 1997; Ulrich et al. 2007). Here we refer to them as ‘key volatile compounds’ 325 

(KVCs), and have marked them with an arrow symbol in Table 1. KVCs that confer 326 

specific strawberry aroma are 12 esters butyl acetate, butyl butanoate, (E)-2-hexenyl 327 

acetate, ethyl butanoate, ethyl hexanoate, hexyl acetate, methyl-2-aminobenzoate, 328 

methyl butanoate, methyl cinnamate, methyl hexanoate, myrtenyl acetate and (Z)-3-329 

hexenyl acetate; two aldehydes (E)-2-hexenal and (Z)-3-hexenal; two furans furaneol 330 

and mesifurane; two terpenoids linalool and nerolidol, and one lactone γ-decalactone. 331 

 332 

The relative levels (see M&M) for most volatile compounds had mean ratios around one 333 

for RV in both harvests (Table 1) consistent with the nearly isogenic nature of the NIL 334 

collection, which means lines share much of the common RV genetic background. The 335 

variation interval for each volatile (min. and max. ratio) show different ranges of 336 
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variation in the NIL indicating that genes involved in accumulation of the volatile 337 

compounds segregated in our NIL collection. More extreme values were detected for 338 

the lower than for the higher ratios, indicating that, globally, F. bucharica alleles 339 

decrease volatile accumulation of Fragaria berries. Different degrees of variation were 340 

detected depending on the volatile, with decanal (4-fold variation from 0.39 to 1.49 in 341 

2012) and γ-decalactone (10,000-fold variation, ranging from 0.01 to 119.96 in 2013) 342 

defining the extremes of the variation range. It is also noteworthy to mention that 343 

nerolidol segregated as a dominant monogenetic trait in our population, with the F. 344 

bucharica alleles conferring the ability to produce nerolidol in the otherwise non-345 

nerolidol producer F. vesca background (Supplemental Table 1). Dominance of the F. 346 

bucharica nerolidol allele was determined in the F1 fruit samples (hybrid F. vesca RV x 347 

F. bucharica), which confirmed their ability to produce nerolidol (assayed in 2013 348 

only). 349 

 350 

Relations between volatile compounds and NILs 351 

Each NIL had a characteristic volatile profile according to the F. bucharica 352 

introgression, and volatile compounds could be clustered according to their levels in the 353 

different NILs (Figure 1, Table 1). Volatiles with similar chemical structure or in the 354 

same biosynthetic pathways tend to be co-regulated and therefore clustered together. 355 

Cluster A (16 volatiles) is enriched in long carboxylesters, particularly in octyl-derived 356 

esters. Cluster B (two volatiles) includes (E)-2-hexenyl acetate and its free alcohol (E)-357 

2-hexen-1-ol. Cluster C (35 volatiles) groups all the aldehydes (except (E)-2-decenal),  358 

and terpenoids (except α-farnesene) and most C4 alkyl acetates. Cluster D is divided in 359 

two sub-clusters, D1 (7 volatiles) which is enriched in benzenoid-derived volatiles, 360 

including two furans (mesifurane and furaneol), and D2 (40 volatiles), enriched in esters 361 

derived from butanoic and acetic acids, long chain alcohols and ketones. Compared to 362 

F. vesca RV, F. vesca YW presented quite a different volatile profile which is enriched 363 

in esters (clusters A and D2) and with decreased levels of compounds in clusters B, C 364 

and D1 (Figure 1). The effect of the F. bucharica alleles is obvious in lines with 365 

introgressions at the beginning of LG3 (Fb3:0-8, Fb3:0-15). These lines are 366 

characterized by an over-accumulation of the monoterpenoid linalool (96) and the 367 

sesquiterpenoid nerolidol (99), which suggests a more active terpene synthase allele 368 

from F. bucharica associated to this region. Differences were most prevalent in lines 369 

with introgressions in LG5, indicating that major QTLs for volatile accumulation are 370 
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located in LG5. Lines carrying introgressions of F. bucharica in LG7 showed a 371 

tendency to over-accumulating esters (cluster A) and under-accumulating of aldehydes 372 

and terpenoids (cluster C). Mean ratios for all the samples analyzed each year are 373 

provided in Supplemental Table 1.  374 

 375 

The patterns of volatile accumulation were quite stable: positive Pearson’s pair-wise 376 

significant correlations were detected for 82 of the 100 compounds between two years 377 

at p-value <0.05 (75 with an adjusted p-value <0.01). This high correlation affected all 378 

KVCs except furaneol and butyl acetate (Table 1).  379 

 380 

Compounds belonging to the same biosynthetic pathway tended to be highly correlated, 381 

as can be seen by cluster network analysis (CNA) in the case of esters and alcohols, 382 

fatty acid-derived and phenylalanine-derived compounds and terpenoids (Figure 2). 383 

Volatiles whose biosynthetic pathways have not been elucidated, were also highly 384 

correlated to other volatile metabolites, which could indicate common regulation. 385 

Individual correlation coefficients and significant values are provided in Supplemental 386 

Table 2. 387 

 388 

Variability in volatile levels across the different NIL, RV and YW fruit samples was 389 

also analyzed by principal component analysis (PCA) (Figure 3). PCA suggested that 390 

variation of most of the volatiles is continuous, and differences in the aroma pattern 391 

between the NILs were restricted to single or small subsets of metabolites. A closer look 392 

to the PCA shows that NILs samples spread along PC1 according to their introgressed 393 

region (Figure 3A), while PC2 divides the samples again according to their genotype 394 

but also according to the harvest year, indicating that a higher proportion of the 395 

observed variability between the NILs was due to genotype rather than to environmental 396 

factors. This PCA also indicated that volatile accumulation in NIL with introgressions 397 

in LG2 and LG3 were especially susceptible to the environmental conditions. 398 

According to the corresponding loading plots (Figure 3B), linalool (96), octanal (25) 399 

and 6-methyl-5-hepten-2-one (86) together with most esters and alcohols, were mostly 400 

responsible for the variability along PC1. Compounds contributing mostly to variability 401 

across PC2 were C6 lipid derivatives (E)-2-hexenal (17), (E)-2-hexenyl acetate (43), 402 

(E)-2-hexen-1-ol (9) and (Z)-3-hexenal (27), aldehydes (E)-2-nonenal (18) and (E)-2-403 
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heptenal (16), and the terpenoid myrtenol (97). Among all the samples, YW was the one 404 

with the most differentiated volatile profile.  405 

 406 

Genotypic and environmental effect on the accumulation of volatile compounds 407 

Genotypic (G) and environmental (E) effect on the volatile accumulation was evaluated 408 

by analysis of variance (ANOVA) fitting the model G+E+GxE (years taken as different 409 

environments). Several factor combinations influenced variability depending on the 410 

given compound. G significantly contributed (p-value<0.05) to variability of 98 out of 411 

the 100 studied volatile compounds (Supplemental Table 3). Among them, 33 412 

compounds were significantly influenced by the three factors G, E and GxE. Sixteen 413 

volatiles were mostly influenced by G and E but not by the GxE interaction, 33 were 414 

influenced by G and GxE but not by E and, most interestingly, 17 volatile compounds 415 

were influenced only by G, including some of the KVCs-like methyl 2-aminobenzoate, 416 

nerolidol, γ-decalactone, ethyl butanoate and (Z)-3-hexenal. Each of the factors also 417 

differs in the actual percentage of variability they account for. In general, genotype has 418 

a stronger effect on volatile variability than the environment (year) or the GxE 419 

interaction (Figure 4; see also Supplemental Table 3). The G factor accounted for >50% 420 

of observed variability in 35 compounds (including ten KVCs: 17, 27, 39, 43, 55, 61, 421 

66, 73, 96, 99), but its effect was up to 70% for six volatiles, including four KVCs ((E)-422 

2-hexenal, (Z)-3-hexenal, (E)-2-hexenyl acetate and linalool). The E factor was less 423 

important and only surpassed 20% of the observed variability in the case of five 424 

compounds (including the KVC mesifurane).  425 

 426 

Volatile QTL analysis 427 

Genetic regions controlling ripe-fruit wild strawberry volatile accumulation were 428 

detected by QTL mapping. A total of 126 QTL were mapped, 102 of which were stable 429 

QTL (detected in two years) and 50 of them were major QTL (stable and explaining 430 

>20% of the variability and with LOD>1.8). The QTL corresponded to 81 different 431 

compounds (40 esters, 12 aldehydes, 11 alcohols, eight ketones, seven terpenoids and 432 

three furans). The effect of the F. bucharica alleles on the F. vesca RV genetic 433 

background was positive (producing an increased volatile accumulation) in 30 of them 434 

and negative (reducing their levels) in 96 of them (Table 2).  435 

 436 
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Considering the major volatile QTL, 25 corresponded to compounds that mapped to a 437 

single locus. This included nine KVCs (linalool, nerolidol, mesifurane, methyl 438 

hexanoate, methyl cinnamate, (E)-2-hexenal, (E)-2-hexenyl acetate, (Z)-3-hexenal and 439 

(Z)-3-hexenyl acetate), and three compounds mapped to two major QTL (the KVCs 440 

methyl 2-aminobenzoate, nerol and 3-methyl-2-butenyl acetate: Table 2, Figure 5). 441 

Genotype had a major effect on most of the volatile compounds for which major QTL 442 

were mapped, but the effect of the environment was low (Figure 4). One of the 443 

exceptions was mesifurane, which, although clearly influenced by the environment 444 

(38%), the effect of the genotype (30%) was enough to map a QTL. There were also 445 

some compounds, mainly lipid derivatives including aldehydes (octanal, nonanal, 446 

decanal, (E)-2-octenal, (E)-2-nonenal and (E)-2-decenal), alcohols (1-penten-3-ol, 1-447 

hexanol and 2-heptanol) and ketones (1-penten-3-one, 2-pentanone and 2-nonanone), 448 

that only resulted in QTLs that could be mapped in a single year and therefore were 449 

classified as not stable. Most of these compounds were highly dependent on the 450 

environment, with a low correlation between harvests.  451 

 452 

Co-localized QTL may indicate co-regulated compounds. Two regions in the wild 453 

strawberry genome harbor the highest number of major volatile QTL and QTL for 454 

