388 research outputs found

    Role of Serum Biomarkers in Early Detection of Diabetic Cardiomyopathy in the West Virginian Population

    Get PDF
    Objectives: Diabetic cardiomyopathy (DCM) is an established complication of diabetes mellitus. In West Virginia, the especially high incidence of diabetes and heart failure validate the necessity of developing new strategies for earlier detection of DCM. Since most DCM patients remain asymptomatic until the later stages of the disease when the fibrotic complications become irreversible, we aimed to explore biomarkers that can identify early-stage DCM. Methods: The patients were grouped into 4 categories based on clinical diabetic and cardiac parameters: Control, Diabetes (DM), Diastolic dysfunction (DD), and Diabetes with diastolic dysfunction (DM+DD), the last group being the preclinical DCM group. Results: Echocardiography images indicated severe diastolic dysfunction in patients with DD+DM and DD compared to DM or control patients. In the DM and DM+DD groups, TNFα, isoprostane, and leptin were elevated compared to control (p\u3c0.05), as were clinical markers HDL, glucose and hemoglobin A1C. Fibrotic markers IGFBP7 and TGF-β followed the same trend. The Control group showed higher beneficial levels of adiponectin and bilirubin, which were reduced in the DM and DM+DD groups (p\u3c0.05). Conclusion: The results from our study support the clinical application of biomarkers in diagnosing early stage DCM, which will enable attenuation of disease progression prior to the onset of irreversible complications

    Age- and sex-dependent role of osteocytic pannexin1 on bone and muscle mass and strength

    Get PDF
    Pannexins (Panxs), glycoproteins that oligomerize to form hemichannels on the cell membrane, are topologically similar to connexins, but do not form cell-to-cell gap junction channels. There are 3 members of the family, 1-3, with Panx1 being the most abundant. All Panxs are expressed in bone, but their role in bone cell biology is not completely understood. We now report that osteocytic Panx1 deletion (Panx1Δot) alters bone mass and strength in female mice. Bone mineral density after reaching skeletal maturity is higher in female Panx1Δot mice than in control Panx1fl/fl mice. Further, osteocytic Panx1 deletion partially prevented aging effects on cortical bone structure and mechanical properties. Young 4-month-old female Panx1Δot mice exhibited increased lean body mass, even though pannexin levels in skeletal muscle were not affected; whereas no difference in lean body mass was detected in male mice. Furthermore, female Panx1-deficient mice exhibited increased muscle mass without changes in strength, whereas Panx1Δot males showed unchanged muscle mass and decreased in vivo maximum plantarflexion torque, indicating reduced muscle strength. Our results suggest that osteocytic Panx1 deletion increases bone mass in young and old female mice and muscle mass in young female mice, but has deleterious effects on muscle strength only in males

    2020-05-14 DAILY UNM GLOBAL HEALTH COVID-19 BRIEFING

    Get PDF
    Executive Summary: NM restrictions loosen. NM case count. Navajo Nation case count. 9 state parks open. Sunport revenue loss. Trump projects vaccine delivery. Wisconsin court case. Smokers quit. Ireland reopening. Danish schools open. Philippine typhoon evacuation. PPE-induced pressure injuries and facial dermatoses. U.S. mask stockpile. PPE for surgeons. Intubation time with aerosol box. Consumer spending with social restrictions. Suicide increase expected. Undetected virus homeless. Chinese infection control. 5% Spain infected. Sanitizing booth. Healthcare worker infection routes. Kawasaki disease France. CDC Kawaski guidance. Italian deaths characterized. CDC reopening school guidance. COVID-19 and epistemology. Monitoring misleading claims. UN mental health policy brief. CDC vaccination schedules. Guidelines on managing endoscopy units. COVID-19 lab testing (for lab professionals). Cancer surgery triage. Operating room practices. Orthodontic treatment. 3D printed NP swabs effective. Salt-water irrigation reduces duration. Corticosteroids ineffectual. Vaccines require biomanufacturing infrastructure. French pharm giant promises fair vaccine distribution. 26 new trials registered. LDH, lymphocytes and hs-CRP predict mortality. Fibrinogen higher in SARS. Insulin resistance. Glycemic monitoring. Hemostasis abnormalities. New phobia scale. OR global consensus. Inpatient cognitive assessments are challenging. Loud speech increases transmission. Monkeys present similarly. Human-to-dog transmission. Cat transmission

