12 research outputs found

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    On an ONU for full-duplex 10.5 Gbps/lambda with shared delay interferometer for format conversion and chirp filtering

    No full text
    Chirped IRZ downstream is used together with a delay interferometer and a RSOA at a low complexity ONU for full-duplex 10.5Gbps transmission on a single wavelength, supported by modulation format conversion and optical offset filtering.Peer ReviewedPostprint (published version

    On an ONU for full-duplex 10.5 Gbps/lambda with shared delay interferometer for format conversion and chirp filtering

    No full text
    Chirped IRZ downstream is used together with a delay interferometer and a RSOA at a low complexity ONU for full-duplex 10.5Gbps transmission on a single wavelength, supported by modulation format conversion and optical offset filtering.Peer Reviewe

    Cardiomyopathies in children: An overview

    No full text
    Paediatric cardiomyopathies form a heterogeneous group of disorders characterized by structural and electrical abnormalities of the heart muscle, commonly due to a gene variant of the myocardial cell structure. Mostly inherited as a dominant or occasionally recessive trait, they might be part of a syndromic disorder of underlying metabolic or neuromuscular defects or combine early developing extracardiac abnormalities (i.e., Naxos disease). The annual incidence of 1 per 100,000 children appears higher during the first two years of life. Dilated and hypertrophic cardiomyopathy phenotypes share an incidence of 60% and 25%, respectively. Arrhythmogenic right ventricular cardiomyopathy (ARVC), restrictive cardiomyopathy, and left ventricular noncompaction are less commonly diagnosed. Adverse events such as severe heart failure, heart transplantation, or death usually appear early after the initial presentation. In ARVC patients, high-intensity aerobic exercise has been associated with worse clinical outcomes and increased penetrance in at-risk genotype-positive relatives. Acute myocarditis in children has an incidence of 1.4–2.1 cases/per 100,000 children per year, with a 6–14% mortality rate during the acute phase. A genetic defect is considered responsible for the progression to dilated cardiomyopathy phenotype. Similarly, a dilated or arrhythmogenic cardiomyopathy phenotype might emerge with an episode of acute myocarditis in childhood or adolescence. This review provides an overview of childhood cardiomyopathies focusing on clinical presentation, outcome, and pathology

    Prognostic Role of Circulating Tumor Cells in Patients with Metastatic Castration-Resistant Prostate Cancer Receiving Cabazitaxel: A Prospective Biomarker Study

    No full text
    Rational: Circulating tumor cells (CTCs) appear to be a promising tool for predicting the clinical outcome and monitoring the response to treatment in patients with solid tumors. The current study assessed the clinical relevance of monitoring CTCs in patients with metastatic castration resistant prostate cancer (mCRPC) treated with cabazitaxel. Patients and Methods: Patients with histologically confirmed mCRPC who were previously treated with a docetaxel-containing regimen and experienced disease progression were enrolled in this multicenter prospective study. CTC counts were enumerated using the CellSearch system at baseline (before cabazitaxel initiation), after one cabazitaxel cycle (post 1st cycle) and at disease progression (PD). Patients were stratified into predetermined CTC-positive and CTC-negative groups. The phenotypic characterization was performed using double immunofluorescence staining with anti-CKs and anti-Ki67, anti-M30 or anti-vimentin antibodies. Results: The median PFS and OS were 4.0 (range, 1.0–17.9) and 14.5 (range, 1.2–33.9) months, respectively. At baseline, 48 out of 57 (84.2%) patients had ≄1 CTCs/7.5 mL of peripheral blood (PB) and 37 (64.9%) had ≄5 CTCs/7.5 mL of PB. After one treatment cycle, 30 (75%) out of the 40 patients with available measurements had ≄1 detectable CTC/7.5 mL of PB and 24 (60%) ≄ 5CTCs/7.5 mL of PB; 12.5% of the patients with detectable CTCs at the baseline sample had no detectable CTCs after one treatment cycle. The detection of ≄5CTCs/7.5 mL of PB at baseline and post-cycle 1 was associated with shorter PFS and OS (p = 0.002), whereas a positive CTC status post-cycle 1 strongly correlated with poorer OS irrespective of the CTC cut-off used. Multivariate analysis revealed that the detection of non-apoptotic (CK+/M30−) CTCs at baseline is an independent predictor of shorter OS (p = 0.005). Conclusions: In patients with mCRPC treated with cabazitaxel, CTC counts both at baseline and after the first cycle retain their prognostic significance, implying that liquid biopsy monitoring might serve as a valuable tool for predicting treatment efficacy and survival outcomes

    A Non-Invasive Photonics-Based Device for Monitoring of Diabetic Foot Ulcers: Architectural/Sensorial Components & Technical Specifications

    No full text
    This paper proposes a new photonic-based non-invasive device for managing of Diabetic Foot Ulcers (DFUs) for people suffering from diabetes. DFUs are one of the main severe complications of diabetes, which may lead to major disabilities, such as foot amputation, or even to the death. The proposed device exploits hyperspectral (HSI) and thermal imaging to measure the status of an ulcer, in contrast to the current practice where invasive biopsies are often applied. In particular, these two photonic-based imaging techniques can estimate the biomarkers of oxyhaemoglobin (HbO2) and deoxyhaemoglobin (Hb), through which the Peripheral Oxygen Saturation (SpO2) and Tissue Oxygen Saturation (StO2) is computed. These factors are very important for the early prediction and prognosis of a DFU. The device is implemented at two editions: the in-home edition suitable for patients and the PRO (professional) edition for the medical staff. The latter is equipped with active photonic tools, such as tuneable diodes, to permit detailed diagnosis and treatment of an ulcer and its progress. The device is enriched with embedding signal processing tools for noise removal and enhancing pixel accuracy using super resolution schemes. In addition, a machine learning framework is adopted, through deep learning structures, to assist the doctors and the patients in understanding the effect of the biomarkers on DFU. The device is to be validated at large scales at three European hospitals (Charité–University Hospital in Berlin, Germany; Attikon in Athens, Greece, and Victor Babes in Timisoara, Romania) for its efficiency and performance

    A non-invasive photonics-based device for monitoring of diabetic foot ulcers: Architectural/sensorial components & technical specifications

    No full text
    This paper proposes a new photonic-based non-invasive device for managing of Diabetic Foot Ulcers (DFUs) for people suffering from diabetes. DFUs are one of the main severe complications of diabetes, which may lead to major disabilities, such as foot amputation, or even to the death. The proposed device exploits hyperspectral (HSI) and thermal imaging to measure the status of an ulcer, in contrast to the current practice where invasive biopsies are often applied. In particular, these two photonic-based imaging techniques can estimate the biomarkers of oxyhaemoglobin (HbO2) and deoxyhaemoglobin (Hb), through which the Peripheral Oxygen Saturation (SpO2) and Tissue Oxygen Saturation (StO2) is computed. These factors are very important for the early prediction and prognosis of a DFU. The device is implemented at two editions: the in-home edition suitable for patients and the PRO (professional) edition for the medical staff. The latter is equipped with active photonic tools, such as tuneable diodes, to permit detailed diagnosis and treatment of an ulcer and its progress. The device is enriched with embedding signal processing tools for noise removal and enhancing pixel accuracy using super resolution schemes. In addition, a machine learning framework is adopted, through deep learning structures, to assist the doctors and the patients in understanding the effect of the biomarkers on DFU. The device is to be validated at large scales at three European hospitals (Charité–University Hospital in Berlin, Germany; Attikon in Athens, Greece, and Victor Babes in Timisoara, Romania) for its efficiency and performance
    corecore