KVCs: LG5 and LG7 (Figure 5). The central region of LG5 (LG5:11-35 cM) appears to 455 

be very important for the wild strawberry aroma as it had major QTL (negative) for the 456 

accumulation of nine esters, five of which were KVCs: methyl 2-aminobenzoate, 457 

myrtenyl acetate, methyl butanoate, butyl butanoate and methyl hexanoate. The bottom 458 

of LG5 (LG5:50-76 cM) harbors QTLs for fatty acid derived volatiles associated with 459 

green-fresh aroma. Positive QTL were mapped for (Z)-3-hexenal and (Z)-3-hexenyl 460 

acetate, and negative QTL for their respective trans-2 isomers (E)-2-hexenal and (E)-2-461 

hexenyl acetate. This suggests that F. bucharica alleles in this region reduce conversion 462 

of (Z)-3-hexenal (synthesized from linolenic acid) to (E)-2-hexenal, that would lead to a 463 

higher accumulation of (Z)-3- derivatives and a lower accumulation of (E)-2- 464 

derivatives (Granell & Rambla 2013). In addition, three positive QTL for the terpenoid 465 

nerol, the benzenoid eugenol and the aldehyde (E)-2-heptenal, and one negative QTL 466 

for the alcohol (E)-2-hexen-1-ol are localized in the same region. The top region in LG7 467 

also seems to be important for wild strawberry scent as it accumulated 13 major QTL, 468 

two of which correspond to key aroma contributors involved in wild strawberry-like 469 

aroma (methyl 2-aminobenzoate at LG7:0-10 cM) and sweet-caramel notes (mesifurane 470 
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at LG7:26-43 cM). Additionally, at the top of LG7:0-10 cM we found four major QTL 471 

for the accumulation of long esters and two major QTL for monoterpenoids (limonene 472 

and myrtenol). Another interesting genetic region for key aroma volatiles is LG3:0-473 

8 cM where two major QTL for nerolidol and linalool accumulation were mapped. 474 

Nerolidol show an absence (RV alleles) - presence (FB alleles) segregating pattern.   475 

 476 

Whole transcriptome analysis of two rich volatile QTL regions  477 

The NILs Fb5:0-35 and Fb7:0-10 (with introgression sizes of 6.51 and 14.20 Mb 478 

respectively) carry QTL for key volatile esters in wild strawberry aroma, namely methyl 479 

2-aminobenzoate but also myrtenyl acetate, methyl butanoate, butyl butanoate and 480 

methyl hexanoate. The transcriptome of ripe berries from these two NILs were analyzed 481 

and compared with their recurrent parental (RV) transcriptome in order to identify 482 

differences in expression of specific genes that could be linked to the observed 483 

phenotypic changes. Transcriptomes were obtained by RNAseq approach using three 484 

biological replicates (nine samples in total). A total of 407 million (M) read-pairs were 485 

obtained with an average of 45 M read-pairs per sample (min. 33M, max. 58M). The 486 

quality of raw read pairs was assessed and sequencing adapters and low quality reads 487 

were filtered. A total of 374 M (92%) passed the filter cutoff and were kept for further 488 

analysis (average of 41.62 M read-pairs per sample). A high percentage of reads (83-489 

86%) could be mapped to the reference F. vesca genome v1.1 (Supplemental Table 4). 490 

According to the latest annotation version (Darwish et al. 2015), 73 to 75% of mapped 491 

reads were located in exons, 9% in introns and the remaining 16 to 18% in intergenic 492 

regions. Differential expression analysis between the selected NILs (Fb5:0-35 and 493 

Fb7:0-10) and the recurrent parental (RV), showed that the majority of the 31,778 494 

studied genes, 17,906 (56%) were similarly expressed in both NILs and RV. 495 

Additionally, 2,847 genes were expressed in at least one of the lines, with 388 detected 496 

only inFb5:0-35, 663 in Fb7:0-10, and 437 detected only in RV, while 11,025 (35%) 497 

were not expressed in any of the NILs nor in RV (Figure 6).  498 

 499 

Differential expression analysis revealed 257 differentially expressed genes (DEGs) 500 

between Fb5:0-35 and RV and 442 DEGs between Fb7:0-10 and RV (DEG significance 501 

threshold fixed at p-value=0.1) (Table 3, Supplemental Table 5). The large majority of 502 

the DEGs were altered only in one NIL with respect to F. vesca RV. This was expected 503 

as NILs do not share overlapping introgressions. However, there were also 33 genes 504 
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differentially expressed in both NILs when compared with F. vesca RV (Figure 6). 505 

Analysis of genome position showed that a high percentage of the DEGs in each NIL 506 

(54% in Fb5:0-35 and 59% in Fb7:0-10) were located within the boundaries of their 507 

introgressed region, indicating that they are probably acting on cis, that is that the 508 

differences in expression and their effects are likely to be due to allelic differences of 509 

the genes in the region (Figure 7). 510 

 511 

Functional annotation of DEGs resulted in significant blast hits for around 83% of them. 512 

Gene Ontology (GO) categorization for molecular function and biological process 513 

indicated that 48 DEGs were annotated as involved in metabolic activity (Supplemental 514 

Table 6). This suggests that F. bucharica introgressions are likely to affect fruit 515 

metabolism.  516 

 517 

In addition, several DEGs were predicted as being involved in known volatile synthetic 518 

pathways in F. vesca (Table 4), such as the lipoxygenase pathway (13-LOX and 13-519 

HPL pathway) in NIL Fb7:0-10 and terpene synthesis in NIL Fb5:0-35. We carefully 520 

selected candidate genes by combining expression data with the metabolic QTL (Table 521 

5). The NILs Fb5:50-76 and Fb7:0-10 contain QTL for fatty-acid derived volatiles. 522 

Differentially expressed lipoxygenases (4) and acyltransferases (6) were found in Fb7:0-523 

10, and one down-regulated acyl-transferase was detected in Fb5:0-35. Selected NILs 524 

were also found to harbor several QTL for terpenoids that might be of interest for wild 525 

strawberry aroma (Table 2). A differentially expressed sesquiterpene synthase was 526 

detected in Fb5:0-35 and a terpene synthase in Fb7:0-10 (Table 5). 527 

 528 

Several transcription factors (TF) were also differentially expressed in NIL Fb5:0-35 529 

and Fb7:0-10 with respect to RV. As alterations in TF can have wide range effects, all 530 

of them were considered candidate genes. A putative MYC2 TF up-regulated in Fb7:0-531 

10 (maker-LG7-snap-gene-91.103-mRNA-1) is suspected to be associated with 532 

terpenoid biosynthesis as its closest ortholog in A. thaliana, (MYC2_ARATH) has also 533 

been related to sesquiterpene biosynthesis (Hong et al. 2012). Until now, TF were not 534 

related to VOC in fruits. 535 

 536 
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In addition, it should be mentioned that there were 114 differentially expressed genes 537 

whose function could not be assigned by sequence similarity. Therefore, we cannot 538 

discard these genes may be involved in the volatile phenotypes (Supplemental Table 5). 539 

 540 

SNPs between NILs Fb5:0-35 and Fb7:0-10 541 

Although none of the accessions used in this work has been sequenced, the interspecific 542 

nature of the NILs is likely to provide a high number of polymorphisms between the 543 

introgressed regions (from F. bucharica FDP601) and the recurrent parental (F. vesca 544 

var. ‘Reine des Vallées’). The RNAseq results presented here constitute the first 545 

transcriptome for these accessions and therefore the first global view of the genetic 546 

divergence at SNP resolution between them. The transcriptome of the introgressed 547 

region of NIL Fb5:0-35 had 6,813 polymorphisms (6,622 SNPs and 191 indels), and 548 

Fb7:0-10 10,850 polymorphisms (10,517 SNPs and 333 indels) with respect to RV 549 

(Table 6). A detailed list of the SNP polymorphisms and position is given in 550 

Supplemental Table 7.  551 

 552 
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Discussion 553 

Volatile profile particularities of the diploid strawberry 554 

Woodland strawberry (F. vesca) aroma is known to have significant qualitative and 555 

quantitative differences when compared with commercial varieties (F. x ananassa) 556 

(Ulrich et al. 2007). F. vesca fruit produce higher levels of esters and terpenoids and a 557 

more intense aroma, besides the production of specific compounds such as methyl 2-558 

aminobenzoate (aka methyl anthranilate) that confers the characteristic ‘wild 559 

strawberry’ aroma (Ulrich et al. 2007). In this study we profiled the volatile 560 

composition of a NIL collection derived from an inter-specific cross between F. vesca 561 

and F. bucharica (Urrutia et al. 2015). The genetic background of F. vesca confers 562 

stability and homogenicity to the collection with outstanding organoleptic quality, but 563 

the homozygous introgressions of F. bucharica, an exotic relative of F. vesca, confer 564 

important phenotypic variability that can be used to map QTL for agronomical and 565 

metabolic traits (Urrutia et al. 2015a; Urrutia et al. 2016). The alleles of F. bucharica 566 

usually had a negative effect on the volatile compounds, as there was a decrease in level 567 

of most of the volatiles mapped QTL. 568 

 569 

The total number of identified volatile compounds was higher in this F. vesca NIL 570 

collection (100) than in previous studies with F. x ananassa populations (81 in 571 

Schwiterman et al. (2014) and 87 in Zorrilla-Fontanesi et al. (2012)). The F. vesca NIL 572 

collection volatile profiling revealed a very complex composition. One hundred of the 573 

compounds produced were identified, the majority of them being esters (46%), followed 574 

by aldehydes (16%), ketones (14%), alcohols (11%), and several terpenoids, furans and 575 

lactones (13%). These proportions are in agreement with that described in other studies 576 

with octoploid strawberries (Schwiterman et al. 2014, Zorrilla-Fontanesi et al. 2012). 577 

All the compounds identified in the F. vesca NIL collection have been previously 578 

described in strawberry fruit, and around 20 of them have been reported to be important 579 

for its aroma (Latrasse 1991; Schieberle &Hofmann 1997; Ulrich et al. 1997; Ulrich et 580 

al. 2007).  581 

 582 

The identified compounds that were not found in octoploid studies correspond to esters 583 

such as methyl 2-aminobenzoate, methyl acetate, methyl cinnamate, methyl 3-584 

hydroxyoctanoate, ethyl methylthioacetate and 2,3-butanediol diacetate, and to 585 

terpenoids such as α-farnesene and α-pinene (Zorilla-Fontanesi et al. 2012) that might 586 
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contribute to the special aroma of wild strawberry. We also identified nerolidol and 587 

linalool segregating within our collection. These compounds have been reported to be 588 

characteristic of octoploid Fragaria species and produced by a truncated allele of the 589 