    Human spermatogenic failure purges deleterious mutation load from the autosomes and both sex chromosomes, including the gene DMRT1

    Get PDF
    Gonadal failure, along with early pregnancy loss and perinatal death, may be an important filter that limits the propagation of harmful mutations in the human population. We hypothesized that men with spermatogenic impairment, a disease with unknown genetic architecture and a common cause of male infertility, are enriched for rare deleterious mutations compared to men with normal spermatogenesis. After assaying genomewide SNPs and CNVs in 323 Caucasian men with idiopathic spermatogenic impairment and more than 1,100 controls, we estimate that each rare autosomal deletion detected in our study multiplicatively changes a man’s risk of disease by 10% (OR 1.10 [1.04–1.16], p,261023), rare X-linked CNVs by 29%, (OR 1.29 [1.11–1.50], p,161023), and rare Y-linked duplications by 88% (OR 1.88 [1.13–3.13], p,0.03). By contrasting the properties of our case-specific CNVs with those of CNV callsets from cases of autism, schizophrenia, bipolar disorder, and intellectual disability, we propose that the CNV burden in spermatogenic impairment is distinct from the burden of large, dominant mutations described for neurodevelopmental disorders. We identified two patients with deletions of DMRT1, a gene on chromosome 9p24.3 orthologous to the putative sex determination locus of the avian ZW chromosome system. In an independent sample of Han Chinese men, we identified 3 more DMRT1 deletions in 979 cases of idiopathic azoospermia and none in 1,734 controls, and found none in an additional 4,519 controls from public databases. The combined results indicate that DMRT1 loss-of-function mutations are a risk factor and potential genetic cause of human spermatogenic failure (frequency of 0.38% in 1306 cases and 0% in 7,754 controls, p = 6.261025). Our study identifies other recurrent CNVs as potential causes of idiopathic azoospermia and generates hypotheses for directing future studies on the genetic basis of male infertility and IVF outcomes.This work was partially funded by the Portuguese Foundation for Science and Technology FCT/MCTES (PIDDAC) and co-financed by European funds (FEDER) through the COMPETE program, research grant PTDC/SAU-GMG/101229/2008. IPATIMUP is an Associate Laboratory of the Portuguese Ministry of Science, Technology, and Higher Education and is partially supported by FCT. AML is the recipient of a postdoctoral fellowship from FCT (SFRH/BPD/73366/2010). CO is supported by a grant from the United States National Institutes of Health (R01 HD21244), JDS is supported by Damon Runyon Clinical Investigator Award, Alex's Lemonade Stand Foundation Epidemiology Award, and the Eunice Kennedy Shriver Children's Health Research Career Development Award NICHD 5K12HD001410. Support for humans studies and specimens were provided by the NIH/NIDDK George M. O'Brien Center for Kidney Disease Kidney Translational Research Core (P30DK079333) grant to Washington University. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Radiative decay of keV-mass sterile neutrino in magnetized electron plasma

    Full text link
    The radiative decay of sterile neutrinos with typical masses of 10 keV is investigated in the presence of an external magnetic field and degenerate electron plasma. Full account is taken of the modified photon dispersion relation relative to vacuum. The limiting cases of relativistic and nonrelativistic plasma are analyzed. The decay rate calculated in a strongly magnetized plasma, as a function of the electron number density, is compared with the unmagnetized plasma limit. It is found that the presence of the strong magnetic field in the electron plasma suppresses the catalyzing influence of the plasma by itself on the sterile-neutrino decay rate

