12 research outputs found

    cDNA array-CGH profiling identifies genomic alterations specific to stage and MYCN-amplification in neuroblastoma

    Get PDF
    BACKGROUND: Recurrent non-random genomic alterations are the hallmarks of cancer and the characterization of these imbalances is critical to our understanding of tumorigenesis and cancer progression. RESULTS: We performed array-comparative genomic hybridization (A-CGH) on cDNA microarrays containing 42,000 elements in neuroblastoma (NB). We found that only two chromosomes (2p and 12q) had gene amplifications and all were in the MYCN amplified samples. There were 6 independent non-contiguous amplicons (10.4–69.4 Mb) on chromosome 2, and the largest contiguous region was 1.7 Mb bounded by NAG and an EST (clone: 757451); the smallest region was 27 Kb including an EST (clone: 241343), NCYM, and MYCN. Using a probabilistic approach to identify single copy number changes, we systemically investigated the genomic alterations occurring in Stage 1 and Stage 4 NBs with and without MYCN amplification (stage 1-, 4-, and 4+). We have not found genomic alterations universally present in all (100%) three subgroups of NBs. However we identified both common and unique patterns of genomic imbalance in NB including gain of 7q32, 17q21, 17q23-24 and loss of 3p21 were common to all three categories. Finally we confirm that the most frequent specific changes in Stage 4+ tumors were the loss of 1p36 with gain of 2p24-25 and they had fewer genomic alterations compared to either stage 1 or 4-, indicating that for this subgroup of poor risk NB requires a smaller number of genomic changes are required to develop the malignant phenotype. CONCLUSIONS: cDNA A-CGH analysis is an efficient method for the detection and characterization of amplicons. Furthermore we were able to detect single copy number changes using our probabilistic approach and identified genomic alterations specific to stage and MYCN amplification

    Early transcriptional programming links progression to hepatitis C virus-induced severe liver disease in transplant patients

    No full text
    International audienceLiver failure resulting from chronic hepatitis C virus (HCV) infection is a major cause for liver transplantation worldwide. Recurrent infection of the graft is universal in HCV patients after transplant and results in a rapid progression to severe fibrosis and end-stage liver disease in one third of all patients. No single clinical variable, or combination thereof, has, so far, proven accurate in identifying patients at risk of hepatic decompensation in the transplant setting. A combination of longitudinal, dimensionality reduction and categorical analysis of the transcriptome from 111 liver biopsy specimens taken from 57 HCV-infected patients over time identified a molecular signature of gene expression of patients at risk of developing severe fibrosis. Significantly, alterations in gene expression occur before histologic evidence of liver disease progression, suggesting that events that occur during the acute phase of infection influence patient outcome. Additionally, a common precursor state for different severe clinical outcomes was identified. Conclusion: Based on this patient cohort, incidence of severe liver disease is a process initiated early during HCV infection of the donor organ. The probable cellular network at the basis of the initial transition to severe liver disease was identified and characterized. (HEPATOLOGY 2012;56:1727

    Proteome and computational analyses reveal new insights into the mechanisms of hepatitis C virus-mediated liver disease posttransplantation

    No full text
    International audienceLiver transplant tissues offer the unique opportunity to model the longitudinal protein abundance changes occurring during hepatitis C virus (HCV)-associated liver disease progression in vivo. In this study, our goal was to identify molecular signatures, and potential key regulatory proteins, representative of the processes influencing early progression to fibrosis. We performed global protein profiling analyses on 24 liver biopsy specimens obtained from 15 HCV+ liver transplant recipients at 6 and/or 12 months posttransplantation. Differentially regulated proteins associated with early progression to fibrosis were identified by analysis of the area under the receiver operating characteristic curve. Analysis of serum metabolites was performed on samples obtained from an independent cohort of 60 HCV+ liver transplant patients. Computational modeling approaches were applied to identify potential key regulatory proteins of liver fibrogenesis. Among 4,324 proteins identified, 250 exhibited significant differential regulation in patients with rapidly progressive fibrosis. Patients with rapid fibrosis progression exhibited enrichment in differentially regulated proteins associated with various immune, hepatoprotective, and fibrogenic processes. The observed increase in proinflammatory activity and impairment in antioxidant defenses suggests that patients who develop significant liver injury experience elevated oxidative stresses. This was supported by an independent study demonstrating the altered abundance of oxidative stress-associated serum metabolites in patients who develop severe liver injury. Computational modeling approaches further highlight a potentially important link between HCV-associated oxidative stress and epigenetic regulatory mechanisms impacting on liver fibrogenesis. Conclusion: Our proteome and metabolome analyses provide new insights into the role for increased oxidative stress in the rapid fibrosis progression observed in HCV+ liver transplant recipients. These findings may prove useful in prognostic applications for predicting early progression to fibrosis. (HEPATOLOGY 2012;56:2838

    A mouse to human search for plasma proteome changes associated with pancreatic tumor development.

    Get PDF
    The complexity and heterogeneity of the human plasma proteome have presented significant challenges in the identification of protein changes associated with tumor development. Refined genetically engineered mouse (GEM) models of human cancer have been shown to faithfully recapitulate the molecular, biological, and clinical features of human disease. Here, we sought to exploit the merits of a well-characterized GEM model of pancreatic cancer to determine whether proteomics technologies allow identification of protein changes associated with tumor development and whether such changes are relevant to human pancreatic cancer.Plasma was sampled from mice at early and advanced stages of tumor development and from matched controls. Using a proteomic approach based on extensive protein fractionation, we confidently identified 1,442 proteins that were distributed across seven orders of magnitude of abundance in plasma. Analysis of proteins chosen on the basis of increased levels in plasma from tumor-bearing mice and corroborating protein or RNA expression in tissue documented concordance in the blood from 30 newly diagnosed patients with pancreatic cancer relative to 30 control specimens. A panel of five proteins selected on the basis of their increased level at an early stage of tumor development in the mouse was tested in a blinded study in 26 humans from the CARET (Carotene and Retinol Efficacy Trial) cohort. The panel discriminated pancreatic cancer cases from matched controls in blood specimens obtained between 7 and 13 mo prior to the development of symptoms and clinical diagnosis of pancreatic cancer.Our findings indicate that GEM models of cancer, in combination with in-depth proteomic analysis, provide a useful strategy to identify candidate markers applicable to human cancer with potential utility for early detection
    corecore