FaNES gene (Aharoni et al. 2004; Chambers et al. 2012). However we found a clear 590 

QTL at LG3:0-8 cM (Figure 5) for the accumulation of these two compounds that co-591 

locates with the FaNES gene. The F. vesca RV parental does not produce linalool or 592 

nerolidol, but they were both detected in the hybrid (analyzed only in 2013; 593 

Supplemental Table 1). This suggests that the F. bucharica alleles for the FaNES gene 594 

produce linalool and nerolidol. Both parentals in the NIL collection (F. vesca and F. 595 

bucharica), the F1 hybrid and the lines in the collection producing linalool and nerolidol 596 

(Fb3:0-8 and Fb3:0-15), together with a F. x ananassa as a positive control, were 597 

genotyped for FaNES alleles following the method described by Aharoni et al. (2004). 598 

The conclusion from the observed results is that the truncated FaNES allele is absent in 599 

our collection (data not shown). This suggests that there may be several alleles 600 

producing linalool in strawberry and that some of them may have arisen before 601 

octoploidization. 602 

 603 

Volatilome comparison between F. vesca RV and YW 604 

F. vesca YW is a white fruited strawberry known to have a pleasant, intense fruity 605 

aroma with tropical (pineapple-like) notes. Used in this study as an out-group of the 606 

NIL collection, it had a different pattern of volatile accumulation, enriched in esters and 607 

with higher accumulation ratios than F. vesca RV (Figure 1). A recent study with the 608 

white fruited octoploid species F. chiloensis, also known for its intense, tropical fruity 609 

aroma, reported that the characteristic tropical fruit aroma came from a set of six esters, 610 

two of which, ethyl hexanoate (49) and hexyl acetate (52), we detected as associated to 611 

F. vesca YW (Figure 3). The other four compounds (furfuryl acetate, acetyl acetate, 1-612 

methylethyl dodecanoate and ethyl tetradecanoate) were not detected under our 613 

experimental conditions. They may be absent in and only detected in other Fragaria sp. 614 

or failed to be detected by our volatile profiling method (Prat et al. 2014). 615 

 616 

Volatile QTL in strawberry 617 

Significant year to year correlation was detected for most compounds (82 out of 100) 618 

although the correlation index and the significance threshold varied considerably. The 619 

correlation values reported here are higher than those reported for volatile compounds in 620 
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other studies (Eduardo et al. 2013). Differences in the relative volatile accumulation 621 

pattern in each NIL in the two studied harvests appear to be mainly associated to their 622 

genotypes (Figure 4) and to a lower extent to the environment. This is in contrast to 623 

what has been reported in other studies with octoploid strawberry (Forney et al. 2000; 624 

Zorrilla-Fontanesi et al. 2012) and peach (Prunus persica) (Eduardo et al. 2013; 625 

Sanchez et al. 2014), where the effect of the environment was more relevant. The 626 

special configuration of our mapping population, as near isogenic lines, may be 627 

responsible for such stability, avoiding epistatic effects among different QTL. The fact 628 

that all lines share a common genetic background, in contrast to other mapping 629 

populations where genetic differences between lines is wider, may highlight the effect 630 

of the genotype, caused by exotic introgressions, and buffer the effect of the 631 

environment over the phenotypic traits, as all lines may respond in a similar way. In 632 

fact, stability of the lines has been previously proved with a (poly)-phenolic profiling of 633 

the NIL collection (Urrutia et al. 2016), and although the correlation between genotypes 634 

according to volatile profiling is lower, the median of all genotypes is above 0.70. 635 

 636 

QTL mapping revealed 50 major stable QTL that accounted for a high proportion of the 637 

variability of 47 compounds, including 14 major QTL identified for 13 KVCs: (E)-2-638 

hexenal, (Z)-3-hexenal, (E)-2-hexenyl acetate, (Z)-3-hexenyl acetate, butyl butanoate, 639 

methyl-2-aminobenzoate (2), methyl butanoate, methyl cinnamate, methyl hexanoate, 640 

myrtenyl acetate, mesifurane, linalool and nerolidol. Many of the QTL cluster in a few 641 

genetic regions, suggesting that the compounds are co-regulated and controlled by a 642 

reduced number of loci. LG5 and LG7 seem to be the most determinant regions 643 

controlling volatile compounds synthesis as they accumulate the largest number of QTL 644 

and harbor nine and two major QTL for KVCs, respectively. Some of the detected 645 

QTLs were in agreement with those described by Zorrilla-Fontanesi et al. (2012) as 646 

they co-locate according to synteny studies (Rousseau-Gueutin et al. 2008, Tennessen et 647 

al. 2014). A QTL for methyl benzoate was located at LG1:26-61 cM in F. vesca and at 648 

LGI-F.1: 38 cM in F. x ananassa. A QTL for benzyl acetate was located at LG7:0-649 

10 cM in F. vesca and at LGVII-F.1c: 9 cM in F. x ananassa. A QTL for ethyl 650 

decanoate was mapped to LG3:8-15 cM for F. vesca, and to LGIII-F.1: 4 cM and LGIII-651 

M.1: -8 cM in F. x ananassa. A QTL for mesifurane was located at LG7:27-43 cM in F. 652 

vesca, and to LGVII-F.2: 18 cM and LGVII-M.2:65 cM in F. x ananassa. The latter 653 
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QTL is associated with the FaOMT gene responsible for its accumulation that also co-654 

locates with our QTL (Zorrilla-Fontanesi et al. 2012).  655 

 656 

There were also QTLs located previously in different regions in F. x ananassa and F. 657 

vesca and volatile compounds that showed significant variability in one population and 658 

not in the other, highlighting that different genetic backgrounds and environments can 659 

reveal different genetic traits. As an example of this, we found two QTLs controlling 660 

the accumulation of methyl 2-aminobenzoate, which is characteristic of F. vesca aroma 661 

and was not detected in F. x ananassa. Previous reports have mapped a QTL for the 662 

accumulation of γ-decalactone in the homeolog LGIII-M.2: 50-54 cM (Zorrilla-663 

Fontanesi et al. 2012) and a candidate gene FaFAD1 with an eQTL co-localized 664 

(Sanchez-Sevilla et al. 2014). However, we found no significant QTL for γ-decalactone 665 

in our collection. Although data suggests that there might be an increase in the 666 

production of this compound in lines with introgressions at the end of LG5, this increase 667 

is not enough to report a significant effect (Supplemental Table 1). However, this 668 

suggests there may be other genetic regions controlling γ-decalactone accumulation in 669 

F. vesca.  670 

 671 

C6 compounds from the lipoxygenase pathway and the corresponding acetate esters 672 

((E)-2-hexen-1-ol, (E)-2-hexenal, (E)-2-hexenyl acetate, (Z)-3-hexenal and (Z)-3-673 

hexenyl acetate) are commonly described as ‘green volatile compounds’ and are usually 674 

considered too variable within genotypes or varieties to be used as discriminative 675 

compounds (Ulrich et al. 1997). However, a recent studies in peach (Prunus persica) 676 

reported stable QTLs for (E)-2-hexenyl acetate and (Z)-3-hexenyl acetate (Eduardo et 677 

al. 2012) and in tomato for  (Z)-3-hexenal and (E)-2-hexenal (Rambla et al. 2016). Our 678 

data revealed a high year to year correlation between these compounds (Table 1) and 679 

QTLs that co-localize for all of them at LG5:50-76 cM, suggesting that these 680 

compounds were stable and co-regulated under our conditions. By differential 681 

expression analysis of the red ripe fruits it was possible to highlight genes differentially 682 

expressed between the NILs and the recurrent parental RV, that might contribute to the 683 

observed QTL. NILs Fb5:0-35 and Fb7:0-10 are interesting for further studies in fruity 684 

and wild strawberry-like aroma as they harbor QTL for methyl 2-aminobenzoate and 685 

several other esters. Differentially-expressed genes include terpene synthases and acyl-686 

transferases, which catalyze the main steps in terpenoid and ester formation, and 687 
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lipoxygenases, which participate in fatty acid degradation and consequently in FA-688 

derived volatiles.  689 

 690 

In-depth characterization of the volatiles emitted by ripe strawberry fruit in a F. vesca 691 

NIL mapping collection revealed a complex mixture of 100 compounds, varying in 692 

relative abundance across the population presumably because of the effect of F. 693 

bucharica alleles. The high genetic effect on the accumulation of many compounds (35 694 

compounds >50% G effect) allowed 50 major QTL to be mapped, including 14 QTL for 695 

compounds considered of extreme importance for strawberry aroma. Some, such as 696 

methyl 2-aminobenzoate and mesifurane, are only rarely found in commercial varieties 697 

(F. x ananassa) and are of great interest for breeding programs. Therefore, here we set 698 

the ground for further studies on the inheritance of the woodland strawberry aroma that 699 

may lead to improved aroma and marketability of new strawberry varieties. Further 700 

studies for positional cloning of the QTLs in combination with reverse genetics will 701 

shed light on the causal genes of the observed phenotypes.  702 

 703 
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Figure legends 720 

Figure 1 Hierarchical clustering (HCA) and heatmap of volatile compounds levels.  721 

Ratio values of all studied volatile compounds per genotype are shown in the heatmap 722 

on a blue (negative) to red (positive) scale. Compounds are numerically codified as 723 

specified in Table 1. Genotypes include the NILs that were analyzed both years, RV and 724 

YW. Top bar identifies the sample harvest year: 2012 (blue) and 2013 (green). The 725 

HCA and dendrogram of volatile compounds was according to metabolite ratio 726 

distances (Euclidean distance, complete linkage). Clusters are indicated with capital 727 

letters in both the dendrogram and Table 1. 728 

Figure 2 Cluster network analysis (CNA).  729 

Metabolites are represented as nodes colored according to their biosynthetic pathway (if 730 

known) or chemical structure as specified by the legend. Positive (green) and negative 731 

