11 research outputs found

    Développement de nanovéhicules à base de copolymères pour l'imagerie et la thérapie

    No full text
    The interest in developing new nanocarriers for imaging and therapy of cancer has been growing due to their high potential. Particularly nanocarriers based on polymers and polymeric micelles are very interesting because they can be tailor-made with certain functionalities to meet our needs.We have used amphiphilic triblock copolymers to develop new molecular (unimers) and supramolecular (micelles stabilized by photo cross-linking) nanocarriers. The carriers were then functionalized with fluorescent or radioactive markers to enable their in vitro and in vivo imaging. The in vitro and in vivo interactions were then studied to understand the influence of the copolymers properties on the biological interactions.This thesis presents the complete development of the nanocarriers from the early stages of fundamental physicochemical characterization up to the evaluation of their interest for different clinical applicationsLe développement de nanomédicaments pour l'imagerie et le traitement du cancer a suscité un intérêt croissant à cause de leur grand potentiel. En particulier les vecteurs à base de polymères et de micelles polymères sont très intéressants, car ils peuvent être conçus avec des fonctionnalités adaptées aux besoins.Nous avons utilisé des copolymères amphiphiles triséquencés pour développer de nouveaux nanovecteurs moléculaires (unimères) et supramoléculaires (micelles stabilisées par photo- réticulation). Nous les avons fonctionnalisés avec un marqueur fluorescent ou radioactif pour permettre leur imagerie in vitro et in vivo. Les interactions in vitro et in vivo ont été étudiées pour comprendre l'influence des propriétés des copolymères sur les interactions biologiques.Cette thèse présente le développement complet de nanovecteurs depuis les premières étapes de la caractérisation physico-chimique fondamentale jusqu'à l'évaluation de leur intérêt pour différentes applications cliniques

    Tumor-targeted nanomedicines for cancer theranostics

    Get PDF
    Chemotherapeutic drugs have multiple drawbacks, including severe side effects and suboptimal therapeutic efficacy. Nanomedicines assist in improving the biodistribution and target accumulation of chemotherapeutic drugs, and are therefore able to enhance the balance between efficacy and toxicity. Multiple types of nanomedicines have been evaluated over the years, including liposomes, polymer-drug conjugates and polymeric micelles, which rely on strategies such as passive targeting, active targeting and triggered release for improved tumor-directed drug delivery. Based on the notion that tumors and metastases are highly heterogeneous, it is important to integrate imaging properties in nanomedicine formulations in order to enable non-invasive and quantitative assessment of targeting efficiency. By allowing for patient pre-selection, such next generation nanotheranostics are useful for facilitating clinical translation and personalizing nanomedicine treatments

    Intravenous and intratumoral injection of Pluronic P94: The effect of administration route on biodistribution and tumor retention

    No full text
    International audiencePluronics P94 are block-copolymer showing prolonged circulation time and tumor-cell internalization in vitro, suggesting a potential for tumor accumulation and as a drug carrier. Here we report the results of the radiolabeled-P94 unimers (P94-111 In-DTPA) on tumor uptake/ retention and biodistribution after intravenous and intratumoral injection to tumor-bearing mice. Intravenous administration results in a high radioactive signal in the liver; while in tumor and other healthy tissues only low levels of radioactivity could be measured. In contrast, the intratumoral injection of P94 resulted in elevated levels of radioactivity in the tumor and low levels in other organs, including the liver. Independently from the injection route, the tumor tissue presented long retention of radioactivity. The minimal involvement of off-target tissues of P94, together with the excellent tracer retention overtime in the tumor designates Pluronic P94 copolymer as a highly promising carrier for anti-tumor drugs

    Fate of Organic Functionalities Conjugated to Theranostic Nanoparticles upon Their Activation

    No full text
    Neutron activation is widely applied for the preparation of radioactive isotopes to be used in imaging and/or therapy. The type of diagnostic/therapeutic agents varies from small chelates coordinating radioactive metal ions to complex nanoparticulate systems. Design of these agents often relies on conjugation of certain organic functionalities that determine their pharmacokinetics, biodistribution, targeting, and cell-penetrating abilities, or simply on tagging them with an optical label. The conjugation chemistry at the surface of nanoparticles and their final purification often require laborious procedures that become even more troublesome when radioactive materials are involved. This study represents a thorough investigation on the effects of neutron activation on the organic moieties of functionalized nanoparticles, with special focus on <sup>166</sup>Ho<sub>2</sub>O<sub>3</sub> particles conjugated with PEG-fluorescein and PEG-polyarginine motives. Spectroscopic and thermogravimetric analyses demonstrate only a limited degradation of PEG-fluorescein upon irradiation of the particles up to 10 h using a thermal neutron flux of 5 × 10<sup>16</sup> m<sup>–2</sup> s<sup>–1</sup>. Cell experiments show that the polyarginine-based mechanisms of membrane penetration remain unaltered after exposure of the functionalized particles to the mixed field of neutrons and gammas present during activation. This confirms that radiation damage on the PEG-polyarginines is minimal. Intrinsic radiations from <sup>166</sup>Ho do not seem to affect the integrity of conjugated organic material. These findings open up a new perspective to simplify the procedures for the preparation of functionalized metal-based nanosystems that need to be activated by neutron irradiation in order to be applied for diagnostic and/or therapeutic purposes

    SPECT/CT Imaging of Pluronic Nanocarriers with Varying Poly(ethylene oxide) Block Length and Aggregation State

    No full text
    Optimal biodistribution and prolonged circulation of nanocarriers improve diagnostic and therapeutic effects of enhanced permeability and retention-based nanomedicines. Despite extensive use of Pluronics in polymer-based pharmaceuticals, the influence of different poly(ethylene oxide) (PEO) block length and aggregation state on the biodistribution of the carriers is rather unexplored. In this work, we studied these effects by evaluating the biodistribution of Pluronic unimers and cross-linked micelles with different PEO block size. In vivo biodistribution of 111In-radiolabeled Pluronic nanocarriers was investigated in healthy mice using single photon emission computed tomography. All carriers show fast uptake in the organs from the reticuloendothelial system followed by a steady elimination through the hepatobiliary tract and renal filtration. The PEO block length affects the initial renal clearance of the compounds and the overall liver uptake. The aggregation state influences the long-term accumulation of the nanocarriers in the liver. We showed that the circulation time and elimination pathways can be tuned by varying the physicochemical properties of Pluronic copolymers. Our results can be beneficial for the design of future Pluronic-based nanomedicines.Version before revisions, but the revisions were minor.RST/Biomedical ImagingRST/Applied Radiation & IsotopesChemE/Advanced Soft Matte
    corecore