    Genome of the Avirulent Human-Infective Trypanosome—Trypanosoma rangeli

    Get PDF
    Background: Trypanosoma rangeli is a hemoflagellate protozoan parasite infecting humans and other wild and domestic mammals across Central and South America. It does not cause human disease, but it can be mistaken for the etiologic agent of Chagas disease, Trypanosoma cruzi. We have sequenced the T. rangeli genome to provide new tools for elucidating the distinct and intriguing biology of this species and the key pathways related to interaction with its arthropod and mammalian hosts.  Methodology/Principal Findings: The T. rangeli haploid genome is ,24 Mb in length, and is the smallest and least repetitive trypanosomatid genome sequenced thus far. This parasite genome has shorter subtelomeric sequences compared to those of T. cruzi and T. brucei; displays intraspecific karyotype variability and lacks minichromosomes. Of the predicted 7,613 protein coding sequences, functional annotations could be determined for 2,415, while 5,043 are hypothetical proteins, some with evidence of protein expression. 7,101 genes (93%) are shared with other trypanosomatids that infect humans. An ortholog of the dcl2 gene involved in the T. brucei RNAi pathway was found in T. rangeli, but the RNAi machinery is non-functional since the other genes in this pathway are pseudogenized. T. rangeli is highly susceptible to oxidative stress, a phenotype that may be explained by a smaller number of anti-oxidant defense enzymes and heatshock proteins.  Conclusions/Significance: Phylogenetic comparison of nuclear and mitochondrial genes indicates that T. rangeli and T. cruzi are equidistant from T. brucei. In addition to revealing new aspects of trypanosome co-evolution within the vertebrate and invertebrate hosts, comparative genomic analysis with pathogenic trypanosomatids provides valuable new information that can be further explored with the aim of developing better diagnostic tools and/or therapeutic targets

    Murine GRPR and Stathmin Control in Opposite Directions both Cued Fear Extinction and Neural Activities of the Amygdala and Prefrontal Cortex

    Get PDF
    Extinction is an integral part of normal healthy fear responses, while it is compromised in several fear-related mental conditions in humans, such as post-traumatic stress disorder (PTSD). Although much research has recently been focused on fear extinction, its molecular and cellular underpinnings are still unclear. The development of animal models for extinction will greatly enhance our approaches to studying its neural circuits and the mechanisms involved. Here, we describe two gene-knockout mouse lines, one with impaired and another with enhanced extinction of learned fear. These mutant mice are based on fear memory-related genes, stathmin and gastrin-releasing peptide receptor (GRPR). Remarkably, both mutant lines showed changes in fear extinction to the cue but not to the context. We performed indirect imaging of neuronal activity on the second day of cued extinction, using immediate-early gene c-Fos. GRPR knockout mice extinguished slower (impaired extinction) than wildtype mice, which was accompanied by an increase in c-Fos activity in the basolateral amygdala and a decrease in the prefrontal cortex. By contrast, stathmin knockout mice extinguished faster (enhanced extinction) and showed a decrease in c-Fos activity in the basolateral amygdala and an increase in the prefrontal cortex. At the same time, c-Fos activity in the dentate gyrus was increased in both mutant lines. These experiments provide genetic evidence that the balance between neuronal activities of the amygdala and prefrontal cortex defines an impairment or facilitation of extinction to the cue while the hippocampus is involved in the context-specificity of extinction

    Effect Sizes in Experimental Pain Produced by Gender, Genetic Variants and Sensitization Procedures

    Get PDF
    Background: Various effects on pain have been reported with respect to their statistical significance, but a standardized measure of effect size has been rarely added. Such a measure would ease comparison of the magnitude of the effects across studies, for example the effect of gender on heat pain with the effect of a genetic variant on pressure pain. Methodology/Principal Findings: Effect sizes on pain thresholds to stimuli consisting of heat, cold, blunt pressure, punctuate pressure and electrical current, administered to 125 subjects, were analyzed for 29 common variants in eight human genes reportedly modulating pain, gender and sensitization procedures using capsaicin or menthol. The genotype explained 0–5.9% of the total interindividual variance in pain thresholds to various stimuli and produced mainly small effects (Cohen's d 0–1.8). The largest effect had the TRPA1 rs13255063T/rs11988795G haplotype explaining >5% of the variance in electrical pain thresholds and conferring lower pain sensitivity to homozygous carriers. Gender produced larger effect sizes than most variant alleles (1–14.8% explained variance, Cohen's d 0.2–0.8), with higher pain sensitivity in women than in men. Sensitization by capsaicin or menthol explained up to 63% of the total variance (4.7–62.8%) and produced largest effects according to Cohen's d (0.4–2.6), especially heat sensitization by capsaicin (Cohen's d = 2.6). Conclusions: Sensitization, gender and genetic variants produce effects on pain in the mentioned order of effect sizes. The present report may provide a basis for comparative discussions of factors influencing pain
    corecore