(red) correlations with absolute values >|0.5| are shown as links between the nodes. 732 

Links representing absolute correlations >|0.8| are wider the stronger they are and have 733 

the maximum color saturation. Absolute correlations <|0.8| are vaguer the weaker they 734 

are and have the least width. 735 

Figure 3 PCA (PC1 and PC2) scores and loading plot.  736 

A: PCA scores plot. NIL, RV and YW are colored according to the harvest year as 737 

specified in legend. B: loading plot Compounds are coded as specified in Table 1 and 738 

colored according to their chemical family as specified in legend. 739 

Figure 4 ω2 values. Percentage of the observed variability attributable to each of the 740 

factors: genotype (G), environment (E), their interaction (GxE) or to error. 741 

Figure 5 Volatile QTL. Graphical representation of the major QTL mapped. QTL 742 

shown were found to be significantly different (corrected p-value < 0.05) from the 743 

recurrent parental (F. vesca RV), in the same direction, in both harvests for all the NILs 744 

harboring the introgressed region, and explained around 20% of the variability 745 

regarding the NIL collection. QTL names correspond to the volatile compound affected. 746 

Colored bars indicate the biosynthetic pathway (if known) or the chemical structure of 747 

the compound as in Figure 2. The positive or negative effect of the QTL over the ratio 748 

regarding F. vesca RV is represented by the full or empty color bars respectively. For 749 

locating the QTL, the LG and position (in cM) of the microsatellites (SSRs) used for 750 

genotyping are given. 751 

Figure 6 Venn diagrams. Venn diagram A depicts the number of annotated genes (a2) 752 

expressed by each line. Colored ellipses represent analyzed lines (Fb5:0-35, Fb7:0-10 753 
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and RV). Venn diagram B depicts the number of differentially expressed genes detected 754 

between each NIL and the recurrent parental (RV). Colored ellipses represent 755 

comparisons (NIL vs. RV). Numbers in intersecting areas indicate that the genes are 756 

shared between the lines/comparisons meeting in the area. Non-intersecting areas 757 

indicate the number of genes that are specifically expressed/differentially expressed in a 758 

line. 759 

Figure 7 Differentially expressed gene distribution (Manhattan plot). Graphical 760 

representation of all genes in their physical position (x-axis), and their associated -log10 761 

(p-value) from the differential expression analysis (y-axis).  762 

 763 

 764 

 765 

 766 

 767 

 768 

 769 

 770 

 771 

 772 

 773 

 774 
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 776 

Table legends 777 

 778 

Table 1. Volatile compounds summary, and between harvests correlations.  779 

All identified compounds and their assigned number codes and clusters are presented. 780 

Tentatively identified compounds are indicated with a T after the chemical name. A 781 

selected set of important compounds contributing to strawberry aroma are indicated 782 

with an arrow. Data are expressed as the ratio between samples and a reference. Mean 783 

ratios and standard deviation (sd) were calculated for each compound in the recurrent 784 

parental F.vesca (RV) and in the average NIL collection for 2012 and 2013 harvests. 785 

The range of the ratios (min and max values) was calculated for the NIL collection in 786 

both harvests. Correlation between harvests was calculated using average genotype 787 

values in both years. Asterisk after the values indicate significance at different 788 

thresholds: p-value <0.05 '*' , p-value <0.01 '**', p-value <0.001 '***'. No significant 789 

correlations are indicated by 'ns'. 790 

 791 

 792 

Table 2. QTL for volatile compounds detected in a F. vesca NIL collection. 793 

Detected QTL listed by compound’s alphabetical order. The position of the QTL (LG 794 

number followed by the start and end position in cM), the positive (up) or negative 795 

(down) effect of the QTL over the metabolite’s ratio compared with F. vesca RV, the 796 

NIL harboring the shorter F. bucharica introgression (in cM) that includes the QTL, the 797 

results of the t-test (corrected p-value) and interval mapping analysis (LOD score), the 798 

percentage of variance explained by the QTL regarding the NIL collection and the 799 

stability of the QTL (detected in 1 or 2 harvests) are provided. 800 

 801 

Table 3 Differentially expressed genes (DEG) summary 802 

Number total, up- and down-regulated DEG obtained with annotation version 2 (a2) for 803 

both contrasting hypothesis (NIL vs. RV). 804 

 805 

Table 4 Metabolic pathways affected 806 

List of known metabolic pathways related to DEG detected in each NIL using 807 

MetGenMAP software. 808 

 809 
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Table 5 Selected candidate genes 810 

List of selected DEG between genotypes (NIL vs RV) for each metabolic QTL 811 

 812 

Table 6 Polymorphism summary 813 

 814 

 815 

816 
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 817 

Electronic Suplemental Material Legend 818 

Supplemental table1: Volatile compounds average values per genotype per year. 819 

Average values (per genotype per harvests) of all detected volatile compounds are 820 

provided. Data are expressed as the ratio between the samples and a reference sample. 821 

 822 

Supplemental table 2.Pearson correlation values between volatile compounds for 2012 823 

and 2013 independent harvests. Asterisk after the values indicate significance at 824 

different thresholds: p-value <0.05 '*' , p-value <0.01 '**', p-value <0.001 '***' 825 

 826 

Supplemental Table 3. Analysis of variance (ANOVA) fitting the model G+E+GxE 827 

and w2 values. ANOVA was calculated for all volatile compounds independently 828 

considering two factors, genotype (G) and environment (E), and their interaction (GxE). 829 

The resulting parameters of the ANOVA test Sum of squares (SS), degrees of freedom 830 

(df) and p-values are provided. Omega squared values (w2) were calculated from the 831 

ANOVA parameters for G, E and GxE and reflect the percentage of variability 832 

accounted by each one of them. The error is 1 minus the percentual variability 833 

accounted by G, E and GxE.         834 

     835 

Supplemental Table 4 RNAseq reads quality 836 

 837 

Supplemental table 5  List of DEG for each contrasting hypothesis (NIL vs. RV). DEG 838 

for each NIL are presented in ascending order of log2(fold change). 839 

a, gene id is according to F. vesca annotation 2 nomenclature 840 

b, log2(fold change) values use as reference RV, so negative values indicate down-841 

regulation in NIL vs. RV and positive values up-regulation in NIL vs. RV 842 

c, best blast hit found for the DEG predicted proteins. Codes are according to 843 

UniProtUK entries  844 

 845 

Supplemental Figure 6 Go terms summary. Molecular function and Biological process 846 

GO terms summary of the Differentially Expressed Genes.  847 

 848 

Supplemental table 7 Polymorphisms. SNPs and Indels detected between 849 

transcriptomes of NILs (Fb5:0-35 and Fb7:0-10) and  RV.  850 
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 1002 

Table 1 Volatile compounds summary and between harvests correlations. 1003 

      Correlation Recurrent parental (RV) NIL collection 

       2012 2013 2012 2013 

KV

C 

Cod

e 
Compound Pathway 

Cluste

r 

Family corr. sig. mea

n 

sd mea

n 

sd mea

n 

sd range mea

n 

sd range 

 1 1-decanol  A alcohol 
0.9 

**

* 

1,24 0,8

0 

0,93 0,51 0,60 1,1

1 

0,0

1 

5,43 0,60 0,78 0,0

1 

3,61 

 2 1-hexanol Fatty Acid 

Deriv. 

C alcohol -

0,22 

ns 1,05 0,2

8 

1,05 0,67 1,29 0,9

5 

0,4

0 

6,87 1,24 0,68 0,3

4 

3,92 

 3 1-octanol  D2 alcohol 
0,78 

**

* 

1,73 0,9

4 

1,01 0,48 0,72 0,7

1 

0,0

9 

3,51 0,67 0,52 0,0

4 

2,19 

 4 1-penten-3-ol  C alcohol 
0,33 

ns 1,26 0,6

0 

0,89 0,46 1,30 0,8

5 

0,2

4 

6,15 1,15 0,45 0,2

6 

2,45 

 5 2-heptanol  D2 alcohol 
0,72 

**

* 

1,42 1,3

5 

1,00 0,48 0,71 1,0

2 

0,0

1 

4,53 0,46 0,56 0,0

1 

4,13 

 6 2-nonanol  D2 alcohol 0,83 *** 1,34 1,10 1,08 0,47 0,66 0,84 0,00 4,03 0,51 0,48 0,01 1,89 

 7 2-tridecanol   D2 alcohol 0,62 *** 1,36 1,11 1,16 1,06 0,95 1,18 0,05 7,57 0,63 0,77 0,02 4,04 

 8 2-undecanol   D2 alcohol 0,78 *** 1,25 0,76 1,18 0,87 0,77 0,92 0,04 5,21 0,53 0,48 0,03 1,87 

 9 (E)-2-hexen-1-ol Fatty Acid Deriv. B alcohol 0,82 *** 1,08 0,35 0,82 0,48 1,36 1,56 0,02 7,41 1,08 0,90 0,01 4,35 

 10 Ethanol  A alcohol 0,41 * 0,80 0,65 0,39 0,21 1,09 1,70 0,01 7,26 0,68 1,07 0,02 6,00 

 
11 

Eugenol Benzoid 
D2 alcohol 

0,81 
*** 

0,42 0,14 0,94 0,94 0,88 2,45 0,05 

19,2

9 1,08 2,93 0,04 19,19 

 12 3,4-dimethylbenzaldehyde Benzoid C aldehyde 0,42 * 1,02 0,24 0,97 0,10 1,01 0,49 0,42 3,03 0,97 0,20 0,52 2,35 

 13 Benzaldehyde Benzoid C aldehyde 0,78 *** 1,05 0,26 1,01 0,28 1,35 0,85 0,31 5,58 1,17 0,54 0,31 2,73 

 14 Decanal  C aldehyde -0,01 ns 1,00 0,24 0,99 0,36 0,88 0,23 0,39 1,49 1,02 0,35 0,47 1,85 

 15 (E)-2-decenal  D2 aldehyde 0,57 ** 1,16 0,42 0,74 0,27 1,16 0,46 0,26 2,58 0,95 0,75 0,13 6,22 

 
16 

(E)-2-heptenal  
C aldehyde 

0,90 
*** 

1,30 0,40 1,17 0,68 3,14 4,85 0,26 

24,0

8 3,23 4,23 0,19 19,28 

→ 17 (E)-2-hexenal Fatty Acid Deriv. C aldehyde 0,88 *** 1,32 0,18 1,03 0,30 1,11 0,40 0,24 1,85 1,07 0,40 0,31 1,83 

 18 (E)-2-nonenal  C aldehyde 0,47 * 0,63 0,15 0,96 0,29 0,68 0,21 0,24 1,26 0,99 0,42 0,27 2,29 
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 19 (E)-2-octenal  C aldehyde 0,52 ** 1,73 0,84 1,10 0,34 1,40 0,67 0,35 3,61 1,18 0,48 0,25 2,80 

 20 (E)-2-pentenal  C aldehyde 0,58 ** 1,88 1,10 1,75 1,60 2,32 1,60 0,15 8,63 2,19 1,33 0,30 7,13 

 21 (E,Z)-2,4-heptadienal  C aldehyde 0,34 ns 1,27 0,45 1,00 0,46 1,13 0,56 0,52 3,89 1,12 0,50 0,37 3,87 

 22 Heptanal  C aldehyde 0,54 ** 1,28 0,55 1,29 0,74 1,20 0,57 0,51 3,51 1,51 0,91 0,42 4,88 

 23 Hexanal Fatty Acid Deriv. C aldehyde 0,62 ** 1,18 0,21 1,02 0,40 1,27 0,36 0,45 2,35 1,27 0,36 0,46 2,34 

 24 Nonanal  C aldehyde 0,09 ns 1,30 0,61 1,60 0,74 1,30 0,70 0,39 4,92 1,28 0,79 0,43 4,69 

 
25 

Octanal  
C aldehyde 

0,41 
* 

2,32 1,45 3,38 3,30 2,81 2,58 0,27 

17,0

3 2,91 3,07 0,31 14,83 

 26 Pentanal  C aldehyde 0,12 ns 1,24 0,49 1,55 0,89 1,41 0,70 0,25 3,27 1,57 0,81 0,31 4,49 

→ 
27 

(Z)-3-hexenal Fatty Acid Deriv. 
C aldehyde 

0,94 
*** 

1,23 0,31 1,40 0,86 2,67 3,17 0,50 

15,0

3 4,08 5,62 0,52 25,13 

 28 1-methylbutyl butanoate  D2 ester 0,76 *** 1,91 3,33 1,79 1,19 0,72 1,21 0,07 7,41 0,74 1,61 0,13 12,17 

 29 1-methylethyl butanoate  D2 ester 0,16 ns 2,11 1,94 1,50 0,83 1,24 0,91 0,25 4,23 0,68 0,66 0,04 3,58 

 30 1-methylethyl acetate  C ester 0,00 ns 1,27 0,64 0,58 0,28 1,48 0,73 0,27 3,56 0,74 0,48 0,11 2,57 

 31 1-methylhexyl acetate  D2 ester 0,31 ns 1,24 1,16 0,93 0,53 1,02 1,51 0,00 8,69 0,47 0,57 0,01 3,73 

 32 1-methyloctyl butanoate  D2 ester 0,68 *** 0,78 0,54 1,33 0,61 0,56 0,84 0,06 4,76 0,63 0,96 0,05 6,13 

 
33 

2,3-butanedioldiacetate T  
A ester 

0,75 
*** 

0,70 0,65 0,33 0,29 1,24 2,36 0,04 

12,9

1 0,74 1,53 0,01 9,07 

 34 2 -methylbutyl acetate  C ester 0,60 ** 1,25 0,51 0,76 0,35 1,65 0,93 0,42 5,28 0,88 0,59 0,19 3,16 

 35 3-methyl-2-butenyl acetate  C ester 0,62 ** 1,33 0,51 0,87 0,43 1,57 1,27 0,18 7,26 1,20 1,05 0,17 5,58 

 36 3-methylbutyl acetate  C ester 0,27 ns 1,44 0,46 0,32 0,10 1,26 0,88 0,02 6,92 0,69 0,54 0,10 3,16 

 37 Benzyl acetate Benzoid D1 ester 0,75 *** 2,51 1,54 1,54 1,04 1,31 1,09 0,13 4,82 1,16 0,91 0,08 3,97 

→ 38 Butyl acetate  D2 ester 0,25 ns 1,08 0,43 0,93 0,28 1,38 1,14 0,13 4,96 0,98 0,79 0,08 4,04 

→ 39 Butyl butanoate  D2 ester 0,63 *** 1,13 0,62 1,74 0,96 0,88 1,31 0,02 6,87 1,06 1,47 0,01 7,66 

 40 Butyl hexanoate  A ester 0,77 *** 1,12 0,73 1,21 0,53 0,71 1,01 0,02 4,99 1,11 1,71 0,01 9,21 

 
41 

Cinnamyl acetate Benzoid 
D1 ester 

0,67 
*** 

1,13 0,49 1,90 2,14 1,40 2,79 0,02 

19,8

4 0,61 0,81 0,01 3,75 

 42 Decyl acetate  A ester 0,88 *** 1,03 0,50 0,85 0,45 0,52 0,85 0,01 4,53 0,57 0,68 0,01 2,85 

→ 43 (E)-2-hexenyl acetate Fatty Acid Deriv. B ester 0,92 *** 3,13 1,06 0,75 0,44 1,25 0,85 0,00 4,08 1,01 1,06 0,01 5,46 

 
44 

Ethyl 2-hexenoate  
A ester 

0,65 
*** 

0,59 0,63 0,69 0,32 1,15 2,20 0,01 

11,6

3 0,67 1,04 0,02 6,22 
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45 

Ethyl acetate  
A ester 

0,54 
** 

1,27 1,49 0,43 0,22 1,61 3,18 0,01 

17,7

5 0,58 0,69 0,01 2,96 

→ 46 Ethyl butanoate  D2 ester 0,56 ** 1,59 1,20 1,15 0,72 0,96 1,04 0,01 4,08 0,82 0,64 0,01 3,11 

 47 Ethyl decanoate  A ester 0,77 *** 0,67 0,61 0,37 0,23 0,74 1,65 0,00 7,41 0,58 1,83 0,01 12,59 

 
48 

Ethyl dodecanoate  
A ester 

0,79 
*** 

0,80 1,10 0,28 0,18 1,26 3,24 0,01 

17,0

3 0,80 3,38 0,01 23,06 

→ 49 Ethyl hexanoate  A ester 0,68 *** 1,22 0,94 1,17 0,61 0,61 0,87 0,00 3,18 0,59 0,57 0,01 2,39 

 50 Ethyl methylthioacetate  D2 ester 0,35 ns 2,76 2,35 1,25 0,64 1,18 1,54 0,03 5,78 1,39 1,18 0,02 5,19 

 51 Ethyl octanoate  A ester 0,76 *** 1,13 1,08 0,75 0,43 0,69 1,29 0,00 4,72 0,54 1,10 0,01 6,84 

→ 52 Hexyl acetate  D2 ester 0,52 ** 1,47 0,51 1,26 0,35 1,02 0,58 0,16 2,64 1,00 0,61 0,12 3,34 

 53 Hexyl butanoate  D2 ester 0,72 *** 1,02 0,79 1,26 0,65 0,80 1,09 0,03 4,63 1,15 1,75 0,01 10,46 

 54 Hexyl hexanoate  D2 ester 0,63 *** 0,91 0,47 1,45 1,03 0,67 0,84 0,02 3,89 1,03 1,29 0,01 7,17 

→ 55 Methyl 2-aminobenzoate  D2 ester 0,84 *** 0,77 0,27 1,85 1,72 1,37 1,25 0,01 5,90 1,26 1,96 0,01 13,03 

 
56 

Methyl 2-hexenoate  
D2 ester 

0,44 
* 

2,07 1,23 1,18 0,74 1,60 2,54 0,12 

15,5

6 0,85 0,97 0,08 4,92 

 
57 

Methyl 3-hydroxyoctanoate 

T  
D2 ester 

0,54 
** 

1,89 0,86 2,41 2,09 0,89 1,07 0,00 6,15 0,90 1,04 0,01 8,18 

 
58 

Methyl acetate T  
D2 ester 

-0,01 
ns 

1,78 1,65 0,72 0,37 1,88 1,63 0,23 

11,1

6 0,90 0,67 0,07 4,40 

 59 Methyl benzoate Benzoid D1 ester 0,74 *** 1,67 1,11 0,75 0,44 1,17 1,19 0,10 7,01 1,15 1,32 0,05 7,10 

→ 60 Methyl butanoate  D2 ester 0,49 * 2,09 1,75 1,29 0,88 1,01 1,12 0,04 6,96 0,82 0,81 0,01 3,67 

→ 
61 

Methyl cinnamate T Benzoid 
D1 ester 

0,71 
*** 

0,75 0,50 0,45 0,28 1,65 1,82 0,01 

11,1

6 1,34 2,61 0,02 22,49 

 62 Methyl decanoate  D2 ester 0,86 *** 1,07 0,49 0,80 0,51 0,78 0,75 0,01 3,07 0,70 0,84 0,01 4,73 

 63 Methyl dodecanoate  A ester 0,87 *** 1,25 1,20 0,72 0,53 0,88 1,49 0,09 6,59 0,65 1,49 0,04 9,76 

→ 64 Methyl hexanoate  D2 ester 0,81 *** 1,27 0,92 1,21 0,73 0,69 0,80 0,01 3,20 0,82 0,80 0,02 3,46 

 65 Methyl octanoate  D2 ester 0,81 *** 1,29 0,52 0,78 0,47 0,88 0,70 0,05 2,81 0,69 0,65 0,01 3,09 

→ 66 Myrtenyl acetate  D2 ester 0,74 *** 1,94 0,69 1,51 0,70 1,12 0,57 0,23 3,25 0,96 0,69 0,17 4,73 

 67 Nonyl acetate  D2 ester 0,59 ** 1,11 0,39 1,27 0,88 0,96 0,67 0,20 2,95 0,92 0,95 0,20 4,88 

 68 Octyl acetate  A ester 0,79 *** 1,41 0,69 1,08 0,54 0,61 0,79 0,01 3,29 0,58 0,54 0,01 2,48 

 69 Octyl butanoate  A ester 0,68 *** 1,04 0,81 1,03 0,54 0,50 1,09 0,03 6,19 0,84 1,39 0,02 9,86 
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 70 Octyl hexanoate  A ester 0,77 *** 1,71 1,16 1,49 0,95 0,51 1,27 0,03 7,89 0,74 1,25 0,02 8,75 

 71 Pentyl acetate  C ester 0,30 ns 1,46 0,41 0,78 0,15 1,25 0,56 0,47 3,03 0,93 0,59 0,13 3,87 

 72 Propyl butanoate  D2 ester 0,48 * 1,21 0,52 0,98 0,46 1,12 1,16 0,03 5,24 0,91 0,85 0,02 3,77 

→ 
73 

(Z)-3-hexenyl acetate Fatty Acid Deriv. 
C ester 

0,80 
*** 

1,31 0,82 0,71 0,43 1,38 1,79 0,17 

10,2

0 1,85 2,83 0,09 22,01 

 74 2,1-pentenylfuran  C furan 0,72 *** 1,64 0,56 1,05 0,42 1,40 0,79 0,08 4,08 1,26 0,63 0,13 2,79 

 75 2-pentylfuran  C furan 0,61 ** 1,14 0,23 0,88 0,21 1,31 0,59 0,22 2,89 1,14 0,40 0,47 2,49 

→ 
76 

Furaneol  
D1 furan 

-0,27 
ns 

1,73 1,22 0,81 1,02 1,58 1,78 0,02 9,65 3,20 

13,0

7 0,01 

120,6

4 

→ 77 Mesifurane  D1 furan 0,69 *** 1,59 0,79 0,28 0,20 1,48 1,12 0,05 5,43 0,31 0,28 0,01 1,23 

 78 1-penten-3-one  C ketone 0,54 ** 1,74 0,56 1,63 0,30 1,84 0,97 0,31 4,47 1,36 0,60 0,36 3,20 

 79 2-heptanone  D2 ketone 0,67 *** 1,39 0,68 1,45 0,65 0,80 0,71 0,02 3,66 0,86 0,52 0,01 2,55 

 80 2-nonanone  D2 ketone 0,83 *** 1,24 0,53 1,42 0,68 0,77 0,69 0,00 3,39 0,79 0,51 0,01 2,01 

 81 2-pentadecanone  A ketone 0,71 *** 2,03 2,39 1,46 1,45 0,99 1,44 0,02 6,32 0,72 1,06 0,01 5,06 

 82 2-pentanone  D2 ketone 0,76 *** 1,55 0,98 1,63 0,75 0,82 1,18 0,01 6,73 0,83 0,72 0,01 3,62 

 83 2-tridecanone  D2 ketone 0,64 *** 1,27 0,77 1,05 0,84 0,73 0,76 0,01 4,06 0,57 0,55 0,01 2,62 

 84 2-undecanone  D2 ketone 0,66 *** 1,26 0,58 1,32 0,97 0,91 0,83 0,02 4,32 0,71 0,51 0,02 2,35 

 85 4-tridecanone  D2 ketone 0,76 *** 1,26 1,10 1,37 1,08 1,17 1,33 0,48 9,58 1,10 0,95 0,45 5,27 

 86 6-methyl-5-hepten-2-one  C ketone 0,63 *** 0,85 0,31 1,00 0,38 1,06 0,46 0,29 2,46 1,37 0,44 0,35 2,82 

 87 Acetone  C ketone 0,74 *** 1,46 0,60 0,94 0,57 1,08 0,66 0,13 3,43 0,79 0,44 0,08 2,02 

 88 Acetophenone Benzoid D1 ketone 0,76 *** 1,68 0,65 1,35 0,70 1,11 0,77 0,07 3,34 1,04 1,21 0,09 10,73 

 89 α-ionone  D2 ketone 0,51 ** 1,67 0,58 1,63 1,19 1,39 1,17 0,16 5,31 1,19 0,90 0,21 4,91 

 90 β-ionone  D2 ketone 0,55 ** 1,48 0,64 0,88 0,40 1,26 0,68 0,23 3,46 0,98 0,43 0,13 1,98 

 91 (Z)-geranyl acetone  D2 ketone 0,32 ns 1,08 0,56 0,98 0,40 1,09 0,57 0,19 3,10 1,09 0,43 0,29 2,57 

→ 
92 γ-decalactone  

D2 lactone 
0,75 

*** 
2,05 1,25 14,31 

37,5

5 0,96 1,59 0,01 

10,3

4 2,36 

11,7

2 0,01 

119,9

6 

 
93 α-farnesene Terpenoids 

D2 
terpenoi

d 0,55 
** 

1,72 1,84 1,60 1,06 1,27 1,36 0,04 6,96 1,01 1,01 0,14 6,68 

 
94 α-pinene Terpenoids 

C 
terpenoi

d 0,76 
*** 

1,10 0,41 0,61 0,23 1,45 0,86 0,32 4,14 1,11 1,03 0,14 6,00 

 95 Limonene Terpenoids C terpenoi 0,31 ns 1,25 0,52 0,79 0,34 1,05 0,78 0,36 5,54 0,86 0,32 0,34 1,89 
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d 

→ 
96 

Linalool Terpenoids 
C 

terpenoi

d 0,78 
*** 

1,06 0,33 0,72 0,35 1,32 1,44 0,25 9,92 1,70 1,98 0,31 11,65 

 
97 

Myrtenol Terpenoids 
C 

terpenoi

d 0,64 
*** 

1,88 0,48 0,78 0,29 1,10 0,64 0,17 3,18 0,98 1,06 0,17 7,86 

 
98 

Nerol Terpenoids 
C 

terpenoi

d 0,84 
*** 

1,40 0,36 0,77 0,21 1,08 0,71 0,05 3,61 1,21 1,12 0,01 5,88 

→ 
99 

Nerolidol Terpenoids 
C 

terpenoi

d 0,95 
*** 

1,00 0,00 1,00 0,00 1,24 0,94 1,00 6,73 1,20 0,77 1,00 5,83 

 
100 

Terpineol Terpenoids 
C 

terpenoi

d 0,25 
ns 

1,25 0,36 1,04 0,31 1,18 0,40 0,43 2,33 1,20 0,68 0,30 3,80 

 1004 

 1005 

 1006 

 1007 

 1008 

Table 2 QTL for volatile compounds detected in a F. vesca NIL collection. 1009 

 Compound direction  qtl (cM) shorter NIL t-test (corrected 

p.value) 

LOD % explained 

variance 

stable 

 (E)-2-decenal down LG7:0-26 Fb7:0-27 <0,05 4.64 46% 1 

 (E)-2-decenal down LG7:27-59 Fb7:0-59 <0,05 6.14 56% 1 

 (E)-2-heptenal down LG7:0-10 Fb7:0-10 <0,05 2.10 25% 1 

 (E)-2-heptenal up LG5:50-76 Fb5:50-76 <0,05 15.17 46-87% 2 

 (E)-2-hexen-1-ol down LG5:50-76 Fb5:50-76 <0,05 15.66 63-88% 2 

→ (E)-2-hexenal down LG5:50-76 Fb5:50-76 <0,05 16.04 74-88% 2 

→ (E)-2-hexenyl acetate down LG5:50-76 Fb5:50-76 <0,05 16.75 82-89% 2 

 (E)-2-nonenal down LG5:50-76 Fb5:50-76 <0,05 4.59 46% 1 
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 (E)-2-octenal down LG7:52-59 Fb7:52-59 <0,05 2.61 30% 1 

 (E)-2-pentenal down LG7:0-10 Fb7:0-10 <0,05 2.91 30-32% 2 

→ (Z)-3-hexenal up LG5:50-76 Fb5:50-76 <0,05 14.76 58-86% 2 

→ (Z)-3-hexenyl acetate up LG5:50-76 Fb5:50-76 <0,05 5.68 44-53% 2 

 1-decanol down LG5:0-11 Fb5:0-11 <0,05 1.86 16-22% 2 

 1-decanol down LG3:8-15 Fb3:0-15 <0,05 <1,80 2-5% 2 

 1-decanol down LG4:20-44 Fb4:0-44 <0,05 <1,80 1-5% 2 

 1-hexanol up LG5:50-76 Fb5:50-76 <0,05 1.99 23% 1 

 1-methylbutyl butanoate down LG5:11-35 Fb5:0-35 <0,05 <1,80 10-11% 2 

 1-methylbutyl butanoate down LG7:0-10 Fb7:0-10 <0,05 <1,80 2-3% 2 

 1-methylhexyl acetate down LG4:9-44 Fb4:0-44 <0,05 2.68 30% 1 

 1-methyloctyl butanoate down LG2:0-30 Fb2:0-30 <0,05 <1,80 7-13% 2 

 1-methyloctyl butanoate down LG5:11-35 Fb5:0-35 <0,05 <1,80 17-21% 2 

 1-octanol down LG1:26-61 Fb1:26-61 <0,05 <1,80 1-3% 2 

 1-octanol down LG2:0-30 Fb2:0-30 <0,05 <1,80 10-16% 2 

 1-octanol down LG5:11-35 Fb5:0-35 <0,05 <1,80 5-17% 2 

 1-penten-3-ol down LG7:0-10 Fb7:0-10 <0,05 5.25 51% 1 

 1-penten-3-one down LG7:0-10 Fb7:0-10 <0,05 3.97 42% 1 

 2,1-pentenyl furan down LG7:0-10 Fb7:0-10 <0,05 4.45 36-45% 2 

 2,3-butanedioldiacetate T up LG7:0-10 Fb7:0-10 <0,05 2.49 6-28% 2 

 2-heptanol down LG4:9-44 Fb4:0-44 <0,05 1.94 23% 1 

 2-methylbutyl acetate down LG7:43-59 Fb7:43-59 <0,05 <1,80 7-8% 2 

 2-nonanol down LG1:26-61 Fb1:26-61 <0,05 <1,80 1% 2 

 2-nonanol down LG5:11-35 Fb5:0-35 <0,05 <1,80 13-15% 2 

 2-nonanol down LG4:9-44 Fb4:0-44 <0,05 4.95 48% 1 

 2-nonanone down LG4:9-44 Fb4:0-44 <0,05 6.48 58% 1 

 2-pentanone down LG4:9-44 Fb4:0-44 <0,05 2.09 25% 1 
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 2-pentylfuran down LG7:0-10 Fb7:0-10 <0,05 3.16 35% 1 

 2-pentylfuran up LG2:0-30 Fb2:0-30 <0,05 3.16 21-35% 2 

 2-tridecanol T down LG3:8-15 Fb3:0-15 <0,05 <1,80 3-17% 2 

 2-undecanol T down LG4:20-44 Fb4:0-44 <0,05 <1,80 1-15% 2 

 2-undecanol T down LG5:11-35 Fb5:0-35 <0,05 <1,80 18-20% 2 

 2-undecanone T down LG4:20-44 Fb4:0-44 <0,05 <1,80 2-31% 2 

 3-methyl-2-butenyl acetate up LG3:54-94 Fb3:54-94 <0,05 2.07 11-24% 2 

 3-methyl-2-butenyl acetate up LG2:39-45 Fb2:39-47 <0,05 5.54 5-49% 2 

 3-methylbutyl acetate up LG3:54-94 Fb3:54-94 <0,05 3.29 36% 1 

 acetone down LG4:9-44 Fb4:0-44 <0,05 2.24 26% 1 

 acetone up LG5:50-76 Fb5:50-76 <0,05 2.99 33% 1 

 acetophenone down LG3:54-94 Fb3:54-94 <0,05 1.80 14-21% 2 

 acetophenone down LG4:0-20 Fb4:0-20 <0,05 <1,80 6-15% 2 

 acetophenone down LG6:101-101 Fb6:101-101 <0,05 <1,80 14-20% 2 

 acetophenone down LG7:0-10 Fb7:0-10 <0,05 <1,80 8-19% 2 

 a-farnesene down LG4:20-44 Fb4:0-44 <0,05 2.29 10-26% 2 

 a-farnesene down LG3:8-15 Fb3:0-15 <0,05 <1,80 16% 2 

 a-ionone down LG1:26-61 Fb1:26-61 <0,05 3.35 16-36% 2 

 a-pinene up LG5:0-11 Fb5:0-11 <0,05 4.20 35-42% 2 

 benzaldehyde up LG2:0-30 Fb2:0-30 <0,05 <1,80 13-19% 2 

 benzyl acetate down LG7:0-10 Fb7:0-10 <0,05 2.26 15-26% 2 

 benzyl acetate down LG6:101-101 Fb6:101-101 <0,05 <1,80 18-21% 2 

 b-ionone down LG1:26-61 Fb1:26-61 <0,05 2.58 18-30% 2 

→ butyl acetate up LG1:26-61 Fb1:26-61 <0,05 <1,80 6-15% 2 

→ butyl butanoate down LG5:11-35 Fb5:0-35 <0,05 3.51 30-38% 2 

→ butyl butanoate down LG7:0-10 Fb7:0-10 <0,05 <1,80 1-2% 2 

 butyl hexanoate down LG5:0-11 Fb5:0-11 <0,05 3.26 30-35% 2 
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 butyl hexanoate down LG2:0-30 Fb2:0-30 <0,05 <1,80 19-20% 2 

 butyl hexanoate up LG7:0-10 Fb7:0-10 <0,05 <1,80 11-14% 2 

 cinnamyl acetate down LG3:54-94 Fb3:54-94 <0,05 <1,80 5-8% 2 

 cinnamyl acetate down LG7:0-10 Fb7:0-10 <0,05 <1,80 4-6% 2 

 decanal up LG4:0-20 Fb4:0-20 <0,05 2.51 29% 1 

 decyl acetate down LG5:11-35 Fb5:0-35 <0,05 1.80 20-22% 2 

 decyl acetate down LG4:20-44 Fb4:0-44 <0,05 <1,80 1-16% 2 

 ethanol up LG7:0-10 Fb7:0-10 <0,05 3.36 36% 1 

 ethyl 2-hexenoate down LG5:11-35 Fb5:0-35 <0,05 <1,80 15-18% 2 

→ ethyl butanoate down LG7:0-10 Fb7:0-10 <0,05 <1,80 3-10% 2 

 ethyl decanoate down LG1:26-61 Fb1:26-61 <0,05 <1,80 2-4% 2 

 ethyl decanoate up LG7:0-10 Fb7:0-10 <0,05 3.59 10-38% 2 

 ethyl dodecanoate down LG2:0-30 Fb2:0-30 <0,05 <1,80 4-15% 2 

 ethyl dodecanoate up LG7:0-10 Fb7:0-10 <0,05 3.57 5-38% 2 

→ ethyl hexanoate down LG1:26-61 Fb1:26-61 <0,05 <1,80 1-3% 2 

 ethyl methylthioacetate T down LG7:0-10 Fb7:0-10 <0,05 1.84 1-22% 2 

 ethyl octanoate down LG1:26-61 Fb1:26-61 <0,05 <1,80 1-4% 2 

 ethyl octanoate up LG7:0-10 Fb7:0-10 <0,05 3.19 10-35% 2 

 eugenol up LG5:50-76 Fb5:50-76 <0,05 4.44 33-45% 2 

 hexanal up LG3:54-94 Fb3:54-94 <0,05 <1,80 6-7% 2 

 hexyl butanoate down LG5:11-35 Fb5:0-35 <0,05 4.55 34-46% 2 

 hexyl butanoate down LG7:0-10 Fb7:0-10 <0,05 <1,80 1% 2 

 hexyl hexanoate down LG2:0-30 Fb2:0-30 <0,05 3.53 27-38% 2 

 limonene down LG7:0-10 Fb7:0-10 <0,05 2.03 21-24% 2 

→ linalool up LG3:0-8 Fb3:0-8 <0,05 6.64 54-59% 2 

→ mesifurane down LG7:26-43 Fb7:26-45 <0,05 7.27 16-62% 2 

→ methyl 2-aminobenzoate T down LG7:0-10 Fb7:0-10 <0,05 2.54 8-29% 2 
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→ methyl 2-aminobenzoate T down LG5:11-35 Fb5:0-35 <0,05 6.79 33-60% 2 

 methyl 2-hexenoate down LG5:11-35 Fb5:0-35 <0,05 3.26 14-35% 2 

 methyl 3-hydroxyoctanoate T down LG3:8-15 Fb3:0-15 <0,05 <1,80 4-6% 2 

 methyl benzoate down LG3:54-94 Fb3:54-94 <0,05 <1,80 10-11% 2 

 methyl benzoate down LG6:101-101 Fb6:101-101 <0,05 <1,80 13-15% 2 

 methyl benzoate down LG7:0-10 Fb7:0-10 <0,05 <1,80 11-21% 2 

 methyl benzoate up LG1:26-61 Fb1:26-61 <0,05 <1,80 14-18% 2 

→ methyl butanoate down LG5:11-35 Fb5:0-35 <0,05 2.79 16-31% 2 

→ methyl butanoate down LG7:0-10 Fb7:0-10 <0,05 <1,80 1-19% 2 

→ methyl cinnamate T up LG2:0-30 Fb2:0-30 <0,05 2.81 18-32% 2 

 methyl decanoate down LG5:0-11 Fb5:0-11 <0,05 2.49 24-28% 2 

 methyl decanoate down LG4:9-44 Fb4:0-44 <0,05 2.71 31% 1 

 methyl dodecanoate down LG1:26-61 Fb1:26-61 <0,05 <1,80 1% 2 

 methyl dodecanoate down LG2:0-30 Fb2:0-30 <0,05 <1,80 8-18% 2 

 methyl dodecanoate down LG5:11-35 Fb5:0-35 <0,05 <1,80 13-14% 2 

 methyl dodecanoate up LG7:0-10 Fb7:0-10 <0,05 2.80 31% 1 

→ methyl hexanoate down LG5:11-35 Fb5:0-35 <0,05 5.54 35-52% 2 

 methyl octanoate down LG5:0-11 Fb5:0-11 <0,05 4.83 43-48% 2 

 myrtenol down LG7:0-10 Fb7:0-10 <0,05 4.32 8-44% 2 

 myrtenol down LG3:8-15 Fb3:0-15 <0,05 <1,80 2-7% 2 

 myrtenol up LG5:50-76 Fb5:50-76 <0,05 6.71 60% 1 

→ myrtenyl acetate down LG5:11-35 Fb5:0-35 <0,05 4.67 45-47% 2 

→ myrtenyl acetate down LG6:101-101 Fb6:101-101 <0,05 <1,80 1% 2 

 nerol down LG4:9-20 Fb4:0-20 <0,05 4.40 17-45% 2 

 nerol down LG7:43-59 Fb7:43-59 <0,05 <1,80 7-11% 2 

 nerol up LG5:50-76 Fb5:50-76 <0,05 4.33 38-44% 2 

→ nerolidol up LG3:0-8 Fb3:0-8 <0,05 22.38 76-95% 2 
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 nonanal down LG7:43-59 Fb7:43-59 <0,05 5.16 50% 1 

 octanal down LG7:43-59 Fb7:43-59 <0,05 2.85 32% 1 

 octyl acetate down LG5:11-35 Fb5:0-35 <0,05 2.40 25-27% 2 

 octyl butanoate down LG2:0-30 Fb2:0-30 <0,05 2.11 21-25% 2 

 octyl hexanoate down LG2:0-30 Fb2:0-30 <0,05 1.95 21-23% 2 

 octyl hexanoate down LG1:26-61 Fb1:26-61 <0,05 <1,80 1-2% 2 

 octyl hexanoate down LG5:0-11 Fb5:0-11 <0,05 <1,80 13-20% 2 

 pentyl acetate up LG1:26-61 Fb1:26-61 <0,05 1.99 8-23% 2 

 propyl butanoate down LG7:0-10 Fb7:0-10 <0,05 2.81 5-31% 2 

 propyl butanoate up LG1:26-61 Fb1:26-61 <0,05 <1,80 7-13% 2 

 1010 

 1011 

 1012 

 1013 

Table 3 Differentially expressed genes (DEG) summary 1014 

   a2 

NIL vs. RV Introgression 

size (Mb)  

DEG blast 

homologies 

Up 

regulated  

Down 

regulated  

Fb5:0-35  6.51 257 218 106 151 

Fb7:0-10  14.20 442 367 204 234 

 1015 

 1016 

 1017 
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 1020 

Table 4 Metabolic pathways affected 1021 

NIL vs. 

RV 

pathway p-value 

Fb5:0-35 glutathione biosynthesis 1.51E-02 

Fb5:0-35 ß-alanine biosynthesis I 1.58E-02 

Fb5:0-35 farnesene biosynthesis 2.22E-02 

Fb5:0-35 cis-zeatin biosynthesis 2.26E-02 

Fb5:0-35 linalool biosynthesis 3.41E-02 

Fb5:0-35 g-glutamyl cycle 4.48E-02 

Fb7:0-10 valine degradation I 7.67E-03 

Fb7:0-10 divinyl ether biosynthesis II (13-LOX) 1.89E-02 

Fb7:0-10 13-LOX and 13-HPL pathway 1.89E-02 

Fb7:0-10 asparagine degradation I 3.38E-02 

Fb7:0-10 homogalacturonan degradation 4.82E-02 

 1022 

 1023 

 1024 

 1025 

 1026 

 1027 

 1028 

 1029 
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Table 5 Selected candidate genes 1030 

 1031 

comparison 

vs. RV 

gene id
a
 log2(fold 

change)
b
 

p-

value 

p-

adjusted 

blast hit
c
 blast hit protein description predicted function in 

reference annotation (a1) 

Fb5:0-35 maker-LG4-

augustus-gene-

138.110-mRNA-1 

-Inf 1.76E-

10 

6.05E-08 PAT1_ARATH Scarecrow-like transcription 

factor PAT1 

 

Fb5:0-35 mrna09934.1-v1.0-

hybrid 

-11.82 4.56E-

44 

8.49E-40 F4JBC7_ARATH HXXXD-type acyl-

transferase-like protein  

Vinorine synthase 

(probable) 

Fb5:0-35 maker-LG4-snap-

gene-135.249-

mRNA-1 

-2.09 2.79E-

05 

3.74E-03 STPS1_SANAL Sesquiterpene synthase (+)-delta-cadinene synthase 

isozyme A (D-cadinene 

synthase A) (probable) 

Fb5:0-35 augustus_masked-

LG6-processed-

gene-175.2-mRNA-

1 

1.62 5.65E-

04 

4.81E-02 EIF3C_ARATH Eukaryotic translation 

initiation factor 3 subunit C  

 

Fb5:0-35 mrna32494.1-v1.0-

hybrid 

1.68 6.21E-

04 

5.20E-02 GL3_ARATH Transcription factor GLABRA 

3 

Transcription factor GLABRA 

3 (bHLH 1) (putative) 

Fb5:0-35 maker-LG4-

augustus-gene-

136.257-mRNA-1 

3.97 2.44E-

12 

9.39E-10 MFS_MENPI (+)-menthofuran synthase   

Fb7:0-10 maker-LG7-snap-

gene-1.135-mRNA-

1 

-Inf 5.34E-

04 

2.88E-02 F4KGA3_ARATH Putative PHD finger 

transcription factor  

 

Fb7:0-10 maker-LG7-snap-

gene-129.164-

mRNA-1 

-Inf 7.03E-

08 

8.53E-06 ZDH22_ARATH Protein S-acyltransferase 24  

Fb7:0-10 snap_masked-LG7-

processed-gene-

42.93-mRNA-1 

-7.15 2.77E-

09 

4.07E-07 VRN1_ARATH B3 domain-containing 

transcription factor VRN1 

 

Fb7:0-10 mrna23606.1-v1.0-

hybrid 

-6.85 1.24E-

14 

3.45E-12 LOX2_ORYSJ Linoleate 9S-lipoxygenase 2 3-deoxy-manno-

octulosonate 

cytidylyltransferase (CKS) 

(similar to) 

Fb7:0-10 augustus_masked-

LG7-processed-

gene-126.10-

mRNA-1 

-6.69 2.99E-

05 

2.20E-03 TA12B_ARATH Transcription initiation 

factor TFIID subunit 12b 
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Fb7:0-10 mrna34011.1-v1.0-

hybrid 

-6.02 1.38E-

25 

1.52E-22 F4JBC7_ARATH HXXXD-type acyl-

transferase-like protein  

BAHD acyltransferase 

At5g47980 (probable) 

Fb7:0-10 maker-LG3-

augustus-gene-

99.141-mRNA-1 

-5.22 2.93E-

10 

4.85E-08 HIBC1_ARATH 3-hydroxyisobutyryl-CoA 

hydrolase 1 

3-hydroxyisobutyryl-CoA 

hydrolase, mitochondrial 

(HIB-CoA hydrolase), 

Precursor (probable) 

Fb7:0-10 augustus_masked-

LG7-processed-

gene-56.12-mRNA-

1 

-4.02 1.56E-

10 

2.72E-08 LOXC2_ORYSJ Probable lipoxygenase 8, 

chloroplastic 

Probable lipoxygenase 8, 

chloroplastic, Precursor 

(similar to) 

Fb7:0-10 maker-LG7-

augustus-gene-

88.90-mRNA-1 

-3.90 4.37E-

13 

9.30E-11 HIBC1_ARATH 3-hydroxyisobutyryl-CoA 

hydrolase 1 

3-hydroxyisobutyryl-CoA 

hydrolase, mitochondrial 

(HIB-CoA hydrolase), 

Precursor (probable) 

Fb7:0-10 augustus_masked-

LG7-processed-

gene-56.13-mRNA-

1 

-3.51 6.02E-

09 

8.65E-07 LOXC2_ORYSJ Probable lipoxygenase 8, 

chloroplastic 

Probable lipoxygenase 8, 

chloroplastic, Precursor 

(similar to) 

Fb7:0-10 augustus_masked-

LG3-processed-

gene-102.20-

mRNA-1 

-2.30 6.74E-

06 

5.72E-04 ERF61_ARATH Ethylene-responsive 

transcription factor ERF061 

 

Fb7:0-10 maker-LG5-snap-

gene-206.105-

mRNA-1 

-1.97 3.70E-

05 

2.70E-03 GLYC7_ARATH Serine 

hydroxymethyltransferase 7 

Serine 

hydroxymethyltransferase 2 

(SHMT 2) (probable) 

Fb7:0-10 maker-LG7-

augustus-gene-

95.135-mRNA-1 

-1.79 2.12E-

04 

1.29E-02 VRN1_ARATH B3 domain-containing 

transcription factor VRN1 

 

Fb7:0-10 genemark-LG7-

processed-gene-

22.65-mRNA-1 

-1.75 1.91E-

04 

1.19E-02 F4JW79_ARATH Kow domain-containing 

transcription factor 1  

 

Fb7:0-10 augustus_masked-

LG6-processed-

gene-175.2-mRNA-

1 

-1.56 1.31E-

03 

6.03E-02 EIF3C_ARATH Eukaryotic translation 

initiation factor 3 subunit C  

 

Fb7:0-10 maker-LG3-

augustus-gene-

10.249-mRNA-1 

0.44 3.61E-

01 

1.00E+00 ASAT1_ARATH Acyl-CoA--sterol O-

acyltransferase 1 

Probable long-chain-alcohol 

O-fatty-acyltransferase 5 

Fb7:0-10 maker-LG6-

augustus-gene-

341.179-mRNA-1 

1.86 1.53E-

03 

6.87E-02 TPS10_RICCO Terpene synthase 10 Myrcene synthase, 

chloroplastic, Precursor 

(probable) 

Fb7:0-10 augustus_masked- 2.83 1.59E- 7.05E-02 ZDH14_ARATH Probable protein S- Probable S-acyltransferase 
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LG7-processed-

gene-50.27-mRNA-

1 

03 acyltransferase 14 At3g60800 (putative) 

Fb7:0-10 maker-LG5-

augustus-gene-

34.145-mRNA-1 

3.14 5.88E-

04 

3.12E-02 LOX2_ARATH Lipoxygenase 2, 

chloroplastic 

Lipoxygenase 2, 

chloroplastic (AtLOX2), 

Precursor (similar to) 

Fb7:0-10 maker-LG7-snap-

gene-91.103-

mRNA-1 

3.35 3.42E-

05 

2.50E-03 MYC2_ARATH Transcription factor MYC2  

Fb7:0-10 maker-LG7-

augustus-gene-

8.110-mRNA-1 

6.44 4.87E-

22 

2.37E-19 NAC86_ARATH NAC domain-containing 

protein 86  

 

Fb7:0-10 mrna23453.1-v1.0-

hybrid 

11.01 2.67E-

20 

2.02E-17 O23392_ARATH HXXXD-type acyl-

transferase family protein  

Vinorine synthase 

(probable) 

Fb7:0-10 mrna34009.1-v1.0-

hybrid 

13.29 3.28E-

39 

6.22E-35 F4JBC7_ARATH HXXXD-type acyl-

transferase-like protein  

Vinorine synthase 

(probable) 

Fb7:0-10 augustus_masked-

LG7-processed-

gene-21.17-mRNA-

1 

Inf 3.17E-

05 

2.33E-03 HIBC1_ARATH 3-hydroxyisobutyryl-CoA 

hydrolase 1 

 

a
 gene id is according to F. vesca annotation version 2 nomenclature 1032 

b
 log2(fold change) values use as reference RV, so negative values indicate down-regulation in NIL and positive values up-regulation in NIL 1033 

c
 best blast hit found for the DEG predicted proteins. Codes are according to UniProtUK entries 1034 

1035 
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 1036 

 1037 

Table 6 Polymorphism summary 1038 

 Fb5:0-35 Fb7:0-10 total 

Introgression cM 35 10  

Introgression bp 5.593.948 15.652.556  

SNPs vs. RV 6622 10517 17139 

Indels vs. RV 191 333 524 

total 

polymorphisms 
6813 10850 17663 

 1039 

 1040 
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• Volatile composition of wild strawberry as model of octoploide cultivated fruit. 
 

• NIL collection a tool to explore genetic variability of fruit quality traits and 
aroma volatiles 
 

• 50 major QTLs controlling volatile accumulation to increase wild strawberry 
flavour   
 

• Two wild strawberry genome regions harbor key aroma volatile QTL 
 

• Differences in gene expression between NILs show possible genes important to 

enhance aroma